
Applying Tropos to Socio-Technical System Design
and Runtime Configuration

Fabiano Dalpiaz∗, Raian Ali∗, Yudistira Asnar∗, Volha Bryl∗ and Paolo Giorgini∗
∗Dipartimento di Ingegneria e Scienza dell’Informazione

Università degli Studi di Trento
Email: {dalpiaz,ali,yudis.asnar,bryl,pgiorgio}@disi.unitn.it

Abstract—Recent trends in Software Engineering have intro-
duced the importance of reconsidering the traditional idea of
software design as a socio-tecnical problem, where human agents
are integral part of the system along with hardware and software
components. Design and runtime support for Socio-Technical
Systems (STSs) requires appropriate modeling techniques and
non-traditional infrastructures. Agent-oriented software method-
ologies are natural solutions to the development of STSs, both
humans and technical components are conceptualized and an-
alyzed as part of the same system. In this paper, we illustrate
a number of Tropos features that we believe fundamental to
support the development and runtime reconfiguration of STSs.
Particularly, we focus on two critical design issues: risk analysis
and location variability. We show how they are integrated and
used into a planning-based approach to support the designer in
evaluating and choosing the best design alternative. Finally, we
present a generic framework to develop self-reconfigurable STSs.

I. INTRODUCTION

Socio-technical systems, introduced by Emery and Trist [1],
[2], identify a particular class of systems characterized by an
interplay between their social and technical components; in
other words, a socio-technical system is composed not only
of hardware and software, but also of human agents. STSs
present specific properties, among which [3]:
• emergent properties arising from the system as a whole,

rather than from the individual components;
• non-determinism, since humans do not always react in

the same way;
• dynamic organizational objectives, because objectives can

have different (subjective) interpretations and may vary
over time.

A particularly relevant and promising application area for
socio-technical systems is Ambient Intelligence (AmI). Fig-
ure 1 presents an AmI scenario concerning crisis management,
which we will use further in the paper as a motivating case
study. A camera detects a possible fire in a building and,
in order to avoid false alerts, it asks another camera for
confirmation (1). A sound alert cannot be activated, because
the (in-place) alarm ring is out of order (2). The system should
therefore self-reconfigure: the alternative is to call the firemen
(3), check the current traffic status to support the rescue teams
(4), and alert the fire warden (6). The socio-technical nature of
this scenario becomes clear during this reconfiguration step:
calling firemen and alerting the fire warden involves human

activities, whose outcome is unpredictable, whereas checking
the traffic status involves humans only in a further step, when
traffic should be re-routed (5). Even in such a simplified sce-
nario, the interplay between humans and technical subsystems
is manifest, and shows the complex nature of designing and
supporting STS at runtime.

Fig. 1. An Ambient Intelligence crisis management scenario for Socio-
Technical Systems.

The use of agents, with sociality, autonomy, and proactivity
as key characteristics, can be beneficial for socio-technical
systems (and, consequently, AmI systems) design and runtime
support. Indeed, in an STS the social interaction among the
computational units is essential in pursuing the system goals.
System components (both technical and social) need autonomy
to take decisions locally, to choose when and how they need
to achieve their objectives.

Tropos [4] is an agent-oriented software engineering
methodology, which bases on the Belief-Desire-Intention
(BDI) paradigm [5], [6]. Tropos models the system as a set of
interacting agents1. Each agent has a set of goals to fulfill, and
a number of tasks that describe how to achieve goals. An agent
can provide or require resources to execute tasks. Soft-goals
represent those goals, such as software qualities, for which
fulfillment there is no clear-cut criteria. Goal-to-goal connec-
tions can be set through (a) and-decomposition to split a goal
into a number of concurrent sub-goals; (b) or-decomposition

1An agent can be a human or an artificial agent.



to represent a number of alternative sub-goals. Goals are
connected to tasks through means-end decomposition: the task
is a means to achieve an end (the goal). Contribution relations
link goals, tasks, and resources to soft-goals; a contribution
from an element x to a soft-goal s represents how well x
contributes to the satisfaction of s. Finally, agents depend on
each other – via dependencies – for goal achievement, task
execution, and resource provision.

These aspects of Tropos appear useful for the development
of socio-technical systems, where hardware/software agents
coexist with human actors. However, the original [4] Tropos
modeling framework alone is not sufficient to capture all
aspects of STSs, and in this paper, we illustrate a collection
of Tropos extensions that can be used to better address both
the development and the support of STSs at runtime. The
first design-time extension concerns the modeling of location
variability; the location where an agent is situated can requires
specific strategies to be used at runtime. The second extensions
we introduce is a framework to handle uncertainty in the
development of STSs: the Goal-Risk (GR) framework is a
modeling technique, accompanied by analysis tools, whose
objective is the minimization of risk. These extensions to the
original Tropos framework can be integrated in a planning-
based framework that can support a designer in exploring the
design-time space of alternatives. The framework allows the
designer to look at all possible designs and on the base of
a number of criteria decide on such alternatives. Finally, we
introduce two approaches to support self-reconfigurable STSs.
Essentially, we propose two approaches to use the Tropos goal
diagrams to monitor the execution of a system. The former
adopts a centralized reconfiguration engine, while the latter a
decentralized reconfiguration enacted by each agent.

The paper is organized as follows: Section II discusses
two concerns which are relevant in the design of STSs in an
AmI setting: location variability and risk; Section III shows
how AI planning techniques can be used to automate design-
time analysis; Section IV analyzes autonomic STSs and the
property of runtime self-reconfiguration. Finally, Section V
presents final remarks and future work.

II. MODELING STS IN AMI SETTINGS

We present two different techniques to support the design of
socio-technical systems. The rationale behind these proposals
comes from two important aspects in STSs, and whose impor-
tance gets even wider when considering Ambient Intelligence
settings; these concerns are location-based variability and risk.

A. Modeling Location-based Variability

The rationale of an agent often contains behavioral variabil-
ity, where the agent can choose among alternative strategies
(tasks) to fulfill the same objective (goal). A proper variability
modeling should include means to represent how the selection
between these alternatives is performed, specifying when and
where a certain alternative is applicable. STSs are charac-
terized by a dynamic location, in which both technical and
social components vary over time. We claim that location is

an important criteria that can constrain and guide the selection
of the most suitable alternative.

Figure 2a shows a partial goal model for a software agent
working on behalf of a victim of a crisis (e.g., a fire). To ensure
victim safety, the software has to be aware of the crisis, which
can be done through an explicit request from the victim by a
voice or typed command or through the continuous automated
analysis of the signal that comes from some sensing system.
To ensure safety, the victim might need to wear special dress
(e.g. anti-fire coat). Then, the victim has to be guided to a safe
place through an automatic tracing and directing, or through
the help of a fireman.

The original Tropos goal model supports modeling alterna-
tives for satisfying goals, but lacks tools for specifying the
locations where specific alternatives are applicable. (see the
model in Figure 2a). In our previous work [7], [8], [9], we
extended Tropos goal model to represent the relation between
goal satisfaction alternatives and location. Our modeling en-
ables an agent to answer several important questions such as:
what are the possible, impossible, or recommended alternatives
to satisfy a goal in a specified location. In our approach, (i)
a location property is a boolean predicate evaluated against
the current location; (ii) a location-based variation point is an
element in the goal model to which a location property (Li on
Figure 2b) can be associated. We defined five location-based
variation points:

1) Location-based Or-decomposition: Or-decomposition is
the basic variability construct; the choice of a specific
Or-alternative might be based on a location properties
that inhibits, allows, or recommends some alternatives.
E.g. having crisis awareness through communicating
with a sensing system requires both that a sensing
system exists and the user’s PDA has the ability to
connect to it (L1).

2) Location-based contribution to softgoals: the value of the
contributions to the softgoals can vary from one location
to another. We need to specify the relation between the
location and the value of the contribution. E.g. receiving
the user request through voice recognition contributes
positively to the softgoal “Preciseness” when the level
of noise is low and the system is trained enough for
recognizing that user voice (L2), while it contributes
negatively in the opposite case (L3).

3) Location-based dependency: in some locations, an actor
might be unable to satisfy a goal using its own alterna-
tives. In such case, the actor might delegate this goal to
another actor that is able to satisfy it. E.g. guiding the
person in crisis by a fireman is an alternative that needs
a free and skilled fireman that is close to and can reach
that person (L4).

4) Location-based goal / task activation: an actor, and de-
pending on the location settings, might find necessary or
possible triggering (or stopping) the desire of satisfying
a goal / the execution of a task. E.g. notifying a person
about crisis has to be triggered when the analysis of
the signal that comes from the sensing system addresses



(a) Modeling with Tropos (b) Modeling with location-based Tropos

Fig. 2. Partial goal model for the crisis management scenario.

some potential danger (L5).
5) Location-based And-decomposition: a sub-goal might

(or might not) be needed in a certain location, that is
some sub-goals are not always mandatory to fulfil the
top-level goal in And-decomposition. E.g. the need of a
person in crisis to wear special equipments depends on
the category of the crises, and the skills the person in
danger has (L6).

The analysis of the location properties will lead to the
definition of the location model that can be modeled using
class diagram as we did in [8]. In [9], we described a
process to derive a location model – describing the location
in terms of its entities and the links between them – from
the location properties in a goal model. The location model
can be instantiated to represent a certain location and enable
automated reasoning. The evaluation of the location properties
will enable an agent to derive the possible alternatives for
satisfying its goals. The proposed extension of Tropos goals
modeling constructs are colored in gray in the metamodel of
Figure 3.

By formalizing the goal model, the location model, and the
location preperties, it becomes possible performing several
kinds of analysis. We outline now three types of automated
analysis:

1) Location-based goal satisfiability (LGS): it verifies
whether a goal is achievable by choosing a certain
alternative in a specific location.

2) Location properties satisfiability (LPS): this analysis
checks if the current location structure is compliant with
a set of goals. This techniques can be used to identify
what is missing in a particular location where some top-
level goals have been identified as unsatisfiable by LGS.

3) Preferences analysis (PA): this type of analysis requires
the specification of preferences over alternatives. Pref-
erences can be modeled using soft-goals as in [10]. We
need this analysis in two cases:

a) when there are several alternatives to satisfy a goal:
the selection will be based on the contributions to

Fig. 3. Metamodel showing the extension of Tropos with location.

preferred soft-goals.
b) when there is no applicable alternative: in this

case, LPS might provide several proposals about
the needed location modifications.

The adopted modifications are those leading to better
satisfaction of the preferences expressed over soft-goals.

B. Modeling Uncertainty through Risk Analysis

STSs are exposed to a wide range of uncertainty during their
development, runtime, and maintenance. Some uncertainties
can result into system failures, and can even put human lives



in danger. There is no such systems that are free of failure: if
something can go wrong then it will go wrong [11]. Therefore,
designers should consider uncertainties that could lead to
failures that harm the system and treat them.

In [12], we proposed the Goal-Risk (GR) modeling frame-
work, that extends Tropos by providing modeling constructs
to represent uncertain events that may affect the organization
negatively (called risks) or positively (called opportunities).
Indeed, it is hardly possible to nullify the risks that threaten a
system since the system can fail as well in case of normal op-
erations (e.g., operator errors, bad maintenance) or malicious
intentions (e.g., attacks, frauds).

������������

	
������

��������
��

����������

�������
����

����
���

�
������

��
�������

�
�����

	
��
�����

�

���
�

����
�������

�����������

��
����������

�������������
�

���

 

��������

������
��
�

	
��
�

!����
���"������
�

�
�����
�

#���$

%���������

��������

�
�����
�

#���������

������

���	


������

���	


�
�������

���	


&�

��#

&&�

&�

��#

&&�

#�

&�

Fig. 4. The Goal-Risk Framework

Conceptually, a Goal-Risk (GR) model (see Figure 4) is
composed by three-layers: asset to capture the goals of the
stakeholders (e.g., firefighter intends to stop a fire), and tasks
and resources required to achieve the goals (e.g., “Go to
warehouse to obtain the logistic”), event (pentagons) to model
uncertainty events (e.g., risks, opportunities) that affect the as-
set layer (e.g., having a traffic jam), and treatment, depicted as
tasks, to capture additional measures that are required to treat
the risks (e.g., spread firefighter units around the city). This
framework is equipped with two basic reasoning mechanisms
to help designers in making decisions. First, forward reasoning
aims at calculating the risk level of an organization for a
given setting (e.g., value of goals, adopted treatments) and
inputs (e.g., likelihood-severity of event). Second, backward
reasoning aims at eliciting the possible solutions (e.g., strategy
to achieve the goals and necessary treatments to mitigate the
risks) for a given set of constraints (e.g., tolerable risk level).

A socio-technical system is composed by several agents,
each having its own goals, tasks, resources, and, moreover,

each exposed to different risks. An agent often cannot fulfill
all its goals, and needs to depend on others to satisfy some
subgoals, execute some tasks, or provide resources. Thus, a
system can be viewed as a network of agent dependencies. In
secure and dependable systems, this phenomena emerges as
one of the critical points because a vulnerable agent can put
the entire system at risk.

In [13], we extend the GR framework to the case of a
multi-agents setting and illustrate how risks are propagated
from an agent across the organization. In certain cases, agents
should depend on other agents that they do not trust due to
some reasons (e.g., there are not other choices, the regulation
orders to do it). In such a setting, the agents often perceives
a higher level of risk as if they depend on the ones they
trust. Essentially, we can infer how much risks that an agent
perceives is based on its trust relations [14] and evaluate
whether adopted treatments are perceived to be effective by
agents in mitigating the risks.

Finally, considering risks is critical to ensure the socio-
technical systems being dependable and operating securely.
Risk analysis is a continuous process, and therefore risks must
be monitored during runtime and be reviewed regularly as long
as the system is still in use.

III. AUTOMATING THE DESIGN: A PLANNING-BASED
APPROACH

The planning-based extension of Tropos [15] has been
proposed to support a designer in exploring the space of
alternative designs of a socio-technical system. Indeed, the
fulfillment of each of the system goals is related to a number of
choices of how the goal is decomposed and which are the ac-
tors the goal (or its subgoals) are delegated to. The idea behind
planning-based framework is that the task of constructing a
requirements model for a socio-technical system, i.e. a network
of delegations among actors for goals, can be framed as a
planning problem where selecting a suitable social structure
corresponds to selecting a plan that satisfies the stakeholders
goals.

This work adopts AI (Artificial Intelligence) planning [16]
techniques to the domain of requirements engineering. AI
planning is about automatically determining a course of ac-
tions (i.e., a plan) needed to achieve a certain goal where
an action is a transition rule from one state of the world to
another. To define a planning problem, one should specify (i)
the initial state of the world, (ii) the desired state of the world,
and (iii) the actions. In our planning-based framework, goal
decomposition, delegation and fulfillment are seen as actions
that the designer ascribes to the actors of the system-to-be and
of its organizational environment. We use PDDL (Planning
Domain Definition Language) 2.2 [17] to formally specify the
initial organizational setting and actions of the domain. An
off-the-shelf planning tool, LPG-td [18], is adopted for the
implementation of the planning domain.

In [15] we have presented the basic set of first-order
predicates used to formalize the organizational setting in terms



of actors and goals, their properties (e.g. actor capabilities),
and social dependencies among actors.

The flexibility of the PDDL specification language makes
it possible to accommodate various criteria into the planning
problem definition. In the following, we list the extensions
of our framework related to three different aspect of socio-
technical system development and deployment.

An application of our planning-based framework to the
domain of secure system design presented in [19] supports
trust and permission concepts of Secure Tropos [20]. The plan-
ning domain is defined so that it guarantees that the resulting
socio-technical model satisfied the trust and permission related
constraints imposed on it (e.g., no goal is delegated along an
untrusted link). In the crisis management scenario, presented
in Section I, the examples of such security constraints can be
related to the permission to activate the alarm, which only a
limited set of actors possess, or to trust relations between the
firemen and the fire warden of the building.

Yet another extension of our framework [21] uses risk-based
evaluation metrics for selecting a suitable design alternative,
and aims at agent-based safety critical applications. In this
work, the risk-based criteria (e.g. related to the criticality of a
goal satisfaction or minimum acceptable level of trust between
agents) and the respective framework discussed in Section II-B
of the present paper, are incorporated into the planning-based
procedure which supports a socio-system design (as well as
a system redesign at runtime). This work aims at proposing
a design that maintain the risk level within the acceptable
limits. In the crisis management scenario, the examples of
risk constraints are the ones related to the way to alert the
workers about the danger (the most reliable one should be
chosen among the available alternatives), or to the level of
trust between the firemen and the fire warden of the building
and, accordingly, the goals that can be delegated between these
actors.

Location can be used as a metrics for evaluating alternatives,
as well. As we showed in Section II-A, location properties
associated to variation points can be used to (a) limit the
range of alternatives an agent can choose among; (b) ex-
press location-dependent contribution to soft-goals. In such
a way, the planning-based approach we suggest here can be
customized to discard unavailable options and to exploit soft-
goal satisfaction for ranking available alternatives.

IV. AUTONOMIC SOCIO-TECHNICAL SYSTEMS: RUNTIME
SELF-RECONFIGURATION

The previous sections focused on various facets of the
design of STSs, proposing both modeling languages and
analysis/reasoning techniques. The design of an STS is a
fundamental activity, which helps preventing the development
of a system that violates its requirements (both functional and
non-functional) at runtime.

Nevertheless, design-time support is not sufficient to provide
a comprehensive support for socio-technical systems. Runtime
violation of requirements [22] is recognized as an open
problem and has been explored since several years. Feather

et al. [23] propose an approach to reconcile requirements with
runtime behavior, where both the design- and run-time phases
are covered: (a) anticipate as many violations as possible at
specification time, and (b) detect and resolve the remaining vi-
olations at runtime. Though Feather’s work is not targeted for
socio-technical systems, it points out problems and proposes
solutions which apply also in the context of STSs.

There is hence a clear need for a runtime framework which
complements the design-time techniques we have presented.
An STS exhibits particular properties that set specific require-
ments for the execution infrastructure:

• humans play an active role and should interact with the
technical sub-systems at runtime;

• the location (both the physical and the social aspects of
location) is in continuous evolution;

• the system should self-reconfigure adapting to the chang-
ing environment where it operates;

• failures should be compensated and an alternative plan
should replace the failed plan.

Multi-agent system infrastructures represent a good candi-
date to support socio-technical systems at runtime. In particu-
lar, those based on the BDI paradigm are particularly suitable,
since Tropos is founded on BDI. However, STSs exhibit
some features which are not considered in the classical BDI
paradigm, such as the interplay between software and human
agents. Therefore, existing infrastructures need customization
to result an effective solution for STSs.

The approach we have taken in our research is to link
Tropos to BDI-based software architectures. This solution
enables us to combine different state-of-the-art techniques
extending the capabilities of BDI. Agents represent the core
concept at runtime; each agent has a goal-based specification,
executes plans to achieve its active goals, and depends on
other agent for plan execution, goal achievement, and resource
provision. Two different but complementary approaches can
drive the self-reconfiguration process, with distinct properties
and application scenarios:

• centralized self-configuration: some types of STS, such
as a scientific institution, can work properly only if a
centralized knowledge of the various agents is available,
and self-reconfiguration is therefore controlled centrally.
We explored this first type of self-reconfiguration in [24].

• decentralized self-configuration: this approach presents
self-configuration from the local perspective of an in-
dividual agent. Each agent commits to achieve its own
goals at best, without having a complete knowledge of
the STS. This solution cannot achieve the same level
of optimality a centralized approach guarantees, but is
the only available solution whenever the internals of the
agents cannot be disclosed to a centralized supervisor. An
example of this situation is two software systems that in-
teract but belong to different companies: the interfaces are
available, but the companies will not disclose the internal
reasoning. We proposed an initial approach supporting
this vision in [25].



In [24] we have presented an approach to dynamic recon-
figuration of a socio-technical system structure in response to
internal or external changes. The paper suggests a centralized
reconfiguration mechanism, which aims at making a socio-
technical system self-configuring, and proposes a multi-agent
architecture for its implementation.

The proposed reconfiguration mechanism

• collects and manages the information about the system;
• evaluates both the system state (e.g. the overall work-

load), and the local utilities of each agent to decide
whether the system needs to be redesigned in response
to external or internal changes;

• and, if the above evaluation shows that the reconfigu-
ration is needed, replans the system structure in order
to optimize it with respect to the evaluation criteria of
interest.

The notification about the change is obtained either from the
inside of the system or from the environment. Each system
agent is obliged to communicate to some central point if it
committed to, or achieved a goal. Four types of triggering
events are supported, namely, the situations when a new agent
enters the system, or the existing one leaves, when a new
system goal is introduced, or one of the old ones is satisfied.
However, due to the flexibility of the PDDL representation, it
is possible to extend the formalization to support the changes
in the agents’ capabilities and commitments, failures when
achieving goals, etc.

This framework can be applied to the organization of
firemen rescue teams, where different alternatives are available
(truck type, fire fighting approach, firemen equipment) and
several agents are involved. In this scenario, finding the
optimal solution is fundamental, and the centralized planning-
base approach is the best choice.

Talos [25] is an architectural approach to self-
reconfiguration based on a decentralized reconfiguration
mechanism, where self-reconfiguration is seen from the
perspective of each agent/component. Three different sub-
systems are the core of the self-reconfiguration process each
agent performs:

• Monitor: the agent should continuously monitor both
its internal state and the location where it is running
(similarly to what happens for the centralized approach).
The internal state is evaluated verifying the status of
the agent’s goals, detecting new goals, failures, and
fulfillments. A mailbox is exploited to figure out the
incoming requests from other agents, who want to in-
teract to achieve their own goals. The external context is
monitored receiving events from the set of artifacts which
can be seen or are used by the agent.

• Diagnose: monitored events are linked to the goal model
by traceability links, triggering new top-level goals and
notifying failures or achievements. Diagnosis provides
different levels of detail depending on the chosen goal
monitoring granularity; in Talos we exploit a variant of
Wang’s goal monitoring switches [26]: the closer the

monitoring switches are to the plans, the more detailed
diagnosis we can obtain. A particular kind of diagno-
sis is related to the enactment of dependencies, where
other agents provide information concerning dependency
requests (e.g., refuse, contract, accept).

• Compensate: after detecting and diagnosing a failure, the
following step consists of taking a countermeasure to this
failure. We propose the execution of two sub-tasks to
properly carry out this activity:

– A compensation plan should be executed to “undo”
the effects of the failed plan. An important informa-
tion from diagnosis is to understand which action of
the plan failed, or if the plan failed to achieve the
goal though it terminated correctly.

– A self-reconfiguration process is enacted to choose
another strategy to achieve the goal of which a failure
event was generated. A variant of goal analysis is
used to perform this step.

The decentralized solution is suitable in the fire fighting
scenario, as well. In the scene described in Figure 1 the
out-of-order bell inhibits the best overall alerting strategy
(playing a sound alarm), and this failure requires a prompt
local reconfiguration (e.g., alerting the fire warden). Involving
a central control unit would produce delays and could result in
a failure, especially if the fire damaged the physical network
enabling the communication with the central unit.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented and analyzed a number
of extensions to the Tropos methodology to support the
development and the runtime operation of a complex class of
modern systems, namely socio-technical systems. The design
and runtime emergent properties of these systems present a
lot of challenges for developers and there is a clear need for
innovative engineering tools and techniques.

We have presented two design-time modeling and reasoning
techniques, focused on location properties of an STS and risk
analysis, respectively. Also, the problem of runtime reconfigu-
ration of a socio-technical structure was addresses in the paper
with two approaches, centralized and decentralized, suitable
each for different application areas.

As future work, we believe it will be important to further
elaborate and better integrate the techniques presented in this
paper. Particularly, we would like to work on the implementa-
tion of an integrated CASE tool for the development of STSs.

VI. ACKNOWLEDGEMENTS

This work has been partially funded by EU Commission,
through the SENSORIA, SERENITY, and MASTER projects,
and by the PRIN program of MIUR under the MEnSA project.

REFERENCES

[1] F. Emery, “Characteristics of socio-technical systems,” London: Tavis-
tock, 1959.

[2] F. Emery and E. Trist, “Socio-technical systems,” Management Science,
Models and Techniques, vol. 2, pp. 83–97, 1960.



[3] I. Sommerville, Software Engineering. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2006, ch. Socio-Technical
Systems.

[4] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An agent-oriented software development methodology,” Au-
tonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203–236,
2004.

[5] A. Rao and M. Georgeff, “An abstract architecture for rational agents,”
Proceedings of Knowledge Representation and Reasoning (KR&R-92),
pp. 439–449, 1992.

[6] ——, “Bdi agents: From theory to practice,” Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS-95), pp. 312–
319, 1995.

[7] R. Ali, F. Dalpiaz, and P. Giorgini, “Location-based variability for
mobile information systems,” Proceedings of the 20th International
Conference on Advanced Information Systems Engineering (CAiSE’08),
2008.

[8] ——, “Modeling and analyzing variability for mobile information sys-
tems,” Proceedings of the 4th Ubiquitous Web Systems and Intelligence
Workshop (UWSI 2008), 2008.

[9] ——, “Location-based software modeling and analysis: Tropos-based
approach,” Proceedings of the 27th International Conference on Con-
ceptual Modeling (ER 2008), 2008.

[10] S. Liaskos, S. McIlraith, and J. Mylopoulos, “Representing and reason-
ing with preference requirements using goals,” Tech. rep. CSRG-542,
Computer Science Department, University of Toronto, Tech. Rep., 2006.

[11] B. Schneier, Beyond Fear: Thinking Sensibly about Security in an
Uncertain World. Springer, 2003.

[12] Y. Asnar and P. Giorgini, “Modelling Risk and Identifying Countermea-
sures in Organizations,” in Proc. of CRITIS’06, ser. Lecture Notes in
Computer Science, vol. 4347. Springer, 2006, pp. 55–66.

[13] Y. Asnar, R. Moretti, M. Sebastianis, and N. Zannone, “Risk as Depend-
ability Metrics for the Evaluation of Business Solutions: A Model-driven
Approach,” in Proc. of ARES’08. IEEE Press, 2008.

[14] Y. Asnar, P. Giorgini, F. Massacci, and N. Zannone, “From Trust to
Dependability through Risk Analysis,” in Proc. of ARES’07. IEEE
Press, 2007.

[15] V. Bryl, P. Giorgini, and J. Mylopoulos, “Designing Cooperative IS:
Exploring and Evaluating Alternatives,” in CoopIS’06, 2006, pp. 533–
550.

[16] D. S. Weld, “Recent Advances in AI Planning,” AI Magazine, vol. 20,
no. 2, pp. 93–123, 1999.

[17] S. Edelkamp and J. Hoffmann, “PDDL2.2: The Language for the
Classical Part of the 4th International Planning Competition,” University
of Freiburg, Tech. Rep. 195, 2004.

[18] LPG Homepage, “LPG-td Planner,” http://zeus.ing.unibs.it/lpg/.
[19] V. Bryl, F. Massacci, J. Mylopoulos, and N. Zannone, “Designing

Security Requirements Models Through Planning,” in CAiSE’06, 2006,
pp. 33–47.

[20] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, “Modeling Se-
curity Requirements Through Ownership, Permission and Delegation,”
in Proc. of RE’05. IEEE Press, 2005, pp. 167–176.

[21] Y. Asnar, V. Bryl, and P. Giorgini, “Using risk analysis to evaluate
design alternatives.” in AOSE, ser. Lecture Notes in Computer Science,
L. Padgham and F. Zambonelli, Eds., vol. 4405. Springer, 2006, pp.
140–155.

[22] A. van Lamsweerde, “Divergent views in goal-driven requirements
engineering,” Foundations of Software Engineering, pp. 252–256, 1996.

[23] M. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard, “Recon-
ciling system requirements and runtime behavior,” Proceedings of the
9th International Workshop on Software Specification and Design, pp.
50–59, 1998.

[24] V. Bryl and P. Giorgini, “Self-Configuring Socio-Technical Systems:
Redesign at Runtime,” in SOAS’06, 2006.

[25] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “Talos: an architecture for
self-reconfiguration,” DISI-08-026, Tech. Rep., 2008.

[26] Y. Wang, S. McIlraith, Y. Yu, and J. Mylopoulos, “An automated
approach to monitoring and diagnosing requirements,” Proceedings of
the 22nd IEEE/ACM international conference on Automated software
engineering, pp. 293–302, 2007.


