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Abstract 
Ideally, e-Business application interfaces would be built 
from highly reusable specifications of business document 
standards. Since many of these specifications are poorly 
understood, users often create new ones or customize 
existing ones every time a new integration problem arises. 
Consequently, even though there is a potential for reuse, the 
lack of a component discovery tool means that the cost of 
reuse is still prohibitively high. In this paper, we explore the 
potential of using similarity metrics to discover standard 
XML Schema documents. Our goal is to enhance reuse of 
XML Schema document/component standards in new 
integration contexts through the discovery process. We are 
motivated by the increasing access to the application 
interface specifications expressed in the form of XML 
Schema. These specifications are created to facilitate 
business documents exchange among software applications. 
Reuse can reduce both the proliferation of standards and the 
interoperability costs. To demonstrate these potential 
benefits, we propose and position our research based on an 
experimental scenario and a novel evaluation approach to 
qualify alternative similarity metrics on schema discovery. 
The edge equality in the evaluation method provides a 
conservative quality measure. We review a number of 
fundamental approaches to developing similarity metrics, 
and we organize these metrics into lexical, structural, and 
logical categories. For each of the metrics, we discuss its 
relevance and potential issues in its application to the XML 
Schema discovery task. We conclude that each of the 
similarity measures has its own strengths and weaknesses 
and each is expected to yield different results in different 
search situations. It is important, in the context of an 
application of these measures to  e-Business standards that a 
schema discovery engine capable of assigning appropriate 
weights to different similarity measures be used when the 
search conditions change. This is a subject of our future 
experimental work. 

An Experimental Scenario and Evaluation⋅

Experimental Scenario 
We propose a Schema Discovery Engine that applies 
different combinations of similarity metrics to one or more 
relevant, standard, document (component) schemas that 
may satisfy given integration requirements. Figure 1 
illustrates the experimental evaluation planned for our 
Schema Discovery Engine running a similarity metric. 
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We will use test data from a real, industrial integration 
problem involving B2B data exchange. The component 
library, stored in the repository on the left-hand side of the 
figure, will be based on the Open Applications Group 
Integration Specification (OAGIS) [3]. The OAGIS is a 
horizontal standard for business data exchange including 
supply chain data. Sample data exchange requirements 
(originally captured in a class model or SQL statements) 
will be taken from the Automotive Industry Action Group 
(AIAG) supply chain standards and the Oracle ERP 
interfaces as shown on the right-hand side of the figure. To 
facilitate our computing environment, the data exchange 
requirements will be translated into a common syntax such 
as an XML Schema or a pseudo XML instance. Those 
requirements have maps, with possible extensions, to the 
OAGIS. The maps are considered to be correct and will be 
compared against discovered components in the evaluation 
phase. 

Figure 1 shows how this might work from the 
requirement in the AIAG Min/Max Vendor Managed 
Inventory scenario called the QuantityOnHand (QOH) [4]. 
The QOH model indicates that the required data fields are 
Item, SiteId, Quantity, MinQuantity, and MaxQuantity. A 
user who has the model of this component searches the 
library for reusable components. The schema discovery 
engine uses the QOH model information and any other 
relevant documentation to calculate similarities against the 
components in the library. It can evaluation options that 
consists of several combinations of different types of 
similarity measures to determine the best potential 
matches. The user can choose different combination 
options, such as the Harmonic mean, and set the threshold 
that determines how many and which kinds of components 
are returned. 

In the figure, the InventoryBalance and the WIP 
components whose overall similarity values are above the 
threshold, 0.7, are returned. Within each final result, 
individual similarities are computed indicating the strength 
of the mapping between each field within the discovered 
component and each field in the requirement. Within the 
illustration, the discovery engine might not be able to 
identify any fields with sufficiently high similarity 
measures to induce equivalences for the MinQuantity and 
the MaxQuantity fields; however, it could indicate that the 
two fields could establish some relationships with the 
Quantity field. The relationships may include equivalent, 
more (or less) general, and overlapping [1]. 

We expect that the results from such an analysis could 
guide users by making better and more efficient judgments 
about the potential reuse of existing schemas. In Figure 1, 
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the result could be interpreted to mean that the QOH may 
be designed appropriately as an extension of the 
InventoryBalance components where the MinQuantity and 
MaxQuantity are the extensions of the basic Quantity field. 
Additionally, the discovery result also points to the WIP 
component as a possible basis for the QOH component. It 
is important to note that extensions to existing components 
should be added to the component library so that they 
could be discovered and reused in subsequent integration 
activities. 

Experimental Evaluation 
In the previous section, we said that the schema discovery 
engine selectively uses and combines similarity metrics. In 
this section, we illustrate an example approach to evaluate 
and compare the schema discovery quality in different 
combinations of similarity measures. 

Since the components in the library and the 
requirements are represented using an XML tree-based 
structure, we argue that each data field, either element or 
attribute, can be addressed using the XPATH expression 
[2]. In Figure 1, we can address the fields as 
InventoryBalance/Item or QOH/Item and 
InventoryBalance/Site or QOH/SiteId, for example.  

Let a set U = {ui}, i = 1, 2, ...., n be a set of XPATH 
expressions, ui, for each element or attribute field of the 
target component (the requirement) U. Similarly, let a set V 
= {vj}, j = 1, 2, …, m be that of the true mapped 
component(s) from the library, and a set W = {wk}, k = 1, 
2, ..., p be that of a discovered component. 

Then, let a set of edge constraint Et = { et = (u’
i', v'

j’) }, i’ 
= 1, 2, …,n’ and j’ = 1, 2, …, m’, n’ ≤ n and m’ ≤ m be the 
true map from the fields in U to V. Similar to Et, let Ed = { 
ed = (u’

r’, w’
k’) }, r’ = 1, 2, ..., r, k’ = 1, 2, …, p’, r ≤ n, and 

p’ ≤ p be the map from U to W as estimated by the 
discovery engine. A graphical representation of Ed is as 
shown in the output from the schema discovery engine in 
Figure 1. As shown in the figure, there may be some fields 
in U that have no map to any field in W (e.g., the 
MinQuantity and the MaxQuantity fields). Alternatively, 
components may be discovered for which some of the 
fields cannot be mapped (used) onto the required fields. It 
should be noted that in practice, u’

i’ (w'
k’) can be either a ui 

(wk) or a composition of two or more ui (wk). Although not 

shown, a graphical representation of Et and relationship 
between v'

j’ and vj are similar to that of Ed. Using the above 
definitions and typical information retrieval measurements, 
we can measure the quality of a discovered component d, 

using Jaccard as Qd = | Et ∩ Ed | / | Et ∪ Ed | or 
using Recall as Qd = | Et ∩ Ed | / | Et | or 
using Precision as Qd = | Et ∩ Ed | / | Ed |  

where two edges et ∈ Et, and ed ∈ Ed are matched, i.e., et = 
ed if and only if the paths u’

i’ = u’
r’ and v'

j’ = w’
k’. 

If the schema discovery engine returns multiple 
components, an example of the overall discovery quality 
could be QD = maxd ∈ D (Qd), where D is a set of discovered 
components. 

There are some issues with this discovery quality 
measure. First, the edge equality definition makes this 
quality measure a conservative one, because it requires that 
the labels on both paths be identical. For a discovered 
component where some labels are different yet 
semantically equal, the quality would be unrealistically 
low. 

Second, the discovery quality (QD) may not indicate the 
performance of the overall system, if our intent is to 
consider multiple alternatives. In that case, the measure has 
to be normalized against the number of suggestions 
returned. In addition, the discovered component providing 
the maximum quality, max (Qd), may not be the component 
ranked the most similar by the discovery engine. Thus, we 
want the discovery engine to produce a similarity value 
that is highly correlated with the quality associated with 
the component. We envision the correlation value between 
the similarity value of a component d and Qd across the 
members of the set of discovered components D as a 
dimension of the overall discovery quality. The advantage 
of such quality measure is that it is orthogonal to the 
number of discovered components. 

Similarity Metrics: A Literature Review 
We organize the review of similarity approaches into three 
groups: lexical, structural, and logical. For each of the 
approaches, we discuss its relevance and potential issues in 
applying it to the XML Schema discovery task. In closing 
this section, we give our perspective on the respective 
roles and potentials of the investigated categories of 



similarity metrics, both considered individually and in 
combination. 

Lexical Perspective  
A lexical similarity measure quantifies the commonality 
between individual component names using purely lexical 
information. Commonly used lexical similarity measures 
include Tanimoto [19], n-gram [18], (weighted-) distance-
based [5, 6, 13, 14], word sense-based [1], and information 
content-based [7] metrics. 

We found that the existing lexical similarity measures 
may not be directly applicable to our schema discovery 
problem. The reason is that an XML component name 
usually consists of several words and/or allowable 
abbreviations concatenated to enhance their expressivity. 
Such composite words (e.g., QuantityOnHand, 
InventoryBalance) provide more information than 
individual words because the additional words provide 
additional context information. Moreover, the composite 
words make the meaning of the included words more 
specific. This information is particularly important when a 
domain-specific lexical resource is not available. For 
example, we can eliminate several senses associated with 
the term Contact within the component name 
DeliveryToContact. Because Contact follows the verb, it 
must be a noun. Further, the relationship and the surface 
senses of the Contact can be eliminated because one would 
not deliver a product to a relationship or a surface in the 
business sense. Hence, the similarity measure should be 
constructed to focus on the meaning of the Contact 
associated with a person. Furthermore, we envision that 
each word in a component name should have different 
salience depending on its part of speech. For example, we 
would like the component name DeliveryToContact to 
have a higher similarity value when comparing it to the 
ShipToContact than to the DeliveryFromContact since the 
latter is, in fact, an opposite. The research to advance the 
lexical similarity measures for the schema discovery 
should exploit this type of additional information.  

We also recognize that domain-specific resources are 
very important in analyzing lexical similarity. 
Consequently, our future research may include methods to 
model domain-specific resources in our supply-chain and 
logistics problem contexts. In addition, the schemas and 
requirements documentations are context specific 
resources for the content-based similarity analysis. 

Structural Perspective 
A structural similarity measure quantifies the commonality 
between components by taking into account the lexical 
similarities of multiple, structurally related sub-
components of these terms (e.g., child components, child 
attributes). A structural similarity metric typically provides 
a more conservative measure than the lexical similarity, 
because it looks beyond the individual labels and their 
definitions to the context surrounding these labels. The tree 
structure is a native structure for XML documents; hence, 

it is most related to our problem context. While significant 
research has been done to apply these methods to XML 
instance documents, they may be applied to schema 
discovery by representing the XML schema using one or 
more pseudo XML instances. Commonly used structural 
similarity measures include node, path, and/or edge 
matching, tree edit distance (TED) [8, 9, 12], (weighted) 
tag similarity [9], weighted tree similarity [10], and Fourier 
transformation-based approach [15]. 

Although existing structural similarity measures can be 
useful in schema discovery, there are several issues that 
need to be addressed. First, the existing measures are 
geared toward content rather than meta-data; hence, the 
perspective of these approaches needs to be adjusted. 

Second, one of the most powerful structural measures, 
TED, is more applicable to ordered trees because this 
insures computability in polynomial time. However, the 
order constraint does not always apply to schemas; hence, 
further research is required to determine conditions under 
which this restriction can be relaxed. One possible 
approach is to re-order and represent schemas in abstract 
tree structures. Another is to ignore the structure in local 
areas and aggregate them into a single node. The less 
powerful measures such as path or inclusive path matching 
do not exploit fully context-specific information embedded 
in the structural relationships. The weighted measures 
require a practical way to obtain weights. 

Logical Perspective 
A logical similarity measure quantifies the commonality of 
properties/constraints restraining components definitions 
beyond the lexical and structural aspects such as type, 
cardinality, etc. The logical similarity is often classified as 
a structural category [18, 19]. However, we treat it as an 
independent category because it is the most restrictive and 
accurate measure. That is, even if two components have 
identical label and structures, their logical similarity value 
can still be imperfect. 

Take a term TelephoneNumber, which consists of two 
child elements: an AreaCode element followed by a 
Number element. Suppose that there are two 
TelephoneNumber definitions, one defines the types 
(ranges) associated with child elements as Integer while 
the other defines them as String. Although the two have 
exact labels and structures, a good logical similarity 
measure would indicate that they are not identical and 
potentially incompatible. The logical similarity measures 
can provide more powerful estimates when matching 
schemas using additional model-based information. For 
example, if there is model-based information that indicates 
that the String type subsumes the Integer - indicating the 
Integer is convertible to the String, but not vice versa- then 
the measure may be used to indicate that the term is always 
translatable to the other but not vice versa. Some example 
approaches in this category include DL-based [1, 17], 
instance-based [16], and graph-based [11] approaches. 

Although the logical similarity measures are potentially 
more accurate due to their formal basis, they require the 



model to provide significant additional information, which 
is often unavailable. When model-based information is 
shallow, the quality of the approach may be reduced 
drastically. Hence, any schema discovery engine using 
logical similarity measures has to adjust the weights based 
on the amount and kind of model-based information 
available. In particular, a lower weight should be given to 
the logical similarity if the subsumption hierarchy is very 
shallow. 

Finally, we offer our synthesized view of the respective 
roles and potentials uses of the aforementioned similarity 
metrics on the XML Schema discovery task. Schema 
discovery in the enterprise-applications-integration context 
is a unique information retrieval problem, because the goal 
is not to retrieve the content but the data model associated 
with the content. Specific consideration must be given to 
terms and naming conventions, design and structure 
conventions, usage cases, and semantic/ontology models, 
all of which must be considered simultaneously when 
matching schemas to a requirement. Therefore, it is not 
likely that a single similarity category would yield optimal 
results. 

Synthesis of various similarity metrics within a search 
algorithm is likely to produce more accurate results. 
However, achieving such a synthesis is not 
straightforward. On the one hand, lexical measures may be 
more effective when a domain-specific thesaurus or 
dictionary is available. On the other hand, structural 
measures will be more effective when the data exchange 
requirements and the standard specification schemas 
within the repository are similarly constructed or are 
known to follow the same design conventions. In such 
well-controlled situations, the two similarity metric 
categories may play more deterministic roles, while the 
measures within the logical similarity category may 
appropriately play an auxiliary role, particularly when the 
schemas and the requirement are totally disparate. 
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Certain commercial software products are identified in this 
paper. These products were used only for demonstration 
purposes. This use does not imply approval or 
endorsement by NIST, nor does it imply these products are 
necessarily the best available for the purpose. 


