
A Survey of Schema-based Matching Approaches�

Pavel Shvaiko1 and Jérôme Euzenat2

1 University of Trento, Povo, Trento, Italy,
pavel@dit.unitn.it

2 INRIA, Rhône-Alpes, France,
Jerome.Euzenat@inrialpes.fr

Abstract. Schema and ontology matching is a critical problem in many appli-
cation domains, such as semantic web, schema/ontology integration, data ware-
houses, e-commerce, etc. Many different matching solutions have been proposed
so far. In this paper we present a new classification of schema-based matching
techniques that builds on the top of state of the art in both schema and ontology
matching. Some innovations are in introducing new criteria which are based on
(i) general properties of matching techniques, (ii) interpretation of input informa-
tion, and (iii) the kind of input information. In particular, we distinguish between
approximate and exact techniques at schema-level; and syntactic, semantic, and
external techniques at element- and structure-level. Based on the classification
proposed we overview some of the recent schema/ontology matching systems
pointing which part of the solution space they cover. The proposed classification
provides a common conceptual basis, and, hence, can be used for comparing dif-
ferent existing schema/ontology matching techniques and systems as well as for
designing new ones, taking advantages of state of the art solutions.

1 Introduction

Matching is a critical operation in many application domains, such as semantic web,
schema/ontology integration, data warehouses, e-commerce, query mediation, etc. It
takes as input two schemas/ontologies, each consisting of a set of discrete entities (e.g.,
tables, XML elements, classes, properties, rules, predicates), and determines as output
the relationships (e.g., equivalence, subsumption) holding between these entities.

Many diverse solutions to the matching problem have been proposed so far, e.g.,
[2, 5, 21, 23, 40, 46, 49, 50, 52, 57, 76]. Good surveys through the recent years are pro-
vided in [39, 62, 75]; while the major contributions of the last decades are presented
in [3, 41, 42, 66]. The survey of [39] focuses on current state of the art in ontology
matching. Authors review recent approaches, techniques and tools. The survey of [75]
concentrates on approaches to ontology-based information integration and discusses
general matching approaches that are used in information integration systems. How-
ever, none of the above mentioned surveys provide a comparative review of the existing
ontology matching techniques and systems. On the contrary, the survey of [62] is de-
voted to a classification of database schema matching approaches and a comparative

� For more information on the topic (e.g., tutorials, relevant events), please visit the Ontology
Matching web-site at www.OntologyMatching.org

review of matching systems. Notice that these three surveys address the matching prob-
lem from different perspectives (artificial intelligence, information systems, databases)
and analyze disjoint sets of systems.

This paper aims at considering the above mentioned works together, taking in to ac-
count some novel schema/ontology matching approaches, and at providing a common
conceptual basis for their analysis. Although, there is a difference between schema and
ontology matching problems (see next section for details), we believe that techniques
developed for each of them can be of a mutual benefit. Thus, we bring together and
discuss systematically recent approaches and systems developed in schema and ontol-
ogy matching domains. We present a new classification of schema/ontology matching
techniques that builds on the work of [62] augmented in [29, 67] and [28]. Some in-
novations are in introducing new criteria which are based on (i) general properties
of matching techniques, (ii) interpretation of input information, and (iii) the kind of
input information. In particular, we distinguish between approximate and exact tech-
niques at schema-level; and syntactic, external, and semantic techniques at element- and
structure-level. Based on the classification proposed we provide a comparative review
of the recent schema/ontology matching systems pointing which part of the solution
space they cover. In this paper we focus only on schema-based solutions, i.e., matching
systems exploiting only schema-level information, not instance data.

The rest of the paper is organized as follows. Section 2 provides, via an example,
the basic motivations and definitions to the schema/ontology matching problem. Sec-
tion 3 discusses possible matching dimensions. Section 4 introduces a classification of
elementary automatic schema-based matching techniques and discusses in detail possi-
ble alternatives. Section 5 provides a vision on classifying matching systems. Section 6
overviews some of the recent schema/ontology matching solutions in light of the classi-
fication proposed pointing which part of the solution space they cover. Section 7 reports
some conclusions and discusses the future work.

2 The Matching Problem

2.1 Motivating Example

To motivate the matching problem, let us use two simple XML schemas that are shown
in Figure 1 and exemplify one of the possible situations which arise, for example, when
resolving a schema integration task.

Suppose an e-commerce company needs to finalize a corporate acquisition of an-
other company. To complete the acquisition we have to integrate databases of the two
companies. The documents of both companies are stored according to XML schemas S
and S ′ respectively. Numbers in boxes are the unique identifiers of the XML elements.
A first step in integrating the schemas is to identify candidates to be merged or to have
taxonomic relationships under an integrated schema. This step refers to a process of
schema matching. For example, the elements with labels Office Products in S and in
S′ are the candidates to be merged, while the element with label Digital Cameras in S ′

should be subsumed by the element with label Photo and Cameras in S. Once the cor-
respondences between two schemas have been determined, the next step has to generate

Fig. 1. Two XML schemas

query expressions that automatically translate data instances of these schemas under an
integrated schema.

2.2 Schema Matching vs Ontology Matching

Many different kinds of structures can be considered as data/conceptual models: de-
scription logic terminologies, relational database schemas, XML-schemas, catalogs and
directories, entity-relationship models, conceptual graphs, UML diagrams, etc. Most of
the work on matching has been carried out among (i) database schemas in the world of
information integration, (ii) XML-schemas and catalogs on the web, and (iii) ontolo-
gies in knowledge representation. Different parties, in general, have their own stead-
fast preferences for storing data. Therefore, when coordinating/integrating data among
their information sources, it is often the case that we need to match between various
data/conceptual models they are sticked to. In this respect, there are some important
differences and commonalities between schema and ontology matching. The key points
are:

– Database schemas often do not provide explicit semantics for their data. Seman-
tics is usually specified explicitly at design-time, and frequently is not becoming
a part of a database specification, therefore it is not available [56]. Ontologies are
logical systems that themselves obey some formal semantics, e.g., we can interpret
ontology definitions as a set of logical axioms.

– Ontologies and schemas are similar in the sense that (i) they both provide a vocab-
ulary of terms that describes a domain of interest and (ii) they both constrain the
meaning of terms used in the vocabulary [37, 70].

– Schemas and ontologies are found in such environments as the Semantic Web, and
quite often in practice, it is the case that we need to match them.

On the one side, schema matching is usually performed with the help of techniques
trying to guess the meaning encoded in the schemas. On the other side, ontology match-
ing systems (primarily) try to exploit knowledge explicitly encoded in the ontologies.

In real-world applications, schemas/ontologies usually have both well defined and ob-
scure labels (terms), and contexts they occur, therefore, solutions from both problems
would be mutually beneficial.

2.3 Problem Statement

Following the work in [11, 27], we define a mapping element as a 5-uple: 〈id, e, e ′, n, R〉,
where

– id is a unique identifier of the given mapping element;
– e and e′ are the entities (e.g., tables, XML elements, properties, classes) of the first

and the second schema/ontology respectively;
– n is a confidence measure in some mathematical structure (typically in the [0,1]

range) holding for the correspondence between the entities e and e ′;
– R is a relation (e.g., equivalence (=); more general (�); disjointness (⊥); overlap-

ping (�)) holding between the entities e and e ′.

An alignment is a set of mapping elements. The matching operation determines the
alignment (A′) for a pair of schemas/ontologies (o and o ′). There are some other pa-
rameters which can extend the definition of the matching process, namely: (i) the use of
an input alignment (A) which is to be completed by the process; (ii) the matching pa-
rameters, p (e.g., weights, thresholds); and (iii) external resources used by the matching
process, r (e.g., thesauri); see Figure 2.

o �������A �

o′ ������� Matching A′�

p

�

r

�

Fig. 2. The matching process

For example, in Figure 1, according to some matching algorithm based on linguistic
and structure analysis, the confidence measure (for the fact that the equivalence relation
holds) between entities with labels Photo and Cameras in S and Cameras and Photo
in S′ could be 0.67. Suppose that this matching algorithm uses a threshold of 0.55 for
determining the resulting alignment, i.e., the algorithm considers all the pairs of entities
with a confidence measure higher than 0.55 as correct mapping elements. Thus, our hy-
pothetical matching algorithm should return to the user the following mapping element:
〈id5,4, Photo and Cameras, Cameras and Photo, 0.67, =〉. However, the relation
between the same pair of entities, according to another matching algorithm which is
able to determine that both entities mean the same thing, could be exactly the equiva-
lence relation (without computing the confidence measure). Thus, returning to the user
〈id5,4, Photo and Cameras, Cameras and Photo, n/a,=〉.

2.4 Applications

Matching is an important operation in traditional applications, such as information in-
tegration, data warehousing, distributed query processing, etc. Typically, these appli-
cations are characterized by structural data/conceptual models, and are based on a de-
sign time matching operation, thereby determining alignment (e.g., manually or semi-
automatically) as a prerequisite of running the system.

There is an emerging line of applications which can be characterized by their dy-
namics (e.g., agents, peer-to-peer systems, web services). Such applications, on the
contrary to traditional ones, require a run time matching operation and take advantage
of more ”explicit” conceptual models.

Below, we first discuss an example of a traditional application, namely, catalog inte-
gration. Then, we focus on emergent applications, namely, peer-to-peer (P2P) databases,
agent communication, and web services integration.

Catalog Integration. In B2B applications, trade partners store their products in elec-
tronic catalogs. Catalogs are tree-like structures, namely concept hierarchies with at-
tributes. Typical examples of catalogs are product directories of www.amazon.com,
www.ebay.com, etc. In order for a private company to participate in the marketplace
(e.g., eBay), it is used to determine correspondences between entries of its catalogs
and entries of a single catalog of a marketplace. This process of mapping entries among
catalogs is referred to the catalog matching problem, see [12]. Having identified the cor-
respondences between the entries of the catalogs, they are further analyzed in order to
generate query expressions that automatically translate data instances between the cata-
logs, see, for example, [74]. Finally, having aligned the catalogs, users of a marketplace
have a unified access to the products which are on sale.

P2P Databases. P2P networks are characterized by an extreme flexibility and dynam-
ics. Peers may appear and disappear on the network, their databases are autonomous
in their language, contents, how they can change their schemas, and so on. Since peers
are autonomous, they might use different terminology, even if they refer to the same
domain of interest. Thus, in order to establish (meaningful) information exchange be-
tween peers, one of the steps is to identify and characterize relationships between their
schemas. Having identified the relationships between schemas, next step is to use these
relationships for the purpose of query answering, for example, using techniques applied
in data integration systems, namely Local-as-View (LAV), Global-as-View (GAV), or
Global-Local-as-View (GLAV) [43]. However, P2P applications pose additional re-
quirements on matching algorithms. In P2P settings an assumption that all the peers
rely on one global schema, as in data integration, can not be made, because the global
schema may need to be updated any time the system evolves, see [36]. Thus, if in the
case of data integration schema matching operation can be performed at design time, in
P2P applications peers need coordinating their databases on the fly, therefore requiring
a run time schema matching operation.

Agent Communication. Agents are computer entities characterized by autonomy and
capacity of interaction. They communicate through speech-act inspired languages which

determine the ”envelope” of the messages and enable agents to position them within a
particular interaction context. The actual content of messages is expressed in knowledge
representation languages and often refer to some ontology. As a consequence, when two
autonomous and independently designed agents meet, they have the possibility of ex-
changing messages, but little chance to understand each others if they do not share the
same content language and ontology. Thus, it is necessary to provide the possibility for
these agents to match their ontologies in order to either translate their messages or in-
tegrate bridge axioms in their own models, see [73]. One solution to this problem is to
have an ontology alignment protocol that can be interleaved with any other agent inter-
action protocol and which could be triggered upon receiving a message expressed in an
alien ontology. As a consequence, agents meeting each other for the first time and using
different ontologies would be able to negotiate the matching of terms in their respective
ontologies and to translate the content of the message they exchange with the help of
the alignment.

Web Services Integration. Web services are processes that expose their interface to
the web so that users can invoke them. Semantic web services provide a richer and more
precise way to describe the services through the use of knowledge representation lan-
guages and ontologies. Web service discovery and integration is the process of finding a
web service able to deliver a particular service and composing several services in order
to achieve a particular goal, see [59]. However, semantic web services descriptions have
no reasons to be expressed by reference to exactly the same ontologies. Henceforth, both
for finding the adequate service and for interfacing services it will be necessary to es-
tablish the correspondences between the terms of the descriptions. This can be provided
through matching the corresponding ontologies. For instance, if some service provides
its output description in some ontology and another service uses a second ontology for
describing its input, matching both ontologies will be used for (i) checking that what is
delivered by the first service matches what is expected by the second one, (ii) verifying
preconditions of the second service, and (iii) generating a mediator able to transform
the output of the first service in order to be input to the second one.

In some of the above mentioned applications (e.g., two agents meeting or look-
ing for the web services integration) there are no instances given beforehand. Thus, it is
necessary to perform matching without them, based only on schema-level information.

3 The Matching Dimensions

There are many independent dimensions along which algorithms can be classified. As
from Figure 2, we may classify them according to (i) input of the algorithms, (ii) char-
acteristics of the matching process, and (iii) output of the algorithms. Let us discuss
them in turn.

Input dimensions. These dimensions concern the kind of input on which algorithms
operate. As a first dimension, algorithms can be classified depending on the data / con-
ceptual models in which ontologies or schemas are expressed. For example, the Artemis

[13] system supports the relational, OO, and ER models; Cupid [46] supports XML and
relational models; QOM [26] supports RDF and OWL models. A second possible di-
mension depends on the kind of data that the algorithms exploit: different approaches
exploit different information of the input data/conceptual models, some of them rely
only on schema-level information (e.g., Cupid [46], COMA [21]), others rely only on
instance data (e.g., GLUE [23]), or exploit both, schema- and instance-level informa-
tion (e.g., QOM [26]). Even with the same data models, matching systems do not always
use all available constructs, e.g., S-Match [34] when dealing with attributes discards in-
formation about datatypes (e.g., string, integer), and uses only the attributes names. In
general, some algorithms focus on the labels assigned to the entities, some consider
their internal structure and the type of their attributes, and some others consider their
relations with other entities (see next section for details).

Process dimensions. A classification of the matching process could be based on its
general properties, as soon as we restrict ourselves to formal algorithms. In particu-
lar, it depends on the approximate or exact nature of its computation. Exact algorithms
compute the absolute solution to a problem; approximate algorithms sacrifice exactness
to performance (e.g., [26]). All the techniques discussed in the remainder of the paper
can be either approximate or exact. Another dimension for analyzing the matching algo-
rithms is based on the way they interpret the input data. We identify three large classes
based on the intrinsic input, external resources, or some semantic theory of the consid-
ered entities. We call these three classes syntactic, external, and semantic respectively;
and discuss them in detail in the next section.

Output dimensions. Apart from the information that matching systems exploit and
how they manipulate it, the other important class of dimensions concerns the form of
the result they produce. The form of the alignment might be of importance: is it a one-to-
one correspondence between the schema/ontology entities? Has it to be a final mapping
element? Is any relation suitable?

Other significant distinctions in the output results have been indicated in [32]. One
dimension concerns whether systems deliver a graded answer, e.g., that the correspon-
dence holds with 98% confidence or 4/5 probability; or an all-or-nothing answer, e.g.,
that the correspondence definitely holds or not. In some approaches correspondences
between schema/ontology entities are determined using distance measures. This is used
for providing an alignment expressing equivalence between these entities in which the
actual distance is the ground for generating a confidence measure in each correspon-
dence, usually in [0,1] range, see, for example, [29, 46]. Another dimension concerns
the kind of relations between entities a system can provide. Most of the systems focus
on equivalence (=), while a few other are able to provide a more expressive result (e.g.,
equivalence, subsumption (�), incompatibility (⊥), see for details [12, 33]).

There are many dimensions that can be taken into account when attempting at clas-
sifying matching methods. In the next section we present a classification of elementary
techniques that draws simultaneously on several such criteria.

4 A retained classification of elementary schema-based matching
approaches

In this section we discuss only schema-based elementary matchers. We address issues
of their combination in the next section. Therefore, only schema/ontology information
is considered, not instance data1. The exact/approximate opposition has not been used
because each of the methods described below can be implemented as exact or approxi-
mate algorithm, depending on the goals of the matching system. To ground and ensure
a comprehensive coverage for our classification we have analyzed state of the art ap-
proaches used for schema-based matching. The references section reports a partial list
of works which have been scrutinized pointing to (some of) the most important contri-
butions. We have used the following guidelines for building our classification:

Exhaustivity. The extension of categories dividing a particular category must cover its
extension (i.e., their aggregation should give the complete extension of the cate-
gory);

Disjointness. In order to have a proper tree, the categories dividing one category should
be pairwise disjoint by construction;

Homogeneity. In addition, the criterion used for further dividing one category should
be of the same nature (i.e., should come from the same dimension). This usually
helps guaranteeing disjointness;

Saturation. Classes of concrete matching techniques should be as specific and discrim-
inative as possible in order to provide a fine grained distinction between possible
alternatives. These classes have been identified following a saturation principle:
they have been added/modified till the saturation was reached, namely taking into
account new techniques did not require introducing new classes or modifying them.

Notice that disjointness and exhaustivity of the categories ensures stability of the clas-
sification, namely new techniques will not occur in between two categories. Classes of
matching techniques represent the state of the art. Obviously, with appearance of new
techniques, they might be extended and further detailed.

As indicated in introduction, we build on the previous work of classifying automated
schema matching approaches of [62]. The classification of [62] distinguishes between
elementary (individual) matchers and combinations of matchers. Elementary matchers
comprise instance-based and schema-based, element- and structure-level, linguistic-
and constrained-based matching techniques. Also cardinality and auxiliary information
(e.g., thesauri, global schemas) can be taken into account.

For classifying elementary schema-based matching techniques, we introduce two
synthetic classifications (see Figure 3), based on what we have found the most salient
properties of the matching dimensions. These two classifications are presented as two
trees sharing their leaves. The leaves represent classes of elementary matching tech-
niques and their concrete examples. Two synthetic classifications are:

1 Prominent solutions of instance-based schema/ontology matching as well as possible exten-
sions of the instance-based part of the classification of [62] can be found in [23] and [40]
respectively.

Schema-Based Matching Techniques

Element-level Structure-level

Syntactic SemanticExternal

String-
based

Constraint-
based

Graph-
based

Taxonomy-
based

Linguistic
resource

Model-
based

- Name similarity
- Description
 similarity
- Global

namespaces

- Type
 similarity
- Key
 properties

- Lexicons
- Thesauri

- Graph
 matching
- Paths
- Children
- Leaves

- Taxonomic
 structure

- Propositional SAT
- DL-based

Language-
based

- Tokenization
- Lemmatization
- Morphological
 analysis
- Elimination

Alignment
reuse

- Entire schema/
 ontology
- Fragments

Terminological Structural

Syntactic

Linguistic Internal Relational

Semantic

Schema-Based Matching Techniques

Granularity /
Input Interpretation
Layer

Basic Techniques
Layer

Kind of Input
Layer

Upper level
formal

ontologies
- SUMO, DOLCE

External

Repository of
structures

- Structure's
metadata

Fig. 3. A retained classification of elementary schema-based matching approaches

– Granularity/Input Interpretation classification is based on (i) granularity of match,
i.e., element- or structure-level, and then (ii) on how the techniques generally inter-
pret the input information;

– Kind of Input classification is based on the kind of input which is used by elemen-
tary matching techniques.

The overall classification of Figure 3 can be read both in descending (focusing on
how the techniques interpret the input information) and ascending (focusing on the kind
of manipulated objects) manner in order to reach the Basic Techniques layer. Let us
discuss in turn Granularity/Input Interpretation, Basic Techniques, Kind of Input layers
together with supporting arguments for the categories/classes introduced at each layer.

Elementary matchers are distinguished by the Granularity/Input interpretation layer
according to the following classification criteria:

– Element-level vs structure-level. Element-level matching techniques compute map-
ping elements by analyzing entities in isolation, ignoring their relations with other
entities. Structure-level techniques compute mapping elements by analyzing how
entities appear together in a structure. This criterion is the same as first introduced
in [62].

– Syntactic vs external vs semantic. The key characteristic of the syntactic techniques
is that they interpret the input in function of its sole structure following some
clearly stated algorithm. External are the techniques exploiting auxiliary (exter-
nal) resources of a domain and common knowledge in order to interpret the input.
These resources might be human input or some thesaurus expressing the relation-
ships between terms. The key characteristic of the semantic techniques is that they
use some formal semantics (e.g., model-theoretic semantics) to interpret the input
and justify their results. In case of a semantic based matching system, exact algo-
rithms are complete (i.e., they guarantee a discovery of all the possible mappings)
while approximate algorithms tend to be incomplete.

To emphasize the differences with the initial classification of [62], the new cate-
gories/classes are marked in bold face. In particular, in the Granularity/Input Interpre-
tation layer we detail further (with respect to [62]), the element- and structure-level
of matching by introducing the syntactic vs semantic vs external criteria. The reasons
of having these three categories are as follows. Our initial criterion was to distinguish
between internal and external techniques. By internal we mean techniques exploiting
information which comes only with the input schemas/ontologies. External techniques
are as defined above. Internal techniques can be further detailed by distinguishing be-
tween syntactic and semantic interpretation of input, also as defined above. However,
only limited, the same distinction can be introduced for the external techniques. In fact,
we can qualify some oracles (e.g., WordNet [53], DOLCE [31]) as syntactic or seman-
tic, but not a user’s input. Thus, we do not detail external techniques any further and
we omit in Figure 3 the theoretical category of internal techniques (as opposed to exter-
nal). Notice, that we also omit in further discussions element-level semantic techniques,
since semantics is usually given in a structure, and, hence, there are no element-level
semantic techniques.

Distinctions between classes of elementary matching techniques in the Basic Tech-
niques layer of our classification are motivated by the way a matching technique in-
terprets the input information in each concrete case. In particular, a label can be in-
terpreted as a string (a sequence of letters from an alphabet) or as a word or a phrase
in some natural language, a hierarchy can be considered as a graph (a set of nodes
related by edges) or a taxonomy (a set of concepts having a set-theoretic interpreta-
tion organized by a relation which preserves inclusion). Thus, we introduce the follow-
ing classes of elementary schema/ontology matching techniques at the element-level:
string-based, language-based, based on linguistic resources, constraint-based, align-
ment reuse, and based on upper level ontologies. At the structure-level we distinguish
between: graph-based, taxonomy-based, based on repositories of structures, and model-
based techniques.

The Kind of Input layer classification is concerned with the type of input considered
by a particular technique:

– The first level is categorized depending on which kind of data the algorithms work
on: strings (terminological), structure (structural) or models (semantics). The two
first ones are found in the ontology descriptions, the last one requires some seman-
tic interpretation of the ontology and usually uses some semantically compliant
reasoner to deduce the correspondences.

– The second level of this classification decomposes further these categories if nec-
essary: terminological methods can be string-based (considering the terms as se-
quences of characters) or based on the interpretation of these terms as linguistic
objects (linguistic). The structural methods category is split into two types of meth-
ods: those which consider the internal structure of entities (e.g., attributes and their
types) and those which consider the relation of entities with other entities (rela-
tional).

Notice that following the above mentioned guidelines for building a classification the
terminological category should be divided into linguistic and non-linguistic techniques.
However, since non-linguistic techniques are all string-based, this category has been
discarded.

We discuss below the main classes of the Basic Techniques layer (also indicating
in which matching systems they are exploited) according to the above classification in
more detail. The order follows that of the Granularity/Input Interpretation classification
and these techniques are divided in two sections concerning element-level techniques
(§4.1) and structure-level techniques (§4.2). Finally, in Figure 3, techniques which are
marked in italic (techniques based on upper level ontologies and DL-based techniques)
have not been implemented in any matching system yet. However, we are arguing why
their appearance seems reasonable in the near future.

4.1 Element-level techniques

String-based techniques are often used in order to match names and name descrip-
tions of schema/ontology entities. These techniques consider strings as sequences of
letters in an alphabet. They are typically based on the following intuition: the more
similar the strings, the more likely they denote the same concepts. A comparison of
different string matching techniques, from distance like functions to token-based dis-
tance functions can be found in [16]. Usually, distance functions map a pair of strings
to a real number, where a smaller value of the real number indicates a greater similarity
between the strings. Some examples of string-based techniques which are extensively
used in matching systems are prefix, suffix, edit distance, and n-gram.

– Prefix. This test takes as input two strings and checks whether the first string starts
with the second one. Prefix is efficient in matching cognate strings and similar
acronyms (e.g., int and integer), see, for example [21, 34, 46, 50]. This test can be
transformed in a smoother distance by measuring the relative size of the prefix and
the ratio.

– Suffix. This test takes as input two strings and checks whether the first string ends
with the second one (e.g., phone and telephone), see, for example [21, 34, 46, 50].

– Edit distance. This distance takes as input two strings and computes the edit dis-
tance between the strings. That is, the number of insertions, deletions, and substitu-
tions of characters required to transform one string into another, normalized by the
length of the longest string. For example, the edit distance between NKN and Nikon
is 0.4. Some of matching systems exploiting the given technique are [21, 34, 57].

– N-gram. This test takes as input two strings and computes the number of common
n-grams (i.e., sequences of n characters) between them. For example, trigram(3)
for the string nikon are nik, iko, kon. Thus, the distance between nkon and nikon
would be 1/3. Some of matching systems exploiting the given test are [21, 34].

Language-based techniques consider names as words in some natural language (e.g.,
English). They are based on Natural Language Processing (NLP) techniques exploiting
morphological properties of the input words.

– Tokenization. Names of entities are parsed into sequences of tokens by a tokenizer
which recognizes punctuation, cases, blank characters, digits, etc. (e.g., Hands-
Free Kits → 〈hands, free, kits〉, see, for example [33]).

– Lemmatization. The strings underlying tokens are morphologically analyzed in or-
der to find all their possible basic forms (e.g., Kits → Kit), see, for example [33].

– Elimination. The tokens that are articles, prepositions, conjunctions, and so on, are
marked (by some matching algorithms, e.g., [46]) to be discarded.

Usually, the above mentioned techniques are applied to names of entities before run-
ning string-based or lexicon-based techniques in order to improve their results. How-
ever, we consider these language-based techniques as a separate class of matching tech-
niques, since they can be naturally extended, for example, in a distance computation
(by comparing the resulting strings or sets of strings).

Constraint-based techniques are algorithms which deal with the internal constraints
being applied to the definitions of entities, such as types, cardinality of attributes, and
keys. We omit here a discussion of matching keys as these techniques appear in our
classification without changes with respect to the original publication [62]. However,
we provide a different perspective on matching datatypes and cardinalities.

– Datatypes comparison involves comparing the various attributes of a class with
regard to the datatypes of their value. Contrary to objects that require interpreta-
tions, the datatypes can be considered objectively and it is possible to determine
how a datatype is close to another (ideally this can be based on the interpretation of
datatypes as sets of values and the set-theoretic comparison of these datatypes, see
[71, 72]). For instance, the datatype day can be considered closer to the datatype
workingday than the datatype integer. This technique is used in [30].

– Multiplicity comparison attribute values can be collected by a particular construc-
tion (set, list, multiset) on which cardinality constraints are applied. Again, it is
possible to compare the so constructed datatypes by comparing (i) the datatypes
on which they are constructed and (ii) the cardinality that are applied to them. For
instance, a set of between 2 and 3 children is closer to a set of 3 people than a set
of 10-12 flowers (if children are people). This technique is used in [30].

Linguistic resources such as common knowledge or domain specific thesauri are used
in order to match words (in this case names of schema/ontology entities are consid-
ered as words of a natural language) based on linguistic relations between them (e.g.,
synonyms, hyponyms).

– Common knowledge thesauri. The approach is to use common knowledge thesauri
to obtain meaning of terms used in schemas/ontologies. For example, WordNet [53]
is an electronic lexical database for English (and other languages), where various
senses (possible meanings of a word or expression) of words are put together into
sets of synonyms. Relations between schema/ontology entities can be computed
in terms of bindings between WordNet senses, see, for instance [12, 33]. For ex-
ample, in Figure 1, a sense-based matcher may learn from WordNet (with a prior
morphological preprocessing of labels performed) that Camera in S is a hyper-
nym for Digital Camera in S ′, and, therefore conclude that entity Digital Cameras
in S′ should be subsumed by the entity Photo and Cameras in S. Another type of
matchers exploiting thesauri is based on their structural properties, e.g., WordNet
hierarchies. In particular, hierarchy-based matchers measure the distance, for ex-
ample, by counting the number of arcs traversed, between two concepts in a given
hierarchy, see [35]. Several other distance measures for thesauri have been proposed
in the literature, e.g., [61, 64].

– Domain specific thesauri. These thesauri usually store some specific domain knowl-
edge, which is not available in the common knowledge thesauri, (e.g., proper names)
as entries with synonym, hypernym and other relations. For example, in Figure 1,
entities NKN in S and Nikon in S ′ are treated by a matcher as synonyms from a
domain thesaurus look up: syn key - ”NKN:Nikon = syn”, see, for instance [46].

Alignment reuse techniques represent an alternative way of exploiting external re-
sources, which contain in this case alignments of previously matched schemas/ontologies.
For instance, when we need to match schema/ontology o ′ and o′′, given the alignments
between o and o′, and between o and o′′ from the external resource, storing previous
match operations results. The alignment reuse is motivated by the intuition that many
schemas/ontologies to be matched are similar to already matched schemas/ontologies,
especially if they are describing the same application domain. These techniques are par-
ticularly promising when dealing with large schemas/ontologies consisting of hundreds
and thousands of entities. In these cases, first, large match problems are decomposed
into smaller sub-problems, thus generating a set of schema/ontology fragments match-
ing problems. Then, reusing previous match results can be more effectively applied at
the level of schema/ontology fragments compared to entire schemas/ontologies. The
approach was first introduced in [62], and later was implemented as two matchers, i.e.,
(i) reuse alignments of entire schemas/ontologies, or (ii) their fragments, see, for details
[2, 21, 63].

Upper level formal ontologies can be also used as external sources of common knowl-
edge. Examples are the Suggested Upper Merged Ontology (SUMO) [55] and Descrip-
tive Ontology for Linguistic and Cognitive Engineering (DOLCE) [31]. The key char-
acteristic of these ontologies is that they are logic-based systems, and therefore, match-
ing techniques exploiting them can be based on the analysis of interpretations. Thus,
these are semantic techniques. For the moment, we are not aware of any matching sys-
tems which use these kind of techniques. However, it is quite reasonable to assume that
this will happen in the near future. In fact, for example, the DOLCE ontology aims

at providing a formal specification (axiomatic theory) for the top level part of Word-
Net. Therefore, systems exploiting WordNet now in their matching process might also
consider using DOLCE as a potential extension.

4.2 Structure-level techniques

Graph-based techniques are graph algorithms which consider the input as labeled
graphs. The applications (e.g., database schemas, taxonomies, or ontologies) are viewed
as graph-like structures containing terms and their inter-relationships. Usually, the sim-
ilarity comparison between a pair of nodes from the two schemas/ontologies is based
on the analysis of their positions within the graphs. The intuition behind is that, if two
nodes from two schemas/ontologies are similar, their neighbors might also be somehow
similar. Below, we present some particular matchers representing this intuition.

– Graph matching. There have been done a lot of work on graph (tree) matching
in graph theory and also with respect to schema/ontology matching applications,
see, for example, [65, 77]. Matching graphs is a combinatorial problem that can
be computationally expensive. It is usually solved by approximate methods. In
schema/ontology matching, the problem is encoded as an optimization problem
(finding the graph matching minimizing some distance like the dissimilarity be-
tween matched objects) which is further resolved with the help of a graph match-
ing algorithm. This optimization problem is solved through a fix-point algorithm
(improving gradually an approximate solution until no improvement is made). Ex-
amples of such algorithms are [50] and [30]. Some other (particular) matchers han-
dling DAGs and trees are children, leaves, and relations.

– Children. The (structural) similarity between inner nodes of the graphs is computed
based on similarity of their children nodes, that is, two non-leaf schema elements
are structurally similar if their immediate children sets are highly similar. A more
complex version of this matcher is implemented in [21].

– Leaves. The (structural) similarity between inner nodes of the graphs is computed
based on similarity of leaf nodes, that is, two non-leaf schema elements are struc-
turally similar if their leaf sets are highly similar, even if their immediate children
are not, see, for example [21, 46].

– Relations. The similarity computation between nodes can also be based on their
relations. For example, in one of the possible ontology representations of schemas
of Figure 1, if class Photo and Cameras relates to class NKN by relation hasBrand
in one ontology, and if class Digital Cameras relates to class Nikon by relation has-
Marque in the other ontology, then knowing that classes Photo and Cameras and
Digital Cameras are similar, and also relations hasBrand and hasMarque are simi-
lar, we can infer that NKN and Nikon may be similar too, see [48].

Taxonomy-based techniques are also graph algorithms which consider only the spe-
cialization relation. The intuition behind taxonomic techniques is that is-a links connect
terms that are already similar (being a subset or superset of each other), therefore their
neighbors may be also somehow similar. This intuition can be exploited in several dif-
ferent ways:

– Bounded path matching. Bounded path matchers take two paths with links between
classes defined by the hierarchical relations, compare terms and their positions
along these paths, and identify similar terms, see, for instance [57]. For example, in
Figure 1, given that element Digital Cameras in S ′ should be subsumed by the ele-
ment Photo and Cameras in S, a matcher would suggest FJFLM in S and FujiFilm
in S′ as an appropriate match.

– Super(sub)-concepts rules. These matchers are based on rules capturing the above
stated intuition. For example, if super-concepts are the same, the actual concepts
are similar to each other. If sub-concepts are the same, the compared concepts are
also similar, see, for example [19, 26].

Repository of structures stores schemas/ontologies and their fragments together with
pairwise similarities (e.g., coefficients in the [0 1] range) between them. Notice, that
unlike the alignment reuse, repository of structures stores only similarities between
schemas/ontologies, not alignments. In the following, to simplify the presentation, we
call schemas/ontologies or their fragments as structures. When new structures are to be
matched, they are first checked for similarity to the structures which are already avail-
able in the repository. The goal is to identify structures which are sufficiently similar to
be worth matching in more detail, or reusing already existing alignments. Thus, avoid-
ing the match operation over the dissimilar structures. Obviously, the determination of
similarity between structures should be computationally cheaper than matching them
in full detail. The approach of [63], in order to match two structures, proposes to use
some metadata describing these structures, such as structure name, root name, number
of nodes, maximal path length, etc. Then, these indicators are analyzed and are aggre-
gated into a single coefficient, which estimates similarity between them. For example,
schema S1 might be found as an appropriate match to schema S2 since they both have
the same number of nodes.

Model-based algorithms handle the input based on its semantic interpretation (e.g.,
model-theoretic semantics). Thus, they are well grounded deductive methods. Examples
are propositional satisfiability (SAT) and description logics (DL) reasoning techniques.

– Propositional satisfiability (SAT). As from [12, 32, 33], the approach is to decom-
pose the graph (tree) matching problem into the set of node matching problems.
Then, each node matching problem, namely pairs of nodes with possible rela-
tions between them is translated into a propositional formula of form: Axioms →
rel(context1, context2), and checked for validity. Axioms encodes background
knowledge (e.g., Digital Cameras→ Cameras codifies the fact that Digital Cameras
is less general than Cameras), which is used as premises to reason about relations
rel (e.g., =, �, �, ⊥) holding between the nodes context1 and context2 (e.g.,
node 7 in S and node 12 in S ′). A propositional formula is valid iff its negation is
unsatisfiable. The unsatisfiability is checked by using state of the art SAT solvers.
Notice that SAT deciders are correct and complete decision procedures for propo-
sitional satisfiability, and therefore, they can be used for an exhaustive check of all
the possible mappings.

– DL-based techniques. The SAT-based approach computes the satisfiability of the-
ory merging both schemas/ontologies along an alignment. Propositional language
used for codifying matching problems into propositional unsatisfiability problems
is limited in its expressivity, namely it allows for handling only unary predicates.
Thus, it can not handle, for example, binary predicates, such as properties or roles.
However, the same procedure can be carried within description logics (expressing
properties). In description logics, the relations (e.g., =, �, �, ⊥) can be expressed
in function of subsumption. In fact, first merging two ontologies (after renaming)
and then testing each pair of concepts and roles for subsumption is enough for
aligning terms with the same interpretation (or with a subset of the interpretations
of the others). For instance, suppose that we have one ontology introducing classes
company, employee and micro-company as a company with at most 5 employees,
and another ontology introducing classes firm, associate and SME as a firm with at
most 10 associates. If we know that all associates are employees and we already
have established that firm is equivalent to company, then we can deduce that a micro-
company is a SME. However, we are not aware of existence of any schema/ontology
matching systems supporting DL-based techniques for the moment.

There are examples in the literature of DL-based techniques used in relevant to
schema/ontology matching applications. For example, in spatio-temporal database in-
tegration scenario, as first motivated in [60] and later developed in [68] the inter-schema
mapping elements are initially proposed by the integrated schema designer and are en-
coded together with input schemas in ALCRP(S 2⊕T) language. Then, DL reasoning
services are used to check the satisfiability of the two source schemas and the set of
inter-schema mapping elements. If some objects are found unsatisfied, then the inter-
schema mapping elements should be reconsidered.

Another example, is when DL-based techniques are used in query processing sce-
nario [52]. The approach assumes that mapping elements between pre-existing domain
ontologies are already specified in a declarative manner (e.g., manually). User queries
are rewritten in terms of pre-existing ontologies and are expressed in Classic [10], and
further evaluated against real-world repositories, which are also subscribed to the pre-
existing ontologies. An earlier approach for query answering by terminological reason-
ing is described in [4].

Finally, a very similar problem to schema/ontology matching is addressed within
the system developed for matchmaking in electronic marketplaces [18]. Demand D
and supply S requests are translated from natural language sentences into Classic [10].
The approach assumes the existence of a pre-defined domain ontology T , which is also
encoded in Classic. Matchmaking between a supply S and a demand D is performed
with respect to the pre-defined domain ontology T . Reasoning is performed with the
help of the NeoClassic reasoner in order to determine the exact match (T |= (D � S))
and (T |= (S � D)), potential match (if D � S is satisfiable in T), and nearly miss
(if D � S is unsatisfiable in T). The system also provides a logically based matching
results rank operation.

5 On classifying matching systems

As the previous section indicates, elementary matchers rely on a particular kind of input
information, therefore they have different applicability and value with respect to differ-
ent schema/ontology matching tasks. State of the art matching systems are not made of
a single elementary matcher. They usually combine them: elementary matchers can be
used in sequence (called hybrid matchers in [62]), examples are [5, 46], or in parallel
(also called composite matchers [62]) combining the results (e.g., taking the average,
maximum) of independently executed matchers, see, for instance [21, 23, 26]. Finding
a better classification here is rather difficult.

The distinction between the sequential and parallel composition is useful from an
architectural perspective. However, it does not show how the systems can be distin-
guished in the matter of considering the alignment and the matching task, thus repre-
senting an user-centric perspective. Below, we provide a vision of a classification of
matching systems with respect to this point:

– Alignments as solutions. This category covers purely algorithmic techniques that
consider that an alignment is a solution to the matching problem. It could be char-
acterized as a (continuous or discrete) optimization problem, see, for example [30,
50].

– Alignments as theorems. Systems of this category rely on semantics and require
the alignment to satisfy it. This category, strictly speaking, is a sub-category of
alignments as solutions (the problem is expressed in semantic terms). However, it
is sufficiently autonomous for being singled out, see, for example [32, 33].

– Alignments as likeness clues. This category refers to the algorithms which aim at
producing reasonable indications for a user to select the alignment, although using
the same techniques (e.g., string-based) as systems from the alignments as solutions
category, see, for example [21, 46].

6 Review of state of the art matching systems

We now look at some recent schema-based state of the art matching systems in light of
the classification presented in Figure 3 and criteria highlighted in Section 5.

Similarity Flooding. The Similarity Flooding (SF) [50] approach utilizes a hybrid
matching algorithm based on the ideas of similarity propagation. Schemas are presented
as directed labeled graphs; grounding on the OIM specification [15] the algorithm ma-
nipulates them in an iterative fix-point computation to produce an alignment between
the nodes of the input graphs. The technique starts from string-based comparison (com-
mon prefix, suffix tests) of the vertices labels to obtain an initial alignment which is
refined within the fix-point computation. The basic concept behind the SF algorithm is
the similarity spreading from similar nodes to the adjacent neighbors through propaga-
tion coefficients. From iteration to iteration the spreading depth and a similarity measure
are increasing till the fix-point is reached. The result of this step is a refined alignment
which is further filtered to finalize the matching process. SF considers the alignment as
a solution to a clearly stated optimization problem.

Artemis. Artemis (Analysis of Requirements: Tool Environment for Multiple In-
formation Systems) [13] was designed as a module of the MOMIS mediator system [5]
for creating global views. It performs affinity-based analysis and hierarchical clustering
of source schema elements. Affinity-based analysis represents the matching step: in a
hybrid manner it calculates the name, structural and global affinity coefficients exploit-
ing a common thesaurus. The common thesaurus is built with the help of ODB-Tools,
WordNet or manual input. It represents a set of intensional and extensional relationships
which depict intra- and inter-schema knowledge about classes and attributes of the in-
put schemas. Based on global affinity coefficients, a hierarchical clustering technique
categorizes classes into groups at different levels of affinity. For each cluster it creates
a set of global attributes - global class. Logical correspondence between the attributes
of a global class and source schema attributes is determined through a mapping table.
Artemis falls into the alignments as likeness clues category.

Cupid. Cupid [46] implements a hybrid matching algorithm comprising linguis-
tic and structural schema matching techniques, and computes similarity coefficients
with the assistance of a domain specific thesauri. Input schemas are encoded as graphs.
Nodes represent schema elements and are traversed in a combined bottom-up and top-
down manner. The matching algorithm consists of three phases and operates only with
tree-structures to which non-tree cases are reduced. The first phase (linguistic match-
ing) computes linguistic similarity coefficients between schema element names (labels)
based on morphological normalization, categorization, string-based techniques (com-
mon prefix, suffix tests) and a thesauri look-up. The second phase (structural matching)
computes structural similarity coefficients weighted by leaves which measure the sim-
ilarity between contexts in which elementary schema elements occur. The third phase
(mapping elements generation) computes weighted similarity coefficients and generates
final alignment by choosing pairs of schema elements with weighted similarity coeffi-
cients which are higher than a threshold. Referring to [46], Cupid performs somewhat
better overall, than the other hybrid matchers: Dike [58] and Artemis [13]. Cupid falls
into the alignments as likeness clues category.

COMA. COMA (COmbination of MAtching algorithms) [21] is a composite schema
matching tool. It provides an extensible library of matching algorithms; a framework for
combining obtained results, and a platform for the evaluation of the effectiveness of the
different matchers. Matching library is extensible, and as from [21] it contains 6 ele-
mentary matchers, 5 hybrid matchers, and one reuse-oriented matcher. Most of them
implement string-based techniques (affix, n-gram, edit distance, etc.) as a background
idea; others share techniques with Cupid (thesauri look-up, etc.); and reuse-oriented is
a completely novel matcher, which tries to reuse previously obtained results for entire
new schemas or for its fragments. Schemas are internally encoded as DAGs, where
elements are the paths. This aims at capturing contexts in which the elements occur.
Distinct features of the COMA tool in respect to Cupid, are a more flexible architecture
and a possibility of performing iterations in the matching process. Based on the com-
parative evaluations conducted in [20], COMA dominates Autoplex[6] and Automatch
[7]; LSD [22] and GLUE [23]; SF [50], and SemInt [44] matching tools. COMA falls
into the alignments as likeness clues category.

NOM. NOM (Naive Ontology Mapping) [26] adopts the idea of composite match-
ing from COMA [21]. Some other innovations with respect to COMA, are in the set
of elementary matchers based on rules, exploiting explicitly codified knowledge in on-
tologies, such as information about super- and sub-concepts, super- and sub-properties,
etc. At present the system supports 17 rules. For example, rule (R5) states that if super-
concepts are the same, the actual concepts are similar to each other. NOM also exploits
a set of instance-based techniques, this topic is beyond scope of the paper. The system
falls into the alignments as likeness clues category.

QOM. QOM (Quick Ontology Mapping) [25] is a successor of the NOM system
[26]. The approach is based on the idea that the loss of quality in matching algorithms
is marginal (to a standard baseline), however improvement in efficiency can be tremen-
dous. This fact allows QOM to produce mapping elements fast, even for large-size
ontologies. QOM is grounded on matching rules of NOM. However, for the purpose of
efficiency the use of some rules have been restricted, e.g., R5. QOM avoids the complete
pair-wise comparison of trees in favor of a (n incomplete) top-down strategy. Exper-
imental study has shown that QOM is on a par with other state of the art algorithms
concerning the quality of proposed alignment, while outperforming them with respect
to efficiency. Also, QOM shows better quality results than approaches within the same
complexity class. The system falls into the alignments as likeness clues category.

OLA. OLA (OWL Lite Aligner) [30] is designed with the idea of balancing the
contribution of each component that compose an ontology (classes, properties, names,
constraints, taxonomy, and even instances). As such it takes advantage of all the ele-
mentary matching techniques that have been considered in the previous sections, but the
semantic ones. OLA is a family of distance based algorithms which converts definitions
of distances based on all the input structures into a set of equations. These distances are
almost linearly aggregated (they are linearly aggregated modulo local matches of enti-
ties). The algorithm then looks for the matching between the ontologies that minimizes
the overall distance between them. For that purpose it starts with base distance measures
computed from labels and concrete datatypes. Then, it iterates a fix-point algorithm un-
til no improvement is produced. From that solution, an alignment is generated which
satisfies some additional criterion (on the alignment obtained and the distance between
aligned entities). As a system, OLA considers the alignment as a solution to a clearly
stated optimization problem.

Anchor-PROMPT. Anchor-PROMPT [57] (an extension of PROMPT, also for-
merly known as SMART) is an ontology merging and alignment tool with a sophisti-
cated prompt mechanism for possible matching terms. The anchor-PROMPT is a hy-
brid alignment algorithm which takes as input two ontologies, (internally represented
as graphs) and a set of anchors-pairs of related terms, which are identified with the help
of string-based techniques (edit-distance test), or defined by a user, or another matcher
computing linguistic similarity, for example [49]. Then the algorithm refines them by
analyzing the paths of the input ontologies limited by the anchors in order to deter-
mine terms frequently appearing in similar positions on similar paths. Finally, based
on the frequencies and a user feedback, the algorithm determines matching candidates.

Anchor-PROMPT falls into the alignments as solutions and alignments as likeness clues
categories.

S-Match. S-Match [32–34] is a schema-based matching system. It takes two graph-
like structures (e.g., XML schemas or ontologies) and returns semantic relations (e.g.,
equivalence, subsumption) between the nodes of the graphs that correspond semanti-
cally to each other. The relations are determined by analyzing the meaning (concepts,
not labels) which is codified in the elements and the structures of schemas/ontologies.
In particular, labels at nodes, written in natural language, are translated into proposi-
tional formulas which explicitly codify the label’s intended meaning. This allows for a
translation of the matching problem into a propositional unsatisfiability problem, which
can then be efficiently resolved using (sound and complete) state of the art propositional
satisfiability deciders. S-Match was designed and developed as a platform for semantic
matching, namely a highly modular system with the core of computing semantic rela-
tions where single components can be plugged, unplugged or suitably customized. It is
a hybrid system with a composition at the element level. At present, S-Match libraries
contain 13 element-level matchers, see [35], and 3 structure-level matchers (e.g., SAT4J
[9]). S-Match falls into the alignments as theorems category.

Table 1. Characteristics of state of the art matching approaches

Element-level Structure-level
Syntactic External Syntactic Semantic

string-based (2); iterative fix-point
SF [50] data types; - computation -

key properties
common thesaurus (CT): matching

Artemis [13] domain compatibility; synonyms, of neighbors -
language-based (1) broader terms, via CT

related terms
string-based (2); auxiliary thesauri: tree matching

Cupid [46] language-based (2); synonyms, weighted by leaves -
data types; hypernyms,

key properties abbreviations
string-based (4); auxiliary thesauri: DAG (tree) matching

language-based (1); synonyms, with a bias towards
COMA [21] data types hypernyms, leaf or children structures (2); -

abbreviations; paths
alignment reuse (2)

NOM [26] string-based (1); application-specific matching of neighbors (2);
FOAM/QOM [25] domains and ranges vocabulary taxonomic structure (4) -

bounded paths matching
Anchor- string-based (1); - (arbitrary links); -

PROMPT [57] domains and ranges bounded paths matching
(processing is-a links separately)

string-based (3); iterative fix-point
OLA [30] language-based (1); WordNet(1) computation; -

data types matching of neighbors;
taxonomic structure

string-based (5); WordNet:
S-Match [33, 34] language-based (3); sense-based (2), - propositional SAT (2)

gloss-based (6)

Table 1 summarizes how the matching systems cover the solution space in terms of
the proposed classification. Numbers in brackets specify how many matchers of a par-
ticular type a system supports. For example, S-Match supports 5 string-based element-

level syntactic matchers (prefix, suffix, edit distance, n-gram, and text corpus, see [34]),
OLA has one element-level external matcher based on WordNet. Table 1 also testifies
that schema/ontology matching research was mainly focused on syntactic and external
techniques so far. Semantic techniques have been exploited only by S-Match [33].

Having considered some of the recent schema-based matching systems, it is im-
portant to notice that the matching operation typically constitutes only one of the steps
towards the ultimate goal of, e.g., schema/ontology integration, web services integration
or meta data management. To this end, we would like to mention some existing infras-
tructures, which use matching as one of its integral components. Some examples are
Chimaera [49], OntoMerge [24], Rondo [51], MAFRA [47], Protoplasm [8]. The goal
of such infrastructures is to enable a user with a possibility of performing such high-
level tasks, e.g., given a product request expressed in terms of the catalog C1, return
the products satisfying the request from the marketplaces MP1 and MP2. Moreover,
use matching component M5, and translate instances by using component T 3.

7 Conclusions

This paper presents a new classification of schema-based matching approaches, which
improves the previous work on the topic. We have introduced new criteria which are
based on (i) general properties of matching techniques, i.e., we distinguish between
approximate and exact techniques; (ii) interpretation of input information, i.e., we dis-
tinguish between syntactic, external, and semantic techniques at element- and structure-
level; and (iii) the kind of input information, i.e., we distinguish between termino-
logical, structural, and semantic techniques. We have reviewed some of the recent
schema/ontology matching systems in light of the classification proposed pointing which
part of the solution space they cover. Analysis of state of the art systems discussed has
shown, that most of them exploit only syntactic and external techniques, following the
input interpretation classification; or terminological and structural techniques, follow-
ing the kind of input classification; and only one uses semantic techniques, following
both classifications. However, the category of semantic techniques was identified only
recently as a part of the solution space; its methods provide sound and complete results,
and, hence it represents a promising area for the future investigations.

The proposed classification provides a common conceptual basis, and, hence, can be
used for comparing (analytically) different existing schema/ontology matching systems
as well as for designing a new one, taking advantages of state of the art solutions. As
the paper shows, the solution space is quite large and there exists a variety of matching
techniques. In some cases it is difficult to draw conclusions from the classifications of
systems. A complementary approach is to compare matching systems experimentally,
with the help of benchmarks which measure the quality of the alignment (e.g., comput-
ing precision, recall, overall indicators) and the performance of systems (e.g., measuring
execution time, main memory indicators). We have started working on such an approach
and we have found useful our classifications for designing systematic benchmarks, e.g.,
by discarding features (one by one) from schemas/ontologies with respect to the classi-
fications we had (namely, what class of basic techniques deals with what feature), see

for preliminary results the I3CON initiative2, Ontology Alignment Contest3 [69], and
Ontology Alignment Evaluation Initiative4.

Future work proceeds in at least three directions. The first direction aims at taking
into account some novel matching approaches which exploit schema-level information,
e.g., [1, 14, 38, 45, 54]. As it has already been mentioned, in some applications (e.g.,
agents communication, web services integration) there are no instances given before-
hand, and therefore, schema-based matching is an only solution for such cases. How-
ever, in the other applications (e.g., schema/ontology integration), instances are given
beforehand, and therefore, instance-based approaches should be considered as a part
of the solution space. Thus, the second direction of the future work aims at extending
our classification by taking into account instance-based approaches, e.g., [17, 23, 40].
Finally, the third direction aims at conducting an extensive evaluation of matching sys-
tems by systematic benchmarks and by case studies on the industrial size problems.

Acknowledgements: This work has been partly supported by the Knowledge Web
European network of excellence (IST-2004-507482).

References

1. Z. Aleksovski, W. ten Kate, and F. van Harmelen. Semantic coordination: a new approxima-
tion method and its application in the music domain. In Proceedings of the Meaning Coor-
dination and Negotiation workshop at the International Semantic Web Conference (ISWC),
2004.

2. D. Aumüller, H. H. Do, S. Massmann, and E. Rahm. Schema and ontology matching with
COMA++. In Proceedings of the International Conference on Management of Data (SIG-
MOD), Software Demonstration, 2005.

3. C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

4. H. W. Beck, S. K. Gala, and S. B. Navathe. Classification as a query processing technique
in the CANDIDE semantic data model. In Proceedings of the International Conference on
Data Engineering (ICDE), pages 572–581, 1989.

5. S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistructured and
structured data sources. SIGMOD Record, (28(1)):54–59, 1999.

6. J. Berlin and A. Motro. Autoplex: Automated discovery of content for virtual databases. In
Proceedings of the International Conference on Cooperative Information Systems (CoopIS),
pages 108–122, 2001.

7. J. Berlin and A. Motro. Database schema matching using machine learning with feature
selection. In Proceedings of the International Conference on Advanced Information Systems
Engineering (CAiSE), pages 452–466, 2002.

8. P. Bernstein, S. Melnik, M. Petropoulos, and C. Quix. Industrial-strength schema matching.
SIGMOD Record, (33(4)):38–43, 2004.

9. D. Le Berre. A satisfiability library for Java. http://www.sat4j.org/.
10. A. Borgida, R. Brachman, D. McGuinness, and L. Resnick. CLASSIC: A structural data

model for objects. SIGMOD Record, 18(2):58–67, 1989.

2 http://www.atl.external.lmco.com/projects/ontology/i3con.html
3 http://oaei.inrialpes.fr/2004/Contest/
4 http://oaei.inrialpes.fr/2005/

11. P. Bouquet, J. Euzenat, E. Franconi, L. Serafini, G. Stamou, and S. Tessaris. D2.2.1: Specifi-
cation of a common framework for characterizing alignment. Technical report, NoE Knowl-
edge Web project delivable, 2004. http://knowledgeweb.semanticweb.org/.

12. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: A new approach and an
application. In Proceedings of the International Semantic Web Conference (ISWC), pages
130–145, 2003.

13. S. Castano, V. De Antonellis, and S. De Capitani di Vimercati. Global viewing of heteroge-
neous data sources. IEEE Transactions on Knowledge and Data Engineering, (13(2)):277–
297, 2001.

14. S. Castano, A. Ferrara, S. Montanelli, and G. Racca. Semantic information interoperability
in open networked systems. In Proceedings of the International Conference on Semantics of
a Networked World (ICSNW), in cooperation with ACM SIGMOD, pages 215–230, 2004.

15. Meta Data Coalition. Open information model, version 1.0. http://mdcinfo/oim/oim10.html,
August 1999.

16. W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string metrics for matching
names and records. In Proceedings of the workshop on Data Cleaning and Object Consol-
idation at the International Conference on Knowledge Discovery and Data Mining (KDD),
2003.

17. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering complex
semantic matches between database schemas. In Proceedings of the International Confer-
ence on Management of Data (SIGMOD), pages 383–394, 2004.

18. T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. A system for principled match-
making in an electronic marketplace. In Proceedings of the World Wide Web Conference
(WWW), pages 321–330, 2003.

19. R. Dieng and S. Hug. Comparison of ”personal ontologies” represented through conceptual
graphs. In Proceedings of the European Conference on Artificial Intelligence (ECAI), pages
341–345, 1998.

20. H. H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations. In Pro-
ceedings of the workshop on Web and Databases, 2002.

21. H. H. Do and E. Rahm. COMA - a system for flexible combination of schema matching
approaches. In Proceedings of the Very Large Data Bases Conference (VLDB), pages 610–
621, 2001.

22. A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data sources: A
machine-learning approach. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 509–520, 2001.

23. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map ontologies on the
semantic web. In Proceedings of the International World Wide Web Conference (WWW),
pages 662–673, 2003.

24. D. Dou, D. McDermott, and P. Qi. Ontology translation on the Semantic Web. Journal on
Data Semantics (JoDS), II:35–57, 2005.

25. M. Ehrig and S. Staab. QOM: Quick ontology mapping. In Proceedings of the International
Semantic Web Conference (ISWC), pages 683–697, 2004.

26. M. Ehrig and Y. Sure. Ontology mapping - an integrated approach. In Proceedings of the
European Semantic Web Symposium (ESWS), pages 76–91, 2004.

27. J. Euzenat. An API for ontology alignment. In Proceedings of the International Semantic
Web Conference (ISWC), pages 698–712, 2004.

28. J. Euzenat, J. Barrasa, P. Bouquet, R. Dieng, M. Ehrig, M. Hauswirth, M. Jarrar, R. Lara,
D. Maynard, A. Napoli, G. Stamou, H. Stuckenschmidt, P. Shvaiko, S. Tessaris, S. van Acker,
I. Zaihrayeu, and T. L. Bach. D2.2.3: State of the art on ontology alignment. Technical report,
NoE Knowledge Web project delivable, 2004. http://knowledgeweb.semanticweb.org/.

29. J. Euzenat and P. Valtchev. An integrative proximity measure for ontology alignment. In
Proceedings of the Semantic Integration workshop at the International Semantic Web Con-
ference (ISWC), 2003.

30. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-lite. In Proceedings
of the European Conference on Artificial Intelligence (ECAI), pages 333–337, 2004.

31. A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweetening WordNet with DOLCE.
AI Magazine, (24(3)):13–24, 2003.

32. F. Giunchiglia and P. Shvaiko. Semantic matching. The Knowledge Engineering Review
Journal (KER), (18(3)):265–280, 2003.

33. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: an algorithm and an implementation
of semantic matching. In Proceedings of the European Semantic Web Symposium (ESWS),
pages 61–75, 2004.

34. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic schema matching. Technical Report
DIT-05-014, University of Trento, 2005.

35. F. Giunchiglia and M. Yatskevich. Element level semantic matching. In Proceedings of
Meaning Coordination and Negotiation workshop at the International Semantic Web Con-
ference (ISWC), 2004.

36. F. Giunchiglia and I. Zaihrayeu. Making peer databases interact - a vision for an architecture
supporting data coordination. In Proceedings of the International workshop on Cooperative
Information Agents (CIA), pages 18–35, 2002.

37. N. Guarino. The role of ontologies for the Semantic Web (and beyond). Technical report,
Laboratory for Applied Ontology, Institute for Cognitive Sciences and Technology (ISTC-
CNR), 2004.

38. B. He and K. C.-C. Chang. A holistic paradigm for large scale schema matching. SIGMOD
Record, 33(4):20–25, 2004.

39. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The Knowledge
Engineering Review Journal (KER), (18(1)):1–31, 2003.

40. J. Kang and J. F. Naughton. On schema matching with opaque column names and data
values. In Proceedings of the International Conference on Management of Data (SIGMOD),
pages 205–216, 2003.

41. V. Kashyap and A. Sheth. Semantic and schematic similarities between database objects:
a context-based approach. The International Journal on Very Large Data Bases (VLDB),
5(4):276–304, 1996.

42. J. A. Larson, S. B. Navathe, and R. Elmasri. A theory of attributed equivalence in databases
with application to schema integration. IEEE Transactions on Software Engineering,
15(4):449–463, 1989.

43. M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of the Symposium
on Principles of Database Systems (PODS), pages 233–246, 2002.

44. W. S. Li and C. Clifton. Semantic integration in heterogeneous databases using neural net-
works. In Proceedings of the Very Large Data Bases Conference (VLDB), pages 1–12, 1994.

45. J. Madhavan, P. Bernstein, A. Doan, and A. Halevy. Corpus-based schema matching. In
Proceedings of the International Conference on Data Engineering (ICDE), pages 57–68,
2005.

46. J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with Cupid. In Proceed-
ings of the Very Large Data Bases Conference (VLDB), pages 49–58, 2001.

47. A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - A MApping FRAmework for
Distributed Ontologies. In Proceedings of the International Conference on Knowledge En-
gineering and Knowledge Management (EKAW), pages 235–250, 2002.

48. A. Maedche and S. Staab. Measuring similarity between ontologies. In Proceedings of the
International Conference on Knowledge Engineering and Knowledge Management (EKAW),
pages 251–263, 2002.

49. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging and test-
ing large ontologies. In Proceedings of the International Conference on the Principles of
Knowledge Representation and Reasoning (KR), pages 483–493, 2000.

50. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm. In Proceedings of the International Conference on Data Engineering (ICDE),
pages 117–128, 2002.

51. S. Melnik, E. Rahm, and P. Bernstein. Rondo: A programming platform for generic model
management. In Proceedings of the International Conference on Management of Data (SIG-
MOD), pages 193–204, 2003.

52. E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER: An approach for query
processing in global information systems based on interoperability between pre-existing on-
tologies. In Proceedings of the International Conference on Cooperative Information Sys-
tems (CoopIS), pages 14–25, 1996.

53. A. G. Miller. WordNet: A lexical database for English. Communications of the ACM,
(38(11)):39–41, 1995.

54. P. Mitra, N. Noy, and A. Jaiswal. OMEN: A probabilistic ontology mapping tool. In Proceed-
ings of the Meaning Coordination and Negotiation workshop at the International Semantic
Web Conference (ISWC), 2004.

55. I. Niles and A. Pease. Towards a standard upper ontology. In Proceedings of the International
Conference on Formal Ontology in Information Systems (FOIS), pages 2–9, 2001.

56. N. Noy and M. Klein. Ontology evolution: Not the same as schema evolution. Knowledge
and Information Systems, 2002.

57. N. Noy and M. Musen. Anchor-PROMPT: using non-local context for semantic matching.
In Proceedings of the workshop on Ontologies and Information Sharing at the International
Joint Conference on Artificial Intelligence (IJCAI), pages 63–70, 2001.

58. L. Palopoli, G. Terracina, and D. Ursino. The system DIKE: Towards the semi-automatic
synthesis of cooperative information systems and data warehouses. In ADBIS-DASFAA,
Matfyzpress, pages 108–117, 2000.

59. M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic matching of web services
capabilities. In Proceedings of the International Semantic Web Conference (ISWC), pages
333–347, 2002.

60. C. Parent and S. Spaccapietra. Database integration: the key to data interoperability. In
M. P. Papazoglou, S. Spaccapietra, and Z. Tari, editors, Advances in Object-Oriented Data
Modeling. The MIT Press, 2000.

61. R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application of a metric on
semantic nets. IEEE Transactions on Systems, Man and Cybernetics, (19(1)):17–30, 1989.

62. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. The
International Journal on Very Large Data Bases (VLDB), (10(4)):334–350, 2001.

63. E. Rahm, H. H. Do, and S. Maßmann. Matching large XML schemas. SIGMOD Record,
33(4):26–31, 2004.

64. P. Resnik. Using information content to evaluate semantic similarity in a taxonomy. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages
448–453, 1995.

65. D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of tree and graph
searching. In Proceedings of the Symposium on Principles of Database Systems (PODS),
pages 39–52, 2002.

66. A. Sheth and J. Larson. Federated database systems for managing distributed, heterogeneous,
and autonomous databases. ACM Computing Surveys, 22(3):183–236, 1990.

67. P. Shvaiko. A classification of schema-based matching approaches. In Proceedings of the
Meaning Coordination and Negotiation workshop at the International Semantic Web Con-
ference (ISWC), 2004.

68. A. Sotnykova, C. Vangenot, N. Cullot, N. Bennacer, and M.-A. Aufaure. Semantic mappings
in description logics for spatio-temporal database schema integration. Journal on Data Se-
mantics (JoDS), Special Issue on Semantic-based Geographical Information Systems, III,
2005.

69. Y. Sure, O. Corcho, J. Euzenat, and T. Hughes. Evaluation of Ontology-based Tools. Pro-
ceedings of the International Workshop on Evaluation of Ontology-based Tools (EON),
2004. http://CEUR-WS.org/Vol-128/.

70. M. Uschold and M. Gruninger. Ontologies and semantics for seamless connectivity. SIG-
MOD Record, 33(4):58–64, 2004.

71. P. Valtchev. Construction automatique de taxonomies pour l’aide à la représentation de
connaissances par objets. Thèse d’informatique, Université Grenoble 1, 1999.

72. P. Valtchev and J. Euzenat. Dissimilarity measure for collections of objects and values.
Lecture Notes in Computer Science, 1280:259–272, 1997.

73. R. van Eijk, F. de Boer, W. van de Hoek, and J. J. Meyer. On dynamically generated ontology
translators in agent communication. International Journal of Intelligent System, 16:587–607,
2001.

74. Y. Velegrakis, R. J. Miller, and J. Mylopoulos. Representing and querying data transforma-
tions. In Proceedings of the International Conference on Data Engineering (ICDE), pages
81–92, 2005.

75. H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and S. Hueb-
ner. Ontology-based integration of information - a survey of existing approaches. In Pro-
ceedings of the workshop on Ontologies and Information Sharing at the International Joint
Conference on Artificial Intelligence (IJCAI), pages 108–117, 2001.

76. L. Xu and D. W. Embley. Using domain ontologies to discover direct and indirect matches for
schema elements. In Proceedings of the Semantic Integration workshop at the International
Semantic Web Conference (ISWC), 2003.

77. K. Zhang and D. Shasha. Approximate tree pattern matching. In A. Apostolico and Z. Galil,
editors, Pattern matching in strings, trees, and arrays, pages 341–371. Oxford University,
1997.

