Supporting Requirements Analysis in Tropos:
a Planning-Based Approach

Volha Bryl!, Paolo Giorgini', John Mylopoulos'?

! University of Trento, Italy,
2 University of Toronto, Canada
bryl@dit.unitn.it, paolo.giorgini@unitn.it, jm@cs.toronto.edu

Abstract. Software systems are becoming more and more part of hu-
man life influencing organizational and social activities. This introduces
the need of considering the design of a software system as an integral
part of the organizational and social structure development. Alternative
requirements and design models have to be evaluated and selected from
a social perspective finding a right trade-off between the technical and
social dimension. In this paper, we present a Tropos-based approach for
requirements analysis, which adopts planning techniques for exploring
the space of requirements alternatives and a number of social criteria for
their evaluation. We describe the tool-supported analysis process with
the help of a case study (the e-voting system), which is a part of a project
funded by the Autonomous Province of Trento.

1 Introduction

Unlike their traditional computer-based cousins, socio-technical systems include
in their architecture and operation organizational and human actors along with
software ones. Moreover, human, organizational and software actors in such sys-
tems rely heavily on rich inter-dependencies to other actors in order to fulfill
their respective objectives. Not surprisingly, an important element in the design
of socio-technical systems is the identification of a set of dependencies among
actors which, if respected by all parties, will fulfill all objectives.

Let’s make the problem more concrete. KAOS [5] is a state-of-the-art require-
ments elicitation technique that starts with stakeholder goals and through a sys-
tematic, tool-supported process derives functional requirements for the system-
to-be and a set of assignments of leaf-level goals (constraints, in KAOS terminol-
ogy) to external actors so that if the system-to-be can deliver the functionality
it has been assigned and external actors deliver on their respective obligations,
stakeholder goals are fulfilled. However, there are (combinatorially) many al-
ternative assignments to external actors and the system-to-be. How does the
designer choose among these? How can we select an optimal, or “good enough”
assignment? What is an optimal assignment? The KAOS framework remains
silent on such questions. Alternatively, consider the ¢* and Tropos frameworks
for modeling and analysis of early requirements of agent-oriented systems [11, 1].
In i* /Tropos, goals are explicitly associated with external stakeholders and they

(a) 1st alternative (b) 2nd alternative

Fig. 1. Sample problem: two alternative models

can be delegated to other actors or the system-to-be. Or, they can be decom-
posed into subgoals that are delegated to other actors. In this setting, selecting
a set of assignments is more complex because delegations can be transitive and
iterative. “Transitive” means that actor A may delegate goal G to actor B who
in turn delegates it to actor C. “Iterative” means that an actor A who has
been delegated goal G, may choose to decompose it (in terms of an AND/OR
decomposition) and delegate its subgoals to other actors.

To illustrate the problem, consider the design task in Figure 1 where actor
Aj has to achieve goal G, which can be refined into two subgoals G; and Gs.
The actor can decide to achieve the goal by itself or delegate it to actor As.
In both cases, there are a number of alternative ways that can be adopted. For
instance, A; can decide to delegate to Ay the whole G (Figure 1a), or a part
of it (Figure 1b). The diagrams follow Tropos modelling notation with circles
representing actors, big dashed circles representing actors’ perspective, and ovals
representing goals (interconnected by AND/OR-decomposition links). Social de-
pendencies among actors for goals are represented by D-labelled directed links.
Even for such a simple example, the total number of alternative requirements
models is big, and a systemized approach and tool support for constructing and
evaluating such networks of delegations would be beneficial.

We are interested in supporting the design of socio-technical systems, specif-
ically the design of a set of inter-actor dependencies intended to fulfill a set of
initial goals. The support comes in the form of a tool that is founded on an off-
the-shelf AT planner to generate and evaluate alternative assignments of actor
dependencies to identify an optimal design.

Specifically, our tool solves the following problem: given a set of actors, goals,
capabilities, and social dependencies, the tool generates alternative actor depen-
dency networks on the basis of the following steps, which may be interleaved or
used inside one another:

— Check problem-at-hand: (a) Analyze actor capabilities: check whether ex-
isting actors possess enough capabilities to collectively satisfy their goals;
(b) Analyze actor inter-dependencies: check whether existing dependencies
between actors allows them to fulfill all given goals.

— Explore alternative dependency networks: (a) With the help of planning algo-
rithms construct assignments of goals to actors that leads to the satisfaction
of the actors’ goals; (b) Evaluate alternatives by assessing and comparing
them with respect to a number of criteria, provided by the designer.

The idea of casting the problem of designing a set of delegations for a socio-
technical system into a planning one has already been presented in [4,3]. In
addition, [3] proposes a preliminary approach to the evaluation of alternatives.
However, what was missing in these works, is the systematic process of require-
ments analysis to support the design of socio-technical systems. In this paper, we
present such a tool-supported process, which combines formalization and analy-
sis of an organizational setting, the use of planning techniques [3], and a concrete
set of optimality criteria to evaluate the produced requirements models. The ap-
proach is illustrated with the help of a case study involving an e-voting system,
developed for the Autonomous Province of Trento. We also report on preliminary
experimental results aimed to evaluate the scalability of the prototype tool.

The rest of the paper is structured as follows. Sections 2 and 3 present the
baseline for this research [3, 4], namely, in Section 2 the details on applying plan-
ning techniques to requirements models construction are given, and in Section 3
criteria and procedures for evaluating those models are discussed. Section 4
presents the general process schema of the proposed requirements analysis ap-
proach. This is followed by the explanations on how the inputs to the process are
organized and analyzed in Section 5. Section 6 introduces the e-voting case study
and illustrates the whole approach on its basis, which is followed by summarizing
remarks and discussion on the future work directions in Section 7.

2 Using Planning to Construct Requirements Models

The task of constructing delegation networks can be framed as a planning prob-
lem: selecting a suitable design corresponds to selecting a plan that satisfies
actors’ and organizational goals [3]. In general, AT (Artificial Intelligence) plan-
ning [10] is about automatically determining the course of actions (i.e. a plan)
needed to achieve a certain goal where an action is a transition rule from one
state of the world to another. A specification language is required to represent
the planning domain, i.e. the initial and the desired states and the actions.

The following predicates are used to formally represent the initial and the
desired states of the world (i.e. the organizational setting). The predicates take
variables of three types: actors, goals and goal types.

To typify goals, type(goal, g-type) predicate is used. Actor capabilities are
described with can_satisfy(actor, goal) and can_satisfy_gt(actor,g type)
predicates meaning that an actor has enough capabilities to satisfy either a spe-
cific goal, or a goal of a specific type. Dependencies among actors are reflected by
can_depend_on(actor, actor) and can_depend_on_gt(actor, actor, g_type)
predicates, which mean that one actor can delegate to another actor the fulfil-
ment of any goal or, in the latter case, any goal of a specific type. Predefined ways
of goal refinement are represented by and/or_decomposition(goal, goal, ..)

Al, A2 — t_actor

G, G1, G2 — t._goal DELEGATES A1 A2G
(can_satisfy A1 G) SATISFIES A2 G

(can_satisfy A1 G1) (b) Plan for 1st alternative
(can_satisfy A1 G2)

(can_satisfy A2 G) AND_DECOMPOSES A1 G G1 G2
(can_satisfy A2 G1) SATISFIES Al Gl

(can_satisfy A2 G2) DELEGATES Al A2 G2
(can_depend_on A1 A2) SATISFIES A2 G2
(and_decomposition2 G G1 G2) (c) Plan for 2nd alternative
(wants A1 G)

(a) Formalization

Fig. 2. Sample problem: formalization and plans.

predicates. Initial actor desires are represented with wants(actor, goal) pred-
icate. When a goal is fulfilled satisfied(goal) predicate becomes true for it.
In Figure 2a the example presented in Figure 1 (hereafter referred to as sample
problem) is formalized using the above described predicates.

A plan, which is constructed to fulfill actors’ and organizational goals, com-
prises the following actions: (a) Goal satisfaction, (b) Goal delegation, and (c)
Goal decomposition. Actions are described in terms of preconditions and effects,
both being conjunctions of the above mentioned predicates and/or their nega-
tions. If a precondition of an action is true in the current state, then the action
is performed; as a consequence of an action, a new state is reached where the
effect of the action is true.

When the problem domain and the problem itself are formally represented,
a planner is used to produce a solution. Having analyzed a number of available
off-the-shelf planners (see [4] for the details), we have chosen LPG-td [7], a
fully automated system for solving planning problems, which supports PDDL
2.2 specification [6], for implementing our planning domain. In Figure 2b-c two
plans for the sample problem generated by LPG-td are shown.

A set of experiments, which we do not report here due to the space limits,
were conducted with LPG-td to assess the scalability of the approach. The key
point of the experiments was to identify the complexity limits (in terms of num-
ber of goals, actors and actor dependencies, depth of goal decomposition trees,
etc.) which the planner could handle. The obtained results justify the use of
planning in the requirements engineering domain as, according to our experi-
ence, requirements models of real life case studies stay within the complexity
limits which our planning approach is able to manage. In [3] we have presented
P-Tool, an implemented prototype to support the designer in the process of ex-
ploring and evaluating alternatives. The tool has the interface for the input of
actors, goals and their properties. LPG-td is built in the tool, and is used to gen-
erate alternative requirements structures, which are then represented graphically
using Tropos notation.

3 Evaluating Requirements Models

After a requirements model has been constructed, it can be evaluated from the
two perspectives, global (i.e. the perspective of the designer), and local (i.e.
the perspective of an individual actor). The perspective of the designer will
normally include a number of non-functional requirements, which he wants to
be met. E.g., these might be security concerns, efficiency, maintainability, user
friendliness, etc. Evaluation is either quantitative, or qualitative, depending on
whether one can “measure” the requirement in terms of numbers, or there exists
just a relative scale to compare two models. An example of quantitative criteria
would be a “fair”, or homogeneous distribution of workload among the actors,
with a variance as a measure of it. An example of qualitative criteria could be
user friendliness, meaning that the expertise of the designer allows him to say
that organizing the process in this way is “more user friendly” than in this other.

An example of a local evaluation criterium we consider in this paper, is related
to workload distribution. We assume that each actor, either human or software,
wants to minimize the number and complexity of goals it /he/she needs to satisfy.
Complexity of a goal for an actor measures the effort required to achieve the
goal. Complexity has to be defined explicitly for leaf goals, i.e. for those goals
that could be assigned to actors that have capabilities to satisfy them. There
is no need to define or calculate complexity for a goal that is to be further
decomposed and delegated. Complexity is “local” in a sense that the same goal
can have different complexity values for different actors. For each actor there is
a maximum complexity it can handle, i.e. the sum of complexity values for all
the goals this actor is assigned should be less than some predefined threshold,
namely, maximum complexity. If this condition is violated the actor might be
willing to deviate from the imposed assignment.

After the complexity and maximum complexity values are defined, the eval-
uation procedure, which preliminary version was presented in [3], is as follows.

1. A plan P is generated by the planner.

2. Plan complexity values for each actor are calculated, by summing up the
complexity values for all the goals this actor is assigned.

3. Actors whose plan complexity values are greater than the corresponding
maximum complexity values are identified.

4. One of these actors is selected, namely, actor d,,q,; which has the maximum
difference § between plan complexity and maximum complexity values.

5. A subset of actions Pgye, C P, . is formed with the total cost greater or
equal to §, where P, _ denotes those actions of P in which @y, is involved.

6. The definition of the planning problem is changed in order to avoid the
presence of actions contained in Py, during the next planning iteration.

7. The procedure re-starts with the generation of a next plan.

4 Requirements Analysis: a General Schema

Our proposal is to structure the requirements analysis process to support a de-
signer in constructing and evaluating requirements models. The general schema

{In.inc. Plan constraints (from Fe)
vy v :
Input ; ; Ufer Evaluatign |
Checker Planner Evaluator Interface
1 Ry E| E Euo Fu
- Input -
|
Analyst % Output: final Tropos model
Output (if yes)
(1) Initial organizational setting description Output (if no)
(E_) Local evaluation criteria (Fy) User feedback Userln ut """ 4
(Eg) Global evaluation criteria (Fg) Evaluator feedback P

(Eyg) User’s global evaluation criteria (In. inc.) Input inconsistencies

Fig. 3. Requirements analysis process: a general schema.

of the process is presented in Figure 3. A preliminary description of an organi-
zational setting, which is provided by a designer in terms of actors, goals and
social relations, is analyzed and iteratively improved so as to output a model that
guarantees the fulfillment of stakeholder goals and is good-enough with respect
to a number of criteria. In the following we give details on the process steps and
their interrelations. Most of the process steps can be automated, however, the
presence of a human designer is inevitable — the design process for socio-technical
systems can be supported by tools but cannot be automated.

As a first step, it is checked whether there exist at least one assignment of
goals to actors that leads to the satisfaction of top-level goals. Input checker
analyzes the organizational setting, detects inconsistencies, and proposes possi-
ble improvements, which then are either approved, or rejected, or modified by
the designer. In particular, it is checked whether available actors possess enough
capabilities to collectively satisfy their goals, and whether the relationships be-
tween actors permit this to happen. To analyze actor capabilities means to check
that for each goal it is possible to find an actor capable of achieving each of its
AND-subgoals or at least one of its OR-subgoals. To analyze actor interdepen-
dencies means to check whether a goal can be delegated from an actor who wants
to achieve it to an actor who is capable of achieving it. Given a network of del-
egations between the actors, it is checked whether there exists a path between
two actors. In Section 5, we give details on analyzing and dealing with missing
capabilities, while the second kind of analysis is not covered in the paper.

After the input is checked, the first possible alternative is generated by the
Planner component, which exploits Al planning algorithms to search for a so-
lution as described in Section 2.

An alternative generated by the planner is then assessed by the Evaluator
with respect to a number of criteria. These criteria are defined by the designer

and refer to the optimality of the solution either from a global perspective (e.g.
assessing the overall security or efficiency), or from the local perspectives of
stakeholders (e.g. assessing the workload distribution). Evaluation criteria and
procedures were discussed in Section 3. If evaluation reveals that an alternative is
not acceptable, then the Evaluator provides feedback to the Planner in order
to formulate constraints for the generation of the next alternative. If no further
alternative can be generated, the current description of an organizational setting
is changed according to the constraints identified by the Evaluator, and then
is analyzed by the Input checker, and so on, iteratively.

Note that the output of the evaluation process needs to be approved by a
human designer. User evaluation interface presents the selected alternative
to the designer together with the summarized evaluation results. Another task
of this component is to provide the designer with the interface for giving his
feedback on why the selected alternative does not satisfy him. On the basis
of this feedback the constraints for the generation of the next alternative are
formulated and forwarded to the Planner. The result of the application of the
approach is a new requirements model, which is, ideally, optimal or, in practice,
good-enough with respect to all the local and global criteria, and is approved by
the designer. After obtaining one satisficable alternative it is possible to repeat
the process to generate others, reusing already obtained constraints.

5 Input Analysis

The input to the proposed requirements analysis process is provided by the
designer, and can be logically divided into the following two categories. Firstly,
it is an organizational setting description, i.e. actors, their goals and capabilities,
dependencies among actors, possible ways of goal refinements (decompositions of
a goal into AND /OR-subgoals). The second category contains evaluation criteria,
either qualitative or quantitative, e.g. preferences or cost bounds, as discussed
in Section 3.

As it was stated in Section 4, the description of an organizational setting can
be analyzed with respect to capabilities of available actor and actor connectivity.
In this section the process of analyzing actor capabilities is explained, while actor
connectivity analysis is outside the scope of this paper.

Firstly, a “capability tree” for each high-level organizational goal is con-
structed. A “capability tree” is based on a goal model [1], which organizes goals
in a tree structure reflecting AND- and OR-decompositions. In addition, a list
of actors capable of achieving a goal is associated with each leaf node of a tree.
Nodes with no associated actors are marked as unsatisfiable with the goal which
causes the problem included in the label (unsat : goal). Otherwise, a node is
marked as satisfiable (sat). After that, labels are propagated bottom-up to the
root goal according to the following rules. If all OR-subgoals or at least one
AND-subgoal of a goal is marked unsat, then the goal is also marked unsat, and
sat otherwise. When an wunsat label is propagated, the goals that cause unsat-
isfiability problem are accumulated together; at the end the label might look as

Conduct
elections in a
section unsat

Qrganize voting
procedure
unsat

Frocess
ballots

unsat

N

Transfer
processed
data sat

Registration
system

AND Aggregate

results unsat

| rovide access centrally

E
to vote casting
new actor sat emvironment

Crganize vote
casting
unsat

Electora
office
Count ballots

add capability to

new actor existing actor

Fig. 4. Case study: conduct elections in a section.

unsat : (G1 or Gz) and G3, meaning that to satisfy the root goal we need to
find the ways to satisfy G5 and either G; or Gs.

After a capability tree has been built and sat/unsat labels propagated, it
becomes clear whether the root goal can be satisfied, and if not, what are the
missing capabilities. There are two ways to deal with missing capabilities:

— Add a new capability to an existing actor. Such a decision could be based on
the actual capabilities of this actor. Namely, if this actor is already capable
of achieving one or several goals of the same type, it is likely that it could
manage the new goal as well.

— If there is no way to add the missing capability to one of the existing actors,
a new actor might be introduced.

6 E-Voting Case Study

The focus of the case study is on modelling requirements for an electronic based
voting system that is to be introduced in the Autonomous Province of Trento
by the next provincial elections (to be held in 2008). The Province is funding
the ProVotE project [9], which has the goal of providing a smooth transition
from the paper based voting system to new technologies. The project includes
partners from the public administration, research centers and academia, and
local industries.

6.1 Description

Voting in Italy consists of the following stages [8]: (a) Identification and regis-
tration of a voter at a polling station; (b) Casting a vote; (¢) Counting votes and

tabulating the results; (d) Transmission of the results to the offices responsible
for data aggregation; (e) Sum and proclamation of the elected representatives.

Introducing the new technologies in all these stages not only changes the way
in which votes are collected and processed, but also roles and responsibilities of
the actors involved. One of the ProVotE activities was the extensive UML mod-
elling of existing paper based voting procedures [8] in order to provide a baseline
for the definition of new procedures. Obviously, there are many ways in which
the paper based system might be transformed into an e-voting system, and thus,
many alternative configurations should be analyzed and compared. However,
UML modelling approach, being process-oriented, does not provide support for
such an analysis. To complement UML modelling in tackling the above prob-
lems, Tropos modelling approach has been used, which provides a clear visual
representation of the organizational setting (actors, goals, actor dependencies)
combining the perspectives of different stakeholders®.

Example 1. 1In Figure 4 the diagram representing the viewpoint of the polling
station staff on the voting process is shown®. As presented in the diagram,
the root level goal, conduct election in a section, is decomposed into the three
AND-subgoals, two of which are then further decomposed. Some of the subgoals
(provide access to vote casting environment, and transfer processed data) can be
satisfied by the polling station staff. For the achievement of other goals the polling
station staff depends on the other actors, either organizations, or humans, or
software systems, e.g. the goal register voters is delegated to the registration
system actor.

Example 2. The second example concerns the goal transfer processed data,
and the president of the section, the leading member of the polling station staff,
who is responsible for satisfying this goal, see Figure 5. Elections are conducted
with the help of several voting machines installed in standard voter cabins in
each polling station. A voter expresses his/her choice with the help of a touch-
screen, and then a ballot is printed, approved by the voter and stored inside a
machine. At the end of an election day, data from voting machines are collected
on the special purpose USB keys, one per machine, and printed paper ballots
are extracted from the machines (more details are given in [8]). Thus, there are
three pieces of data that could be transferred from the polling station to the
Electoral office, namely, USB keys, electronic data these keys contain, and paper
ballots.

6.2 Illustrating the process

Capability analysis. Figure 4 depicts a capability tree for conduct elections in
a section goal, in which two leaf goals are assigned sat labels, namely, provide
access to vote casting environment and transfer processed data, meaning that

3 See [2] for the discussion on why and how UML and Tropos modelling approaches
are applied together in ProVotE.

4 For the moment sat/unsat labels should be ignored, the necessary explanations will
be given in Section 6.2.

Transfer
processed

President of

the section

Transfer

electronic and

paper data
<>

Transter all
data means

lceys and
glectronic data

Transfer paper
hallots

S
ND

Transfer
electronic data

Extract paper
ballots from
machines

" /'send datato \ /Upload data \ /Prepare USE
Electoral office Jlfrom machines lkeys for
via FC to keys sending

Prepare ballots
for sending

i

Fig. 5. Case study: transfer processed data.

polling station staff possesses enough capabilities to satisfy both of them. After
sat/unsat labels are propagated, it becomes clear that the goal conduct elections
in a section cannot be satisfied due to the fact that the polling station staff is
not able (or need extra support) to register voters, count ballots, and aggregate
the results centrally®. To address the missing capability problems, the following
steps are performed. Firstly, the capability to aggregate the results centrally is
added to the existing actor, Electoral office; in the initial input setting this data
could be omitted just by mistake, and such kind of input analysis helps to correct
the errors. Secondly, two new actors are introduced to deal with register voters
and count ballots goals, registration system and wvoting machine, respectively.
These new actors are the parts of the new e-based voting system, specifying the
requirements to which is what we aim at.

Planning and evaluation. In Table 1 the iterations of the planning and
evaluation procedure applied to the case study are presented. When evaluating
the workload, it is assumed that the goals send data to FElectoral office via PC
and prepare USB keys for sending are considered to be not very complex goals
with the complexity value equal to 5 units for each of the two goals. The other
three leaf goals are considered to be more complex with the complexity value
equal to 10 units. For the sake of simplicity the complexity values for the same
goal are the same for all actors. Maximum complexity values are the same for
all the actors and are equal to 15 units.

5 Extensions of unsat labels (which accumulate the goals that cause unsatisfiability
problem as it was described in Section 5) are omitted for the sake of presentation
simplicity.

10

#|Description Actor : Workload | Who deviates

1 |Depicted in Figures 5 and 6a. President : 20 President
9 President delegates the goal of preparing President : 15 Designer
USB keys for sending to Secretary. Secretary : 5 &

Designer decides that to maintain the re-
quired security level all the data means
should be transferred to the Electoral of- .

. President : 35 .
3 |fice. Transfer all data means goal is adopted, Secretary : 5 President
Secretary is in charge of preparing USB keys v
for sending, President takes care of all the
other subgoals.

The goal of preparing paper ballots for send- President : 25

4 ing is delegated to Secretary. Secretary : 15 President
No plan can be generated, so actors’ capa-
bilities are analyzed, and it is inferred that President : 15

5 |Scrutineer can satisfy a goal of extracting pa- Secretary : 15 —
per ballots from voting machines. This goal Secretary : 10

is delegated to Scrutineer, see Figure 6b.

Table 1. Case study: plans and their evaluation

OR_DECOMPOSES PRES

TR TRALL TREP TREK
AND_DECOMPOSES PRES

TRALL TRE TRK TRP
AND_DECOMPOSES PRES

TRP EXTRACTP PREPAREP
DELEGATES PRES SCRU EXTRACTP
SATISFIES SCRU EXTRACTP
DELEGATES PRES SECR PREPAREP
SATISFIES SECR PREPAREP
AND_DECOMPOSES PRES

TRE UPLOADONK SENDE
SATISFIES PRES UPLOADONK
SATISFIES PRES SENDE
AND_DECOMPOSES PRES

TRK UPLOADONK PREPAREK
DELEGATES PRES SECR PREPAREK
SATISFIES SECR PREPAREK

(b) Final plan

OR_DECOMPOSES PRES
TR TRALL TREP TREK
AND_DECOMPOSES PRES
TREK TRE TRK
AND_DECOMPOSES PRES
TRE UPLOADONK SENDE
SATISFIES PRES UPLOADONK
SATISFIES PRES SENDE
AND_DECOMPOSES PRES
TRK UPLOADONK PREPAREK
SATISFIES PRES PREPAREK
(a) Initial plan

Fig. 6. Transfer data: the initial and the final plans.

7 Conclusions and Future Work

In this paper we have proposed a structured Tropos based requirements analysis
process which focuses on exploring and evaluating alternative requirements mod-

11

els. Planning techniques are adopted for constructing alternative dependency
networks, which are then evaluated with respect to a number of criteria. Eval-
uation criteria represent either a designer’s point of view, or assess the models
from the local perspectives of organizational actors. The approach is illustrated
with the help of the case study taken from the ongoing project, which is about
introducing e-based voting system in Autonomous Province of Trento.

The priority among the possible future work directions is on further imple-
mentation and testing the tool which supports all steps of the design process.
Other important research directions include the further development of evalua-
tion metrics, with a focus on local evaluation metrics; elaborating on the input
analysis to address all the situations in which no solution is available; exploiting
advances in Al planning by incorporating some of the evaluation metrics into
the planning process; further experiments regarding the scalability and usability
of the proposed approach.

8 Acknowledgements

This work has been partially funded by EU Commission, through the SENSORIA
and SERENITY projects, by MEnSA-PRIN project, and also by the Provincial
Authority of Trentino, through the MOSTRO project.

References

1. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An
agent-oriented software development methodology. JAAMAS, 8(3):203-236, 2004.

2. V. Bryl, F. Dalpiaz, R. Ferrario, A. Mattioli, and A. Villafiorita. Evaluating Pro-
cedural Alternatives.A Case Study in E-Voting. In MeTTeG 07, 2007.

3. V. Bryl, P. Giorgini, and J. Mylopoulos. Designing cooperative is: Exploring and
evaluating alternatives. In CooplS’06, pages 533-550, 2006.

4. V. Bryl, F. Massacci, J. Mylopoulos, and N. Zannone. Designing security require-
ments models through planning. In CAiSE’06, pages 33—47. Springer, 2006.

5. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements ac-
quisition. Science of Computer Programming, 20:3-50, 1993.

6. S. Edelkamp and J. Hoffmann. PddI2.2: The language for the classical part of
the 4th international planning competition. Technical Report 195, University of
Freiburg, 2004.

7. LPG Homepage. LPG-td Planner. http://zeus.ing.unibs.it/lpg/.

8. R. Tiella, A. Villafiorita, and S. Tomasi. Specification of the Control Logic of an
eVoting System in UML: the ProVotE experience. In CSDUML-06, 2006.

9. A. Villafiorita and G. Fasanelli. Transitioning to eVoting: the ProVotE project and
Trentino’s experience. 2006. In EGOV-06.

10. D. S. Weld. Recent Advances in Al Planning. Al Magazine, 20(2):93-123, 1999.
11. E. S.-K. Yu. Modelling strategic relationships for process reengineering. PhD thesis,
University of Toronto, 1996.

12

