
Reverse Data Exchange: Coping with Nulls

Ronald Fagin
IBM Almaden

Phokion G. Kolaitis
UC Santa Cruz & IBM Almaden

Lucian Popa
IBM Almaden

Wang-Chiew Tan
UC Santa Cruz

ABSTRACT
An inverse of a schema mapping M is intended to “undo” what M does,
thus providing a way to perform “reverse” data exchange. In recent years,
three different formalizations of this concept have been introduced and stud-
ied, namely, the notions of an inverse of a schema mapping, a quasi-inverse
of a schema mapping, and a maximum recovery of a schema mapping. The
study of these notions has been carried out in the context in which source in-
stances are restricted to consist entirely of constants, while target instances
may contain both constants and labeled nulls. This restriction on source
instances is crucial for obtaining some of the main technical results about
these three notions, but, at the same time, limits their usefulness, since re-
verse data exchange naturally leads to source instances that may contain
both constants and labeled nulls.

We develop a new framework for reverse data exchange that supports
source instances that may contain nulls, thus overcoming the semantic mis-
match between source and target instances of the previous formalizations.
The development of this new framework requires a careful reformulation
of all the important notions, including the notions of the identity schema
mapping, inverse, and maximum recovery. To this effect, we introduce the
notions of extended identity schema mapping, extended inverse, and max-
imum extended recovery, by making systematic use of the homomorphism
relation on instances. We give results concerning the existence of extended
inverses and of maximum extended recoveries, and results concerning their
applications to reverse data exchange and query answering. Moreover, we
show that maximum extended recoveries can be used to capture in a quan-
titative way the amount of information loss embodied in a schema mapping
specified by source-to-target tuple-generating dependencies.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases – Data
translation; H.2.4 [Database Management]: Systems – Relational
Databases

General Terms
Algorithms, Theory

Keywords
Schema mapping, data exchange, data integration, model manage-
ment, inverse, quasi-inverse, maximum recovery, chase

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-553-6 /09/06 ...$5.00.

1. Introduction

Background and Motivation. Schema mappings are high-level
specifications of how data from a source schema is to be trans-
formed to data in a different schema, called the target schema.
More formally, a schema mapping is a triple M = (S,T,Σ),
where S is a source schema, T is a target schema, and Σ is a set of
database dependencies that specify the relationship between S and
T. In recent years, an extensive investigation of schema mappings
and of their uses in data exchange and data integration has been car-
ried out. One particular direction of this investigation has focused
on the study of operators on schema mappings. Among all such
operators originally introduced in [4], the composition operator and
the inverse operator have been recognized as two fundamental ones.
The intuition behind these two operators is as follows. Given two
schema mappings M12 and M23 such that the target schema of
M12 is the same as the source schema of M23, the composition
operator yields a schema mapping M13 that is “equivalent” to the
successive application of M12 and M23, thus providing a way to
perform data exchange directly between the source schema of M12

and the target schema of M23. Given a schema mapping M, the in-
verse operator yields a schema mapping M′ that “undoes” what M
did, thus providing a way to do “reverse” data exchange. Clearly,
these two operators are of interest in their own right; furthermore,
when combined together, they attain even greater power since, in
combination, they can be used to analyze schema evolution.

By now, the composition operator has been investigated in depth,
and consensus has been achieved on what the definitive semantics
for composition is [5, 9, 12, 14]. The state of affairs concerning
the inverse operator, however, is more complicated and by far less
definitive. In [7], rigorous semantics for the inverse operator was
given for the first time. The notion of inverse introduced in [7]
turned out to be rather restrictive, as most schema mappings spec-
ified by source-to-target tuple generating dependencies (s-t tgds)
are not invertible. For this reason, the notion of a quasi-inverse of
a schema mapping was introduced and studied in [10]. After this,
a competing notion of a maximum recovery of a schema mapping
was introduced and studied in [2]. For invertible schema mappings,
the notions of inverse, quasi-inverse, and maximum recovery coin-
cide. In contrast, for non-invertible schema mappings, the notions
of quasi-inverse and maximum recovery differ in general. More-
over, every schema mapping specified by a set of s-t tgds has a
maximum recovery, whereas there are such schema mappings that
are not quasi-invertible.

Their differences notwithstanding, all previous studies of “in-
verse” operators (including inverse, quasi-inverse, and maximum
recovery) have the following basic assumption in common: the
source instances are ground, i.e., they consist entirely of constants,
while, on the contrary, target instances may contain both constants

23

and labeled nulls (variables). In particular, some of the key techni-
cal results in [2, 7, 10] very much depend on the assumption that
source instances do not contain labeled nulls. However, applica-
tions of “inverse” operators naturally lead to source instances that
may contain labeled nulls, in addition to constants. The following
example illustrates this scenario.

EXAMPLE 1.1. Let M be the schema mapping given by the
tuple-generating dependency

P (x, y, z) → Q(x, y) ∧R(y, z),

which describes a decomposition of a source relation P into two
target relations Q and R. It was shown in [10] that M is not in-
vertible but is quasi-invertible. Furthermore, a natural “inverse” of
M, which is both a quasi-inverse of M and a maximum recovery
for M, is the schema mapping M′ given by the following set of
“reverse” tgds:

Σ′ = { Q(x, y) → ∃zP (x, y, z), R(y, z) → ∃xP (x, y, z) }.
Consider the ground source instance I = {P (a, b, c)}, where a,
b, c are constants. The result of chasing I with M (i.e., the re-
sult of performing data exchange with M) is the instance U =
{Q(a, b), R(b, c)}. If we now chase U with M′ (i.e., perform the
“reverse” data exchange with M′), we obtain the source instance
V = {P (a, b, Z), P (X, b, c)}, where Z and X are nulls. Note
that V , which is the canonical result of “reverse” data exchange,
is no longer a ground instance and, thus, it is ruled out from the
semantics.

Another limitation of restricting source instances to be ground is
that data exchange cannot be performed on source instances that are
the result of a prior data exchange with s-t tgds, since, in general,
labeled nulls may be generated by chasing source instances with
tgds to produce universal solutions [8]. Thus, the preceding con-
siderations suggest that previous studies of inverse, quasi-inverse,
and maximum recovery suffer from a semantic mismatch that stems
from the assumption that only ground instances are allowed.

Summary of Contributions. Our goal in this paper is to develop
a new framework for “reverse” data exchange that overcomes this
semantic mismatch. This new framework supports source instances
with nulls, and makes it possible to recover source instances us-
ing reverse data exchange and to permit target instances that result
from one data exchange to be used as source instances of another
data exchange (thus, in the long run, this framework will enable the
analysis of schema evolution using composition and inverse).

The development of this new framework requires a careful re-
formulation of all the important notions, including the notions of
the identity schema mapping (which was used in the definition of
inverse [7]), inverse, and maximum recovery. This is so because
these earlier notions, which were studied under the assumption that
only ground source instances are allowed, lose their desirable prop-
erties when schema mappings are used to perform data exchange
between source and target instances that may both contain nulls.
For example, using the concept of maximum recovery in [2], it can
be shown (see Proposition 4.2) that the schema mapping specified
by the tgd P (x, y) → ∃z(Q(x, z) ∧ Q(z, y)) has a maximum re-
covery when only ground source instances are allowed, but has no
maximum recovery when source instances may contain nulls.

The key to finding the “right” notions in the new framework is
to replace the containment relation I1 ⊆ I2 between instances by
the homomorphism relation I1 → I2, which holds if there is a
homomorphism from I1 to I2 that maps constants to themselves
(note that if I1 is a ground instance, then I1 → I2 if and only

if I1 ⊆ I2). We use the notation → to denote the binary rela-
tion {(I1, I2) : I1 → I2} between instances that may contain
nulls. The next step is to replace the identity schema mapping Id =
{(I1, I2) : I1, I2 are ground instances such that I1 ⊆ I2} with the
extended identity schema mapping e(Id) = →. Thus,

e(Id) = {(I1, I2) : I1, I2 are instances such that I1 → I2}.

In fact, even the notion of a solution needs to be reformulated in
the new framework. Specifically, we say that a target instance J is
an extended solution for a source instance I w.r.t. a schema map-
ping M = (S,T,Σ) if there are a source instance I ′ and a target
instance J ′ such that I → I ′, (I ′, J ′) |= Σ, and J ′ → J . In ef-
fect, an extended solution J for I w.r.t. M is a solution for I w.r.t.
the schema mapping e(M) = → ◦M◦ →, which we call the
homomorphic extension of M. The intuition behind extended so-
lutions is that, since labeled nulls represent unknown information,
it is “legal” to homomorphically map them to other values before
or after taking the standard notion of solution. In a sense, the no-
tion of an extended solution is a relaxation of the notion of solution
where the exact values of the labeled nulls (in both the source in-
stance and the target instance) do not matter. Further, our definition
of extended solutions relaxes the notion of solution even more by
allowing the possibility that additional facts may be present (in the
spirit of the “open-world assumption”).1 With these new notions at
hand, we can then define the notions of extended inverse, extended
recovery, and maximum extended recovery by systematically re-
placing the identity schema mapping Id by the extended identity
schema mapping e(Id), and the composition M◦M′ by the com-
position e(M) ◦ e(M′) of the homomorphic extensions of M and
M′. Specifically, we say that M′ is an extended inverse of M if
e(M) ◦ e(M′) = e(Id). We say that M′ is a recovery of M if
for every source instance I , we have that (I, I) ∈ e(M) ◦ e(M′);
finally, we say that M′ is a maximum extended recovery of M if
M′ is an extended recovery of M and for every extended recovery
M′′ of M we have that e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′).

The first group of our technical results concerns the properties of
the extended inverse and its relation to the inverse. We give a nec-
essary and sufficient condition for an arbitrary schema mapping to
have an extended inverse and then focus on schema mappings spec-
ified by s-t tgds. We show that if M is specified by s-t tgds and is
extended invertible, then it is invertible, but not vice-versa. An ex-
tended inverse, however, need not be an inverse (and, of course, an
inverse need not be an extended inverse, since invertibility does not
imply extended invertibility). We also show that if M and M′ are
schema mappings such that both are specified by tgds, then M′ is
an extended inverse of M if and only if M′ is a chase-inverse of
M, that is, if every source instance I is homomorphically equiv-
alent to chaseM′(chaseM(I)), which is the source instance ob-
tained from I by first chasing with M and then with M′. This
result reveals that extended inverses specified by tgds are ideally
suited for “reverse” data exchange, since if the original source in-
stance I is no longer available, we can recover a homomorphically
equivalent one by chasing a universal solution for I with an ex-
tended inverse specified by tgds. It should be noted that this result
does not hold for (non-extended) inverses.

After this, we focus on maximum extended recoveries and obtain
the main technical results of this paper. We show that every schema
mapping M specified by s-t tgds has a maximum extended recov-
ery M′. Note that if both M′ and M′′ are maximum extended

1This is automatic in the case of schema mappings specified by
dependencies, such as s-t tgds.

24

recoveries of M, then

e(M) ◦ e(M′) = e(M) ◦ e(M′′).

For schema mappings M specified by s-t tgds, we characterize
the quantity e(M) ◦ e(M′) in terms of M alone by showing that
e(M) ◦ e(M′) = →M, where

→M = {(I1, I2) : chaseM(I1) → chaseM(I2)}.
This result makes it possible to capture in a quantitative way the
information loss embodied in a schema mapping. Specifically, we
can define the information loss of a schema mapping M specified
by s-t tgds as the set-theoretic difference →M \ e(Id); note also
that e(Id) ⊆ →M. In effect, the information loss of a schema
mapping M specified by s-t tgds measures the amount by which
M deviates from being extended invertible, since we show that M
is extended invertible if and only if →M = e(Id). The concept
of information loss can also be used to compare two schema map-
pings in a quantitative way and determine which of the two is “more
invertible”.

We also embark on an investigation of the language needed to ex-
press maximum extended recoveries of schema mappings specified
by s-t tgds. To this effect, we show that if M is a schema mapping
specified by full s-t tgds, then it has a maximum extended recov-
ery specified by disjunctive tgds with inequalities; this turns out to
be an optimal result, since we show the necessity of both disjunc-
tions and inequalities. We leave it as an open problem, however, to
pinpoint the exact language needed to express maximum extended
recoveries of schema mappings specified by arbitrary s-t tgds.

Finally, we show that maximum extended recoveries specified
by disjunctive tgds can be used to perform “reverse” data exchange
and “reverse” query answering, where the latter means answering
queries over the source schema when the source instance is no
longer available. A key notion that is central to all these appli-
cations (reverse data exchange, reverse query answering, and also
comparing schema mappings) is the notion of a universal-faithful
schema mapping, which provides a procedural counterpart to the
notion of maximum extended recovery of a schema mapping.

2. Background, Basic Notions, and Notation
A schema R is a finite sequence 〈R1, . . . , Rk〉 of relation sym-

bols, each of a fixed arity. An instance I over R is a sequence
(RI

1, . . . , R
I
k), where each RI

i is a finite relation of the same arity
as Ri. We shall often use Ri to denote both the relation symbol
and the relation RI

i that interprets it.
We assume that we have a fixed infinite set Const of constants

and an infinite set Var of labeled nulls that is disjoint from Const.
A ground instance over some schema is an instance such that all
values occurring in its relations are constants. We will also assume
that S is a fixed source schema and T is a fixed target schema.
Starting with [8], earlier work on data exchange was carried out
under the assumption that instances over the source schema S are
ground, while instances over the target schema T may contain both
constants and labeled nulls. This models the situation in which we
perform data exchange from S to T under the assumption that the
individual values of source instances are known, while the under-
specification of a data exchange setting may give rise to null values
in the target instances. In this paper, we will drop the assump-
tion that source instances are ground and, instead, we will assume
that instances over both the source and the target schema may have
individual values from Const ∪ Var. Allowing source instances to
contain both constants and labeled nulls models the situation where

source instances may also contain incomplete information. In par-
ticular, under this assumption, the target instance of one data ex-
change can be used as source instances of another data exchange.
Schema mappings A schema mapping is a triple M = (S,T,Σ),
where Σ is a set of constraints (typically, formulas in some logic)
that describe the relationship between S and T. We say that Σ
specifies M. This is the syntactic view of schema mappings. For
all practical purposes, however, a schema mapping can be identified
with the binary relation

{(I, J) : I is a S-instance, J is a T-instance, (I, J) |= Σ}.
This is the semantic view of schema mappings. In what follows,
we will switch freely between the syntactic view and the semantic
view of schema mappings. In particular, we will use the notation
(I, J) ∈ M to denote that the ordered pair (I, J) satisfies the
constraints of M; furthermore, we will sometimes define schema
mappings by simply defining the set of ordered pairs (I, J) that
constitute M (instead of giving a set of constraints that specify M).
We will also say that J is a solution for I w.r.t. M if (I, J) ∈ M.
We use solM(I) to denote the set of all solutions of I w.r.t. M.
Dependencies and schema mappings A source-to-target tuple-
generating dependency, in short, an s-t tgd, is a first-order formula
of the form ∀x(ϕ(x) → ∃yψ(x,y)), where ϕ(x) is a conjunction
of atomic formulas over S, ψ(x,y) is a conjunction of atomic for-
mulas over T, and every variable in x occurs in an atomic formula
in ϕ(x). A full s-t tgd is a tgd with no existential quantifiers ∃y.
In this paper, we will focus on schema mappings M = (S,T,Σ)
with Σ a set of s-t tgds. Our goal is to study extended inverses
and maximum extended recoveries of such schema mappings. In
particular, we will also investigate the language needed to express
maximum extended recoveries. This will require bringing into the
picture a richer class of dependencies that was first considered in
the study of quasi-inverses of schema mappings [10] and then in
the study of maximum recoveries [2].

Let Constant be a relation symbol that is different from all re-
lation symbols in S and T. A disjunctive tgd with constants and
inequalities from T to S is a first-order formula of the form

∀x(ϕ(x) → ∨n
i=1 ∃yiψi(x,yi)), where:

• The formula ϕ(x) is a conjunction of

(1) atoms over T, such that every variable in x occurs in at least
one of them;

(2) formulas of the form Constant(x) with x a variable in x;

(3) inequalities x �= x′ with x and x′ variables in x.

• Each formula ψi(x,yi) is a conjunction of atoms over S.

Naturally, a formula Constant(x) evaluates to true if and only if x
is interpreted by a value in Const.

In this paper, we also make use of disjunctive tgds with inequal-
ities, which are obtained by not allowing condition (2) in the above
definition. Moreover, if neither condition (2) nor (3) is allowed,
then we refer to these formulas simply as disjunctive tgds. We shall
also make use of tgds with constants, which are obtained by disal-
lowing both disjunction and condition (3).
Composing and inverting schema mappings Next, we recall the
concept of the composition of two schema mappings, introduced
in [9, 13], and the concept of an inverse of a schema mapping,
introduced in [7].

If M12 = (S1,S2,Σ12) and M23 = (S2,S3,Σ23) are two
schema mappings, their composition M12 ◦M23 is a schema map-
ping (S1,S3,Σ13) such that for every S1-instance I and every S3-
instance K, we have that (I,K) |= Σ13 if and only if there is a
S2-instance J such that (I, J) |= Σ12 and (J,K) |= Σ23. When

25

the schemas involved are understood from the context, we will of-
ten write Σ12 ◦ Σ23 to denote the composition M12 ◦M23.

The study of inverses of schema mappings in [7] assumes that
source instances are ground. Let Ŝ be a replica of the source schema
S, i.e., for every relation symbol R of S, the schema Ŝ contains a
relation symbol R̂ that is not in S and has the same arity as R.
Thus, every source instance I has a replica instance Î over Ŝ.

The identity schema mapping is Id = (S, Ŝ,ΣId), where ΣId

consists of the dependencies R(x) → R̂(x) as R ranges over the
relation symbols in S. Thus, from the semantic point of view, Id is
the set of all pairs (I1, I2) such that I1 is a ground S-instance, I2
is a ground Ŝ-instance, and Î1 ⊆ I2.

Let M = (S,T,Σ) be a schema mapping. We say that a schema
mapping M′ = (T, Ŝ,Σ′) is an inverse of M if M◦M′ = Id (as
sets of pairs of instances). This means that, for every pair (I1, I2)

of a ground S-instance I1 and a ground Ŝ-instance I2, we have
that Î1 ⊆ I2 if and only if there is a target instance J such that
(I1, J) |= Σ and (J, I2) |= Σ′.

From now on and for notational simplicity, we will write S to
also denote its replica Ŝ; it will be clear from the context if we
refer to S or to its replica. Moreover, we will use the same symbol
to denote both a ground S-instance I and its replica Ŝ-instance Î.

3. Extended Inverses
In this section, we introduce and study the notion of an extended

inverse of a schema mapping. For this, we first introduce the no-
tions of an extended solution and of the extended identity mapping.

We begin by giving the standard definitions of homomorphisms
and homomorphic equivalence.

DEFINITION 3.1. Let I1 and I2 be instances over a schema
R, with values in Const∪Var. A function h from Const ∪ Var
to Const ∪ Var is a homomorphism from I1 to I2 if for every c
in Const, we have that h(c) = c, and for every relation sym-
bol R in R and every tuple (a1, . . . , an) ∈ RI1 , we have that
(h(a1), . . . , h(an)) ∈ RI2 .

We use the notation I1 → I2 to denote that there is a homomor-
phism from I1 to I2. We say that I1 is homomorphically equivalent
to I2 if I1 → I2 and I2 → I1. We shall also use the notation →
for the binary relation {(I1, I2) | I1 → I2}.

Note that → is itself a schema mapping in which the source
schema is the same as the target schema. An important property
of → that we shall often use is that → ◦ → = →.

DEFINITION 3.2. Let M be a schema mapping. We say that J
is an extended solution of I w.r.t. M if there exist instances I ′ and
J ′ such I → I ′, (I ′, J ′) ∈ M, and J ′ → J . This is the same as
saying that (I, J) ∈ → ◦M◦ →. We use eSolM(I) to denote the
set of all extended solutions of I w.r.t. M.

EXAMPLE 3.3. Recall the earlier Example 1.1. The target in-
stance U is not a solution for the source instance V w.r.t. schema
mapping M because every solution for V w.r.t. M must contain
R(b, Z) and Q(X, b). However, U is an extended solution for V
w.r.t. M. To see this, consider the target instance

U ′ = {Q(a, b),Q(X, b), R(b, c), R(b,Z)},
which is a solution for V w.r.t. M. Furthermore, there is a homo-
morphism from U ′ toU (whereX is mapped to a, andZ is mapped
to c). Thus, (V,U ′) ∈ M, and U ′ → U . Hence, U is an extended
solution for V w.r.t. M.

Another way to see that U is an extended solution for V w.r.t.
M is to observe that if I is as in Example 1.1, then V → I , and U
itself is a solution for I w.r.t. M.

As this example illustrates, the main idea behind extended solu-
tions is that, since nulls represent unknown information, it is “legal”
to homomorphically map them to other values either before or after
taking the standard notion of solution.

The following proposition shows that extended solutions coin-
cide with solutions in an important special case.

PROPOSITION 3.4. If I is a ground source instance and M is a
schema mapping specified by s-t tgds, then eSolM(I) = SolM(I).

Based on extended solutions, we define extended universal solu-
tions by mimicking the definition of universal solutions in [8].

DEFINITION 3.5. Let M be a schema mapping. We say that J
is an extended universal solution for I w.r.t. M if J ∈ eSolM(I)
and, for every J ′ ∈ eSolM(I), we have that J → J ′.

We now define the notion of a homomorphic extension of a schema
mapping. This plays a central role in what follows.

DEFINITION 3.6. Let M be a schema mapping. The homomor-
phic extension of M, denoted by e(M), is the schema mapping
→ ◦M◦ →.

Note that for every source instance I , the extended solutions for
I w.r.t. M are exactly the (standard) solutions of I w.r.t. e(M).

In the same spirit as the extended notion of solution, we now
consider an extended notion of the identity schema mapping. This
is obtained by applying the homomorphic extension operator e on
the standard identity schema mapping Id.

DEFINITION 3.7. The extended identity schema mapping is the
schema mapping e(Id).

Note that, by definition, e(Id) = → ◦ Id ◦ →. It is easy to see
that → ◦ Id ◦ → is the same as → and, therefore, e(Id) = →.
Thus, the key difference from the standard notion of the identity
schema mapping is that e(Id) considers pairs (I1, I2) of instances
such that I1 is not necessarily a subset of I2 but, instead, I1 can be
homomorphically mapped into I2. Intuitively, I1 is a subset of I2
up to homomorphic mapping of nulls. Note that when I1 and I2
are ground, we have that I1 → I2 if and only if I1 ⊆ I2. Thus, for
ground instances, e(Id) coincides with Id.

We are now ready to give the definition of an extended inverse
of a schema mapping.

DEFINITION 3.8. Let M be a schema mapping.

• A schema mapping M′ is an extended inverse of M if

e(M) ◦ e(M′) = e(Id).

Since → ◦ → = →, the above equation is the same as

→ ◦M◦ → ◦M′ → = → .

• M is extended-invertible if it has an extended inverse.

We next introduce the notion of a capturing function, which will
be used to characterize extended invertibility.

DEFINITION 3.9. Let M be a schema mapping.

• We say that a target instance J captures a source instance I (for
M) if the following two conditions hold: (a) J ∈ eSolM(I);
and (b) if K is a source instance such that J ∈ eSolM(K),
then K → I .

• A capturing function for M is a (total) function F from source
instances to target instances such that for every source instance
I , we have that F (I) captures I .

26

The definitions imply that if J captures both I1 and I2, then I1
and I2 are homomorphically equivalent. Thus, the source instance
that is captured by J is unique up to homomorphic equivalence. In
general, for a given I there may not exist a J that captures I . If
such J exists for every I , then a capturing function for M exists.

We note that the notion of a target instance capturing a source
instance is an extended version of the notion of a strong witness
solution in [2]. The next theorem shows that extended invertibility
is equivalent to the existence of a capturing function.

THEOREM 3.10. Let M be a schema mapping. The following
statements are equivalent:

(1) M is extended-invertible.

(2) There exists a capturing function for M.

Furthermore, if M is extended-invertible and F is a capturing
function for M, then M′ = {(J, I) | J = F (I)} is an extended
inverse of M.

3.1 Extended Inverses of Mappings Specified by s-t tgds

We now address the important case in which the schema map-
ping M is specified by a finite set of s-t tgds. First we relate
extended-invertibility of such schema mappings to the existence
of a special capturing function given by the chase, and also to a
homomorphism-based property, which we define shortly. We con-
sider here the standard chase with tgds as introduced in [3] (see
also [1]) but applied to data exchange [8]. In particular, given a
source instance I , we write chaseM(I) to denote a target instance
J such that (I, J) is the result of chasing (I, ∅) with the dependen-
cies in M. Note here that (I, ∅) and (I, J) are instances over the
combined source and target schema.

The following proposition is analogous to (and follows easily
from) the result in [8] that chaseM(I) is a universal solution for I .

PROPOSITION 3.11. Let M be a schema mapping specified by
a finite set of s-t tgds. If J is a universal solution for I w.r.t.M, then
J is an extended universal solution for I w.r.t. M. In particular,
chaseM(I) is an extended universal solution for I .

DEFINITION 3.12. Assume that M is a schema mapping spec-
ified by a finite set of s-t tgds. We say that M has the homomor-
phism property if for all source instances I1 and I2, the following
holds: if chaseM(I1) → chaseM(I2), then I1 → I2.

THEOREM 3.13. Let M be a schema mapping specified by a
finite set of s-t tgds. The following statements are equivalent:

(1) M is extended-invertible.

(2) There exists a capturing function for M.

(3) The function F with F (I) = chaseM(I) is a capturing func-
tion for M.

(4) M has the homomorphism property.

Moreover, if M is extended-invertible, then the schema mapping
M∗ = {(J, I) | J = chaseM(I)} is an extended inverse of M.

Theorems 3.10 and 3.13 provide useful tools for verifying whether
a schema mapping is extended invertible or not. Next, we give an
example that illustrates how Theorem 3.13 can be applied to show
that a schema mapping given by s-t tgds is not extended invertible.

EXAMPLE 3.14. Consider the “union” schema mapping M spec-
ified by the s-t tgds P (x) → R(x) and Q(x) → R(x). We

now prove that M is not extended-invertible by showing that M
does not have the homomorphism property. Let I1 = {P (0)} and
I2 = {Q(0)}. It is obvious that chaseM(I1) → chaseM(I2);
however, it is not true that I1 → I2.

We next relate the notions of extended invertibility and extended
inverses to the notions of invertibility and inverses.

THEOREM 3.15. The following hold:

(1) If M is a schema mapping specified by a finite set of s-t tgds
and M is extended invertible, then M is invertible.

(2) There is a schema mapping M specified by a finite set of s-t
tgds that is invertible but not extended-invertible.

(3) There is a schema mapping M specified by a finite set of s-t
tgds that is extended-invertible and such that:

(a) M has an extended inverse M′ that is not an inverse of
M.

(b) M has an inverse M′′ that is not an extended inverse of
M.

PROOF. Part (1) follows from the fact that the homomorphism
property (which is equivalent to extended invertibility) implies the
“subset property” [10] (which characterizes invertibility).

For part (2), consider the schema mapping M that is specified
by the following s-t tgds:

P (x) → ∃yR(x, y) Q(y) → ∃xR(x, y)

We now show that M is invertible but not extended-invertible.
First, it can be easily verified that the schema mapping M′ given
by the following s-t tgds with constants is an inverse of M:

R(x, y) ∧ Constant(x) → P (x)

R(x, y) ∧ Constant(y) → Q(y)

Thus, M is invertible. We now show that M is not extended-
invertible by showing it fails to satisfy the homomorphism property.
Consider the source instances I1 = {P (n1)} and I2 = {Q(n2)}
where n1 and n2 are nulls. Then chaseM(I1) and chaseM(I2)
are homomorphically equivalent. In particular, chaseM(I1) →
chaseM(I2). However, it is not the case that I1 → I2.

For part (3), consider the schema mapping M given by the fol-
lowing s-t tgd:

P (x, y) → ∃z(Q(x, z) ∧Q(z, y))

Moreover, consider the following “reverse” schema mappings M′

and M′′ given, respectively, by the following dependencies:

M′ : Q(x, z) ∧Q(z, y) → P (x, y)

M′′ : Q(x, z) ∧Q(z, y) ∧ Constant(x) ∧ Constant(y)

→ P (x, y)

We shall show in the next subsection (Example 3.18) that M′ is an
extended inverse of M. At the same time, it was shown in [10] that
there is no inverse of M that is specified by s-t tgds without the
Constant predicate. Hence, M′ cannot be an inverse of M. Thus,
M′ is an extended inverse of M that is not an inverse of M. As
for condition (b), it was shown in [10] that M′′ is an inverse of M.
We show in the next subsection (Example 3.19) that M′′ is not an
extended inverse of M.

Theorem 3.15 tells us that the notion of extended invertibility is
stronger than invertibility. Intuitively, it is harder for a schema map-
ping to be extended invertible, since there are more instances (i.e.,
non-ground source instances) to consider. Furthermore, extended
inverses and inverses do not necessarily coincide, even for schema
mappings that are extended-invertible (hence, also invertible).

27

3.2 The Goodness of Extended Inverses

In this section, we show that extended inverses that are given by
s-t tgds have desirable properties that make them ideally suited for
“reverse” data exchange. The data exchange problem associated
with a schema mapping M is to materialize a “good” solution J
from a source instance I , based on M. The canonical procedure for
data exchange [8] uses the chase of I with M to produce a (canon-
ical) universal solution. The reverse data exchange problem is then
to materialize a source instance I ′ from a target instance J accord-
ing to a reverse schema mapping M′ (from the target schema to the
source schema). Reverse data exchange is typically performed after
an initial data exchange with M was performed; in such a case, the
goal of reverse data exchange is to recover a source instance that is
as “close as possible” to the original source instance I .

DEFINITION 3.16. Let M = (S,T,Σ) be a schema mapping
specified by a finite set of s-t tgds. Let M′ = (T,S,Σ′) be a
schema mapping specified by a finite set of s-t tgds. We say that
M′ is a chase-inverse of M if I and chaseM′(chaseM(I)) are
homomorphically equivalent, for every source instance I .

Note that a chase inverse makes it possible to recover the original
source instance up to homomorphic equivalence.

The next theorem shows that extended inverses that are given by
s-t tgds have an equivalent characterization as chase-inverses. This
characterization is a precise measure of the goodness of extended
inverses for reverse data exchange.

THEOREM 3.17. Let M = (S,T,Σ) be a schema mapping
specified by a finite set of s-t tgds, and let M′ = (T,S,Σ′) be a
“reverse” schema mapping specified by a finite set of s-t tgds. The
following statements are equivalent:

(1) M′ is an extended inverse of M.

(2) M′ is a chase-inverse of M.

Theorem 3.17 easily extends to the case when M′ is given by
tgds with constants, and we also allow these as chase-inverses.
Also, Theorem 3.17 gives us another tool to verify whether a schema
mapping M′ is an extended inverse of a schema mapping M.

EXAMPLE 3.18. As in the proof of part (3) of Theorem 3.15,
consider the schema mapping M specified by the s-t tgd

P (x, y) → ∃z(Q(x, z) ∧Q(z, y))

Let M′ be the schema mapping specified by the target-to-source
tgd Q(x, z) ∧ Q(z, y) → P (x, y). We can show that M′ is an
extended inverse of M by showing that M′ is a chase-inverse of
M. Indeed, let I be a source instance, let U = chaseM(I) and let
V = chaseM′(U). We shall show that I ⊆ V and that V → I ,
which imply that V and I are homomorphically equivalent.

First, we observe that every fact P (a, b) in I generates (via the
chase with M) two facts in U , namely Q(a, Zab) and Q(Zab, b),
where Zab is a fresh new null, distinct for every choice of a and
b. (Moreover, these are the only types of facts that are generated
in V .) Then V must contain every fact P (a, b) (in order to satisfy
M′ for Q(a,Zab) and Q(Zab, b)). Thus, I ⊆ V .

We now observe that every extra fact of V (i.e., not in I) can
only be of the form P (Zab, Zbc), arising via M′ from two facts of
U of the form Q(Zab, b) and Q(b, Zbc). But then U must contain
two additional facts, Q(a,Zab) and Q(Zbc, c). At the same time,
the only way to have Q(a, Zab) and Q(Zab, b) in U is to have the
fact P (a, b) in I . Consider now the mapping h where h(x) = x
for members x of I , and where h(Zab) = a. Then h is a homomor-
phism from V to I . In particular, for every extra fact P (Zab, Zbc)
in V , we have that P (h(Zab), h(Zbc)) is P (a, b), which we have
shown must exist in I .

We have already noted that the schema mapping M′ in the above
example cannot be an inverse of M (since, as shown in [10], such
an inverse would have to make use of the Constant predicate, for
this particular M). Thus, this example shows in particular that the
characterization via chase-inverses does not hold for inverses (since
M′ is a chase-inverse of M but not an inverse of M).

The next example uses Theorem 3.17 to prove that a schema
mapping M′′ is not an extended inverse of a schema mapping M.

EXAMPLE 3.19. As in the proof of part (3) of Theorem 3.15
and Example 3.18, consider the schema mapping M specified by

P (x, y) → ∃z(Q(x, z) ∧Q(z, y))

Moreover, let M′′ be the schema mapping specified by

Q(x, z) ∧Q(z, y) ∧ Constant(x) ∧ Constant(y) → P (x, y).

It was shown in [10] that M′′ is an inverse of M. We now show
that M′′ is not an extended inverse of M by showing that M′′ fails
to be a chase-inverse of M. (Here we allow chase-inverses to be
specified by tgds with constants, as discussed after Theorem 3.17.)

To show that M′′ is not a chase-inverse of M, consider the
source instance I = {P (W,Z)}, where W and Z are nulls. Chas-
ing I with M gives the target instance U = {Q(W,Y), Q(Y,Z)}
where Y is a null. Chasing U with M′′ gives the empty instance,
since there are no constants in U . Hence, chaseM′′(chaseM(I))
and I are not homomorphically equivalent.

The above two examples point out problems with the notion of
inverse, which do not arise for the new notion of extended inverse.
Example 3.18 shows a natural “inverse” (the chase-inverse) that is
not captured by the notion of inverse. Conversely, Example 3.19
shows an inverse that fails to be a chase-inverse.

Most schema mappings occurring in practice do not possess ex-
tended inverses, since they do not even possess inverses. Invert-
ibility and extended invertibility are strong notions that, intuitively,
cover the case of “no information loss” in a schema mapping. To
address schema mappings with information loss, which is the fre-
quent case, we will go beyond extended invertibility and study ex-
tended recoveries in Section 4.

4. Extended Recoveries
Arenas, Pérez, and Riveros [2] introduced the notions of recov-

ery and maximum recovery.

DEFINITION 4.1. ([2]) Let M be a schema mapping from a
source schema S to a target schema T. A schema mapping M′

from T to S is a recovery of M if for every source instance I , the
pair (I, I) is in M◦M′. The schema mapping M′ is a maximum
recovery of M if (1) M′ is a recovery for M, and (2) for every
recovery M′′ of M, we have that M◦M′ ⊆ M ◦M′′.

Thus, a maximum recovery is a recovery that is optimal among all
recoveries in the sense that the composition of M with M′ is the
smallest among the compositions of M with every other recovery.
Similar to the framework in [7, 10], the study of recoveries in [2]
is carried out in the context in which source instances are ground.
While some of the results in [2] continue to hold even when source
instances are not restricted to be ground, certain other results do
not. In particular, one of the important results in [2] is that every
schema mapping specified by s-t tgds has a maximum recovery.
However, we show in the next proposition that there is a schema
mapping specified by s-t tgds with no maximum recovery when
source instances can be non-ground.

28

PROPOSITION 4.2. Let M = (S,T,Σ) be a schema mapping
where Σ = {P (x, y) → ∃z(Q(x, z)∧Q(z, y))}. Then M has no
maximum recovery when source instances can be non-ground.

PROOF. (Sketch) Our proof makes use of the notion of a witness
solution from [2]. An instance J over T is a witness for a ground
instance I over S under the schema mapping M if for every ground
source instance I ′ over S, if J ∈ Sol(M, I ′), then Sol(M, I) ⊆
Sol(M, I ′). In addition, if J ∈ Sol(M, I), then J is called a
witness solution for I under M.

We will show that M has no witness solution for a specific
instance I , when source instances may be non-ground. Using a
straightforward generalization of Theorem 3.5 of [2] to non-ground
instances, we will then infer that M has no maximum recovery.

Let I = {P (0, 1), P (1, 0)}, and let JI denote chaseM(I), which
is {Q(0, U), Q(U, 1), Q(1, V), Q(V, 0)}, whereU and V are nulls
created by the chase. It is easy to see that any (witness) solu-
tion J for I under M must contain the tuples Q(0,X), Q(X, 1),
Q(1, Y), Q(Y, 0), for some values X and Y , which may be nulls
or constants. We consider four cases that cover all possibilities of
values for X and Y and show that in each of the cases, J cannot
be a witness solution. The cases we consider are: (1) X = Y ; (2)
X �= Y and at least one of X or Y is not 0 or 1; (3) X �= Y and
X = 0 and Y = 1; and (4) X �= Y and X = 1 and Y = 0.

Next, we define the notions of extended recovery and maximum
extended recovery.

DEFINITION 4.3. A schema mapping M′ is an extended recov-
ery of a schema mapping M if (I, I) ∈ e(M) ◦ e(M′), for every
source instance I .

We note that it is straightforward to verify that the condition
(I, I) ∈ e(M)◦e(M′) is equivalent to e(Id) ⊆ e(M)◦ e(M′).

DEFINITION 4.4. A schema mapping M′ is a maximum ex-
tended recovery of a schema mapping M if (1) M′ is an extended
recovery for M, and (2) for every extended recovery M′′ of M,
we have e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′).

Clearly, if M1 and M2 are two maximum extended recoveries
of a schema mapping M, then e(M) ◦ e(M1) = e(M) ◦ e(M2).
Thus, the quantity e(M) ◦ e(M′), where M′ is a maximum ex-
tended recovery of M, is a constant CM that depends only on M.
(in particular, it is independent of the choice of M′.) Furthermore,
by Definition 4.3, CM is the smallest superset of e(Id) among all
sets e(M) ◦ e(M′′), as M′′ ranges over the extended recoveries
of M. In a precise sense, CM is the closest we can get to extended
identity schema mapping e(Id) via extended recoveries. This dis-
cussion suggests the following definition.

DEFINITION 4.5. Let M be a schema mapping that admits a
maximum extended recovery M′. Then the information loss of M
is defined as the set difference (e(M) ◦ e(M′)) \ →.

In what follows, we will show that the information loss of a
schema mapping M specified by a finite set of s-t tgds can be char-
acterized solely in terms of M.

4.1 Characterization of Maximum Extended Recoveries

DEFINITION 4.6. Let M be a schema mapping. We say that
I1 →M I2 if eSolM(I2) ⊆ eSolM(I1).

The next proposition characterizes →M when M is specified by
a finite set of s-t tgds.

PROPOSITION 4.7. Let M be a schema mapping specified by
a finite set of s-t tgds. For all source instances I1, I2, we have
I1 →M I2 if and only if chaseM(I1) → chaseM(I2).

We will show that maximum extended recoveries for schema
mappings specified by s-t tgds always exist. We shall actually prove
something stronger, for which we need yet another definition.

DEFINITION 4.8. A schema mapping M′ is a strong maximum
extended recovery of a schema mapping M if (1) M′ is an ex-
tended recovery for M, and (2) for every extended recovery M′′

of M, we have e(M′) ⊆ e(M′′).

Note that, by monotonicity of composition, every strong maxi-
mum extended recovery of M is a maximum extended recovery of
M. Thus, a strong maximum extended recovery M′ not only min-
imizes e(M) ◦ e(M′′) among all extended recoveries M′′, but,
even more, minimizes e(M′′) among all extended recoveries M′′.

LEMMA 4.9. Let M be a schema mapping specified by a finite
set of s-t tgds. Put

M∗ = { (chaseM(I), I) | I is a source instance }.
If M′ is an extended recovery of M, then M∗ ⊆ e(M′); equiva-
lently, e(M∗) ⊆ e(M′)

PROOF. Let I be a source instance. Since M′ is a extended
recovery, we have that (I, I) ∈ e(M)◦e(M′). Hence, there is a J
such that (I, J) ∈ e(M) and (J, I) ∈ e(M′). In particular, J is an
extended solution for I under M. Since chaseM(I) is an extended
universal solution for I under M, we have that chaseM(I) → J .
Thus, (chaseM(I), I) ∈ → ◦ e(M′) = e(M′). Finally, it is
easy to see that M∗ ⊆ e(M′) if and only if e(M∗) ⊆ e(M′).

THEOREM 4.10. Every schema mapping M specified by a fi-
nite set of s-t tgds has a strong maximum extended recovery. Specif-
ically, the schema mapping

M∗ = {(chaseM(I), I) | I is a source instance}
is a strong maximum extended recovery of M..

PROOF. M∗ is an extended recovery of M because, for every
source instance I , we have that (I, I) ∈ M ◦ M∗ ⊆ e(M) ◦
e(M∗). Now, assume that M′ is an extended recovery of M. By
Lemma 4.9, we have that e(M∗) ⊆ e(M′).

We note that in the ground case (where we restrict attention to
ground source instances), there is no analog to Theorem 4.10 for
maximum recoveries. For example, let M be the schema mapping
specified byP (x) → Q(x, x). It is not hard to show that there is no
recovery M′ such that M′ ⊆ M′′, for every recovery M′′ of M.
This is another advantage of extended recoveries over recoveries.

Our next main result is Theorem 4.13, which shows that the
quantity CM = e(M)◦e(M′), where M′ is a maximum extended
recovery, coincides with →M. The proof of Theorem 4.13 makes
use of Proposition 4.11 and Lemma 4.12 below.

PROPOSITION 4.11. Let M be a schema mapping specified by
a finite set of s-t tgds. Then →M = → ◦ →M ◦ →.

PROOF. The containment →M ⊆ → ◦ →M ◦ → is obvious.
The reverse inclusion can be shown by observing that →⊆→M.

LEMMA 4.12. Let M be a schema mapping specified by a finite
set of s-t tgds. If M∗ = {(chaseM(I), I) : I is a source instance },
then e(M) ◦ e(M∗) = →M.

PROOF. We first show that →M ⊆ M◦ → ◦M∗. Assume
that chaseM(I1) → chaseM(I2). Then (I1, chaseM(I1)) ∈ M,
chaseM(I1) → chaseM(I2), and (chaseM(I2), I2) ∈ M∗; hence,
(I1, I2) ∈ M◦ → ◦M∗.

29

We now show that M◦ → ◦M∗ ⊆ →M. If (I1, I2) ∈ M◦ →
◦M∗, then there is a target instance J such that (I1, J) ∈ M
and J → chaseM (I2). Since chaseM(I1) is a universal solution
for I1, we have that chaseM(I1) → J ; hence, chaseM(I1) →
chaseM(I2).

We have shown that M◦ → ◦M∗ = →M. So by Proposition
4.11, we have e(M) ◦ e(M∗) = →M.

THEOREM 4.13. Let M be a schema mapping specified by a
finite set of s-t tgds. The following statements are equivalent:

(1) M′ is a maximum extended recovery of M.

(2) e(M) ◦ e(M′) = →M.

PROOF. Assume first that M′ is a maximum extended recovery
of M. By Theorem 4.10, we know that M∗ is a maximum ex-
tended recovery of M, and so e(M) ◦ e(M′) = e(M) ◦ e(M∗).
But by Lemma 4.12, we have that e(M) ◦ e(M∗) = →M. So
e(M) ◦ e(M′) = →M, as desired.

Assume now that e(M) ◦ e(M′) = →M. Then M′ is an ex-
tended recovery of M, since (I, I) ∈→M, and so (I, I) ∈ e(M)◦
e(M′). Let M′′ be an arbitrary extended recovery. Since M∗ is a
maximum extended recovery, we have e(M) ◦ e(M∗) ⊆ e(M) ◦
e(M′′). So by Lemma 4.12, we have →M⊆ e(M) ◦ e(M′′).
Therefore, e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′). Since M′′ is an
arbitrary extended recovery, this implies that M′ is a maximum
extended recovery.

The preceding results yield a characterization of the information
loss of a schema mapping specified by s-t tgds.

COROLLARY 4.14. If M is a schema mapping specified by a
finite set of s-t tgds, then the information loss of M is →M \ →.
In other words, for every maximum extended recovery M′ of M,
we have that (e(M) ◦ e(M′)) \ → = →M \ →.

Note that if schema mapping M specified by s-t tgds is extended
invertible, then →M = e(Id) = →, and hence the information
loss is empty.

COROLLARY 4.15. Let M be a schema mapping specified by
a finite set of s-t tgds. The following are equivalent:

(1) M is extended invertible.

(2) →M = →.

(3) M has no information loss, that is, →M \ → = ∅.

The final result of this section relates extended inverses to maxi-
mum extended recoveries.

PROPOSITION 4.16. Let M be a schema mapping specified by
a finite set of s-t tgds and let M′ be an arbitrary schema mapping.
If M is extended invertible, then M′ is a maximum extended re-
covery of M if and only if M′ is an extended inverse of M.

4.2 Information Loss on Ground Instances

We now consider schema mappings specified by s-t tgds but re-
strict the source instances to be ground. As shown in [2], every such
schema mapping M has a maximum recovery M′. By the defini-
tion of a maximum recovery, the quantity M ◦ M′ is a constant
that depends only on M. This motivates the following notion.

DEFINITION 4.17. Let M be a schema mapping specified by
a finite set of s-t tgds. The information loss of M on ground in-
stances is the set difference (M◦M′) \ Id, where M′ is a max-
imum recovery of M and Id is the identity schema mapping on
ground instances.

Intuitively, the information loss of M “measures" how much M
deviates from being an invertible mapping. Next, we introduce a
notion that is an adaptation to ground instances of the earlier notion
of →M, and use it to characterize the information loss of M on
ground instances.

DEFINITION 4.18. Let M be a schema mapping specified by
a finite set of s-t tgds. We write →M,g to denote the following
schema mapping:

{(I1, I2) : I1, I2 are ground instances and SolM(I2) ⊆ SolM(I1)}.

PROPOSITION 4.19. Let M be a schema mapping specified by
a finite set of s-t tgds. If M′ is a maximum recovery of M, then

M◦M′ = →M,g .

Consequently, the information loss of M on ground instances is
equal to →M,g \ Id.

We note that the preceding proposition can be obtained from re-
sults in the full version of [2], which, however, does not have the
notion of information loss.

5. Maximum Extended Recoveries: Language
In this section, we show that the quasi-inverse algorithm for full

tgds (See Section 4.2 of [10]) can be used to compute a maximum
extended recovery of a schema mapping that is specified by a finite
set of full s-t tgds.

The algorithm takes as input a schema mapping M = (S,T,Σ),
where Σ is specified by a finite set of full s-t tgds. The quasi-inverse
algorithm for full tgds on M returns a reverse schema mapping
M′ = (T,S,Σ′), where Σ′ is a set of disjunctive tgds with in-
equalities. Our next result shows that the quasi-inverse algorithm
for full tgds on M returns a maximum extended recovery of M.

THEOREM 5.1. Let M be a schema mapping specified by a fi-
nite set of full s-t tgds. The quasi-inverse algorithm for full tgds
on M produces a maximum extended recovery of M given by dis-
junctive tgds with inequalities.

The language of disjunctive tgds with inequalities turns out to
be the “smallest” possible language needed to define maximum ex-
tended recoveries of schema mappings specified by full s-t tgds.

THEOREM 5.2. There is a schema mapping M specified by a
finite set of full s-t tgds such that:

(1) M has a maximum extended recovery specified by a finite set
of disjunctive tgds with inequalities.

(2) M has no maximum extended recovery specified by a set of
disjunctive tgds.

(3) M has no maximum extended recovery specified by tgds with
inequalities.

PROOF. (Hint) The schema mapping having the desired proper-
ties is M = (S,T,Σ), where Σ consist of P (x, y) → P ′(x, y)
and T (x) → P ′(x, x). A maximum extended recovery of M is
the schema mapping M∗ = (S,T,Σ∗), where Σ∗ consists of
P ′(x, y)∧x �= y → P (x, y) and P ′(x, x) → T (x)∨P (x,x).

It is an open problem to identify the exact language needed to
express maximum recoveries of schema mappings specified by ar-
bitrary (not necessarily full) s-t tgds.

30

6. Applications to Data Exchange and Beyond
In this section, we study three applications of maximum ex-

tended recoveries: reverse data exchange, reverse query answering,
and comparing schema mappings. Central to all these applications
is the the notion of a universal-faithful schema mapping, which
generalizes the notion of a chase-inverse and provides a procedural
counterpart to the notion of maximum extended recovery.

6.1 Reverse Data Exchange: Universal-Faithful

We have seen that extended inverses specified by s-t tgds have
an equivalent characterization as chase-inverses. This characteri-
zation shows the usefulness of extended inverses for reverse data
exchange. However, for schema mappings that are not extended
invertible, chase-inverses do not exist.

We shall define the notion of a universal-faithful schema map-
ping, which is a relaxation of the notion of chase-inverse. We argue
that such a schema mapping has the desired properties for reverse
data exchange (even when no extended inverses exist). Further-
more, we show that maximum extended recoveries that are given
by disjunctive tgds coincide with universal-faithful mappings. This
characterization gives, in a precise way, the goodness of maximum
extended recoveries for reverse data exchange.

In the next definition and subsequent results, we make use of the
disjunctive chase with disjunctive tgds. Chasing with disjunctive
dependencies has been considered before in various contexts [6, 8,
10]. Intuitively, the disjunctive chase is an extension of the standard
chase where each step “branches” out several instances, each satis-
fying one of the disjuncts in the dependency that is applied. Thus,
the result of the disjunctive chase is, in general, a set of instances.

DEFINITION 6.1. Take M to be a schema mapping specified
by a finite set of s-t tgds, and M′ to be a schema mapping spec-
ified by a finite set of disjunctive tgds. Then M′ is universal-
faithful for M if for every source instance I , the following hold
for chaseM′(chaseM(I)) = {V1, ..., Vk}:

(1) For every Vl ∈ {V1, ..., Vk}, we have I →M Vl.

(2) There is some Vi ∈ {V1, ..., Vk} such that Vi →M I .

(3) For every I ′ such that I →M I ′, there is some Vj ∈ {V1, ..., Vk}
such that Vj → I ′.

In general, the condition I1 →M I2 can be interpreted as say-
ing that I2 exports, via data exchange with M, at least as much
information (and possibly more) as I1. This is apparent, since
I1 →M I2 is the same as chaseM(I1) → chaseM(I2), for the
case we are considering (where M is specified by s-t tgds). In-
tuitively, the data that is in chaseM(I2) “dominates” the data in
chaseM(I1). Then we can interpret the above definition as follows.

The first condition states that every instance in the set {V1, ..., Vk}
exports at least as much information as the original source instance
I . The second condition is a converse: the information exported by
I is at least as much as that exported by some member of {V1, ..., Vk}.
Thus, conditions (1) and (2) together imply that there is some Vi

that exports exactly the same information as I . (The existence
of such Vi is what constitutes a faithful schema mapping, as de-
fined in [10].) The last condition states the “universality” of the set
{V1, ..., Vk} in the following sense: for every instance I ′ that ex-
ports at least as much information as I (note that I ′ can be I), there
is some instance in the set {V1, ..., Vk} that has a homomorphism
into I ′. Note that condition (2) is actually implied by conditions
(1) and (3), but we write it down because of its significance.

If M′ has no disjunctions, then chaseM′(chaseM(I)) is a sin-
gle instance V that exports the same information as I ; also, V is
universal w.r.t. instances I ′ such that I →M I ′.

Note also that if a schema mapping M is extended invertible
(this means →M=→ by Theorem 3.13) and M′ is a schema map-
ping that is specified by s-t tgds (with no disjunction) such that M′

is universal-faithful for M, then M′ is a chase-inverse of M.
The next theorem gives a situation where maximum extended

recoveries and universal-faithful schema mappings coincide.

THEOREM 6.2. Let M be a schema mapping specified by a fi-
nite set of s-t tgds and M′ a schema mapping specified by finite set
of disjunctive tgds. The following statements are equivalent:

(1) M′ is a maximum extended recovery of M.

(2) M′ is universal-faithful for M.

6.2 Reverse Query Answering

Let M = (S,T,Σ) be a schema mapping, let q be a query
over T, and let I be an instance over S. Since there can be more
than one solution for I w.r.t. M, the widely adopted semantics for
answering q for I w.r.t. M is the certain-answers semantics.

DEFINITION 6.3. The certain-answers of q for I w.r.t. M, de-
noted as certainM(q, I), is

⋂
(I,J)∈M q(J).

In reverse query answering, we assume that we have performed
data exchange with M from a source instance I , and the query q is
posed against S instead. This problem arises in schema evolution,
for example, when “old” data is migrated to a “new” schema, but
there are still queries that need to access the “old” data. We note
that most research on query answering has focused on the “direct”
query answering, where the query is over the target.

The reverse query answering problem is trivial if I is still avail-
able. In other words, simply evaluate q(I) to answer the query q
against I . However, if I is no longer available, a natural question
is whether q(I) can be answered by using a maximum extended re-
covery. Since there are many possible source instances I ′ that can
be “returned” by a maximum extended recovery M′, a natural way
of defining the semantics of reverse query answering is to consider
all such possible I ′. Thus, we can use certaine(M) ◦ e(M′)(q, I)
to define the semantics of reverse query answering, provided that
M′ is a maximum extended recovery of M.

The next theorem shows that if M′ is an extended inverse of M,
then certaine(M) ◦ e(M′)(q, I), where q is a conjunctive query, co-
incides with q(I)↓. Here, q(I)↓ denotes the result of evaluating
q(I) and discarding all tuples that contain at least one null. Fur-
thermore, if M′ is an extended recovery, the converse also holds.

THEOREM 6.4. Let M and M′ be two schema mappings.

(1) If M′ is an extended inverse of M, then certaine(M) ◦ e(M′)
(q, I) = q(I)↓, for every source instance I and every conjunc-
tive query q over the source schema.

(2) If M′ is an extended recovery of M with the property that
certaine(M) ◦ e(M′) (q, I) = q(I)↓, for every source instance
I and every conjunctive query q over the source schema, then
M′ is an extended inverse of M.

The above result is an indication of the goodness of the certain-
answer semantics that we adopted for reverse query answering,
since it shows that in the particular case of an extended invertible
schema mapping M (where the source instance I can be recov-
ered up to homomorphic equivalence), certaine(M) ◦ e(M′)(q, I)
coincides with q(I)↓ (which is the best we can do).

The next result shows that in the case when M is specified by
s-t tgds and there exists a maximum extended recovery M′ of M
that is specified by disjunctive s-t tgds, we can use the chase to

31

compute certaine(M) ◦ e(M′)(q, I). In particular, assume that we
are given a target instance J that is the result of the original data
exchange (chase) of I with M. We can then employ the reverse
chase of J with M′ as follows: compute the set of source instances
that form the result of the reverse (disjunctive) chase, evaluate the
original query over these instances, and then take the intersection of
all null-free tuples. This gives us precisely the certain answers. We
note that the proof makes essential use of the fact that a maximum
extended recovery given by disjunctive tgds is universal-faithful.

THEOREM 6.5. Let M be a schema mapping specified by a fi-
nite set of s-t tgds, let M′ be a maximum extended recovery of M
specified by disjunctive tgds, and let q be a conjunctive query over
the source schema. Then

certaine(M) ◦ e(M′)(q, I) = (
⋂

K∈K
q(K))↓,

where K = chaseM′(chaseM(I)).

6.3 Comparing Schema Mappings

DEFINITION 6.6. A schema mapping M1 is less lossy than an-
other schema mapping M2 if →M1 ⊆ →M2 . We say M1 is
strictly less lossy than M2 if →M1 � →M2 .

If M1 is less lossy than M2, then M1 has a smaller information
loss than M2 (according to Definition 4.5). In other words, M1 is
“more invertible” than M2.

EXAMPLE 6.7. Consider the schema mappings M1 = (S,T,
Σ1) and M2 = (S,T,Σ2), where Σ1 and Σ2 are as follows:

Σ1 = {P (x, y) → P ′(x, y)}
Σ2 = {P (x, y) → ∃zP ′(x, z), P (x, y) → ∃uP ′(u, y)}

The first schema mapping M1 copies the binary relation P to the
target relation P ′, while the second copies each component of P
separately into the same target relation P ′. We now show that
M1 is less lossy than M2, that is, →M1 ⊆ →M2 . Indeed, if
(I1, I2) ∈→M1 , then it follows immediately that I1 → I2, since
M1 is a “copying” schema mapping. Hence, I1 →M2 I2. In
fact, M1 is a schema mapping that has no information loss (i.e.,
→M1= e(Id)), since it is also the case that if I1 → I2, then
(I1, I2) ∈→M1 . Moreover, M1 is strictly less lossy than M2;
let I = {P (1, 0)} and let I ′ = {P (1, 1), P (0, 0)}. It is easy to
see that (I, I ′) ∈→M2 but (I, I ′) �∈→M1 .

A theoretical framework for comparing schema mappings can
be quite useful towards the justification of the design of algorithms
that generate schema mappings, such as those of [11, 15]. Each of
these algorithms generates schema mappings from a visual specifi-
cation of the relationship between two schemas. There are multiple
ways to interpret a visual specification in general. As a simple ex-
ample, the schema mappings M1 and M2 in Example 6.7 are two
possible interpretations of a visual specification that relates (via
arrows) the first and, respectively, second component of P to the
first and, respectively, second component of P ′. We note that both
schema mapping generation algorithms of [11, 15] generate M1,
which is the less lossy schema mapping of the two.

Finally, we characterize the property of being “less lossy", pro-
vided the schema mappings compared are specified by s-t tgds and
have maximum extended recoveries specified by disjunctive tgds.

THEOREM 6.8. Let M1 and M2 be schema mappings speci-
fied by finite sets of s-t tgds and having the same source schema.
Let M′

1 and M′
2 be schema mappings that are specified by dis-

junctive tgds and are maximum extended recoveries of M1 and
M2, respectively. The following statements are equivalent:

(1) →M1⊆→M2

(2) For every source instance I and for every member V1 of the
set chaseM′

1
(chaseM1(I)), there is a member V2 of the set

chaseM′
2
(chaseM2(I)) such that V2 → V1.

To see the theorem in action, consider M1 and M2 of Example
6.7. The reverse schema mapping M′ specified by { P ′(x, y) →
P (x, y) } is a maximum extended recovery for both M1 and M2.
It is easy to see that for every source instance I , there is a homo-
morphism from chaseM′(chaseM2(I)) to chaseM′(chaseM1(I)).
Hence, the schema mapping M1 is less lossy than M2.

7. Concluding Remarks
We developed a new framework for reverse data exchange that

allows source instances to contain not only constants but also nulls.
In the process, we introduced and studied the notions of maximum
extended recovery and information loss of a schema mapping. We
believe that the results presented here may, in the long run, lead to
novel applications in the design and optimization of schema map-
pings. An immediate problem that is left open is to identify the lan-
guage needed to express maximum extended recoveries of schema
mappings specified by s-t tgds.

Acknowledgements. Kolaitis is supported by NSF grant IIS-0430994.
Popa is partially funded by the U.S. Air Force Office for Scien-
tific Research under contracts FA9550-07-1-0223 and FA9550-06-
1-0226. Part of the work was done while Tan was visiting the IBM
Almaden Research Center. Tan is supported by NSF CAREER
Award IIS-0347065 and NSF grant IIS-0430994.

8. References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] M. Arenas, J. Pérez, and C. Riveros. The Recovery of a Schema

Mapping: Bringing Exchanged Data Back. In PODS, pages 13–22,
2008.

[3] C. Beeri and M. Y. Vardi. A Proof Procedure for Data Dependencies.
In JACM, 31(4):718–741, 1984.

[4] P. A. Bernstein. Applying Model Management to Classical
Meta-Data Problems. In CIDR, pages 209–220, 2003.

[5] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash. Implementing
Mapping Composition. In VLDB Journal, 17(2):333–353, 2008.

[6] A. Deutsch and V. Tannen. Optimization Properties for Classes of
Conjunctive Regular Path Queries. In DBPL, pages 21–39, 2001.

[7] R. Fagin. Inverting schema mappings. In ACM TODS, 32(4), 2007.
[8] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:

Semantics and Query Answering. In TCS, 336(1):89–124, 2005.
[9] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Composing Schema

Mappings: Second-order Dependencies to the Rescue. In ACM
TODS, 30(4):994–1055, 2005.

[10] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Quasi-inverses of
schema mappings. In ACM TODS, 33(2), 2008.

[11] A. Fuxman, M. A. Hernández, C. T. H. Ho, R. J. Miller, P. Papotti,
and L. Popa. Nested Mappings: Schema Mapping Reloaded. In
VLDB, pages 67–78, 2006.

[12] J. Madhavan and A. Y. Halevy. Composing Mappings Among Data
Sources. In VLDB, pages 572–583, 2003.

[13] S. Melnik. Generic Model Management: Concepts and Algorithms,
volume 2967 of Lecture Notes in Computer Science. Springer, 2004.

[14] A. Nash, P. A. Bernstein, and S. Melnik. Composition of Mappings
Given by Embedded Dependencies. In ACM PODS, pages 172–183,
2005.

[15] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin.
Translating Web Data. In VLDB, pages 598–609, 2002.

32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

