
Contexts in Dynamic Ontology Mapping

Paolo Besana and Dave Robertson
Centre for Intelligent System and their Applications

School of Informatics
University of Edinburgh

Abstract

Agents in open systems interact continuously, each
possibly having a different ontology. Mapping in ad-
vance all the ontologies that an agent can encounter is
not feasible, as all the possible combinations cannot be
foreseen. Mapping complete ontologies at run time is
a computationally expensive task. This paper proposes
a framework in which mappings between terms may be
hypothesised dynamically as the terms are encountered
during interaction. In this way, the interaction itself de-
fines the context in which small, relevant portions of
ontologies are mapped. We use this way of scoping the
ontology mapping problem in order to apply mapping
heuristics in a more focused way.

Problem description

In order to act properly after receiving a message from an
external entity, an agent must understand the content of the
message.

A message is created by mapping concepts in the sender’s
representation of the domain into the terms that compose the
message, conforming to the syntax of the language it uses.
The receiver maps the terms in the message to the concepts
in his own representation, helped by the syntax rules that
structure the message. If a term is mapped to a different
concept by the receiver agents, or cannot be mapped, then a
misunderstanding arises.

The problem would not exist if both agents shared the
same representation of the domain, but this is not the most
common case.

For example, in an open B2B market, agents gather to of-
fer and to request services or products, working as proxy for
their companies. Agents converge to the market from dif-
ferent backgrounds, and are likely to have different ontolo-
gies. The brokers receive advertisements of offers, and must
classify them correctly to match them with the requests. As
agents continuously arrive to the market and leave, the num-
ber of possible combinations of agents is high, .

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Common approach

Early attempts to overcome the heterogeneity in the rep-
resentations were to develop general ontologies that could
cover a majority of domains and could be shared by the
agents. This approach has been unsuccessful on a large
scale. First, it proved difficult to find an agreement on what
ontology to use. Second, it is difficult to manage the evolu-
tion of the ontology: an old version can be inconsistent with
a newer one (Hameed, Preece, & Sleeman 2003).

More recent attempts are instead focused on reconciling
different ontologies, allowing their coexistence.

Problems with Ontology Mapping in MAS

Most mapping processes are aimed at statically align-
ing complete ontologies (Kalfoglou & Schorlemmer 2003;
Giunchiglia, Shvaiko, & Yatskevich 2004; Nuno & Rocha
1999): two or more ontologies are reconciled and the result
is stored for future use.

Preparing in advance all the possible mappings between
the ontologies is not feasible in open multi-agent systems, as
it is impossible to foresee all the combinations of agents in-
volved in the interactions. Mapping whole ontologies, often
a lengthy process, may not be feasible at real time. Interac-
tions should be quick and many can occur at the same time.
Moreover, only portions of ontologies may match, as agents
can have ontologies about different domains.

Proposed approach

A complete agreement over the semantics is not required
in MAS: agents interact only when they must, and they
need to understand each other just enough to perform their
task. Once the task is performed, mutual understanding is
no longer important: agents in an open system interact con-
tinuously with different agents, and the mapping found once
might be useless any other time.

To perform a coordinated task, the involved agents need to
share only the parts of their knowledge contextual to the in-
teraction. It is possible to exploit this idea and map dynam-
ically and only when needed the portions of the ontologies
required for the context of the interaction.



Definitions and assumptions
Agent model
Each agent ai has its own communication environment ei,
consisting of the ontology Oi that defines the terms used by
the agent and of the axioms it can use to reason.

An environment can be seen as the context of an agent, as
described in (Giunchiglia 1992), but renamed to avoid name
conflicts with the concept of context used in this paper.

Any definition is valid only within an environment. An
agent can reason over concepts defined in other environ-
ments only if mapped to its own concepts.

An agent, for the sake of this paper, can be model as be-
ing composed by two layers: a communication layer, and
a reasoning layer. The communication layer is the inter-
face between an agent and the other agents in the system. In
the basic case, it handles the transmission and reception of
messages. The reasoning layer contains all the agent’s skills
and knowledge, and it is accessible from the communication
layer through access points.

Communication model
During an interaction k an agent ai sends to an agent aj a
message m composed of terms. For brevity, terms defined
in the agent’s environment will be called internal terms, and
will be referenced as wi(see figure 1), while terms defined
in other environments will be called external terms, and will
be referenced as ti.

For an interaction k, every involved agent ai publishes an
ontology subset Oki, valid in the context of the interaction,
to explain the terms it has used in the messages.

w10w9w8w7w6w5

w2 w3 w4

w1

Figure 1: Oi ontology

Semantic bridges
The semantic relations between terms defined in different
environments is defined in semantic bridges (Nuno & Rocha
1999). A bridge b is the tuple:

b = 〈relation, t, w, c(true), c(false)〉

where relation can be equivalence or subsumption, while
c(true) is the confidence level that the bridge is correct and
c(false) that the bridge is wrong.

A bridge bh is more generic (�) than another bridge bg , if
the external term t is the same in both and the internal term
wh of bh subsumes the internal term wg in bg:

bh � bg ↔ (wh w wg) ∧ (th = tg)

Conversely bh is more specific than bg if wg subsumes wh:

bh � bg ↔ (wh v wg) ∧ (th = tg)

During the interaction k the bridges are stored in the set Bk

and are used to translate the calls to the reasoning layer.

Framework
An external term t is mapped only when encountered dur-
ing an interaction. Initially it can only guess at the proper
bridges between t and the terms in its own ontology. These
hypotheses must be verified, and the most likely is kept.

Without any a priori knowledge any possible mapping
could be the correct one, and the hypotheses cover all the
possible bridges between the external term t and the terms
wi. To make on-the-fly mapping feasible, the number of hy-
potheses should be drastically reduced.

In the framework, unlikely hypotheses are pruned by the
filter elements using heuristics based on the experience of
past interactions and on the context of the current interac-
tion. The filters aim to minimise, on average, the number of
wrong hypotheses to check.

Once the hypotheses are filtered, the rule elements gen-
erate an arguments in favour or against a hypothesis. The
arguments are then combined by the framework to give an
overall confidence level for the hypothesis.

Rules can exploit algorithms developed for static map-
ping, such as S-Match (Giunchiglia, Shvaiko, & Yatskevich
2004), to compute the matching, as the number of useless
mappings to verify is reduced by filters.

A generated argument is a proposition coupled with two
degrees of confidence, one that the proposition is true, and
one that the proposition is false. Arguments are organised
in a tree: the root is the hypothesis to verify, supported or
attacked by the arguments in the nodes. An argument may
recursively need other arguments to support it.

Framework explained
The mapping process is iterative. At every iteration i a se-
mantic bridge btki, more specific than the bridge btk(i−1)

from the previous iteration, is created for the term t:
bn � bn−1 � . . . � b1

At every iteration i the function executes three steps:
• generates hypotheses,

• filters hypotheses and keeps the most probable ones,

• collects evidence for the remaining hypotheses, selects
the most reliable hypothesis.

The loop ends when it becomes impossible to generate hy-
potheses that imply those proved in the previous step, or
none of the hypotheses generated can be proved. The bridge
created in the last iteration, and therefore the most specific,
is returned and added to the set Bk.

Generate the hypotheses
At this step of each iteration i, the system receives the exter-
nal term t and the mapping btk(i−1) proved in the previous
iteration, and returns a set of hypotheses Ω about the most
generic mappings that imply btk(i−1).

For example, if btk1 = 〈t v w1〉, btk2 = 〈t v w2〉 , given
the ontology in figure 1, then for the iteration #3:

Ω3 = {〈{v,w,≡} , t, w5〉 , 〈{v,w,≡} , t, w6〉}



Filter the hypotheses

In the this step, the system combines different filters and
produces an argumentation tree for each of the hypotheses
selected from the set Ω generated in the previous step:

A filter fi is characterised by its breadth and its confi-
dence. The first is the “band-pass” of the filter: the narrower
the filter, the fewer hypotheses are left to verify. If none of
the filtered hypotheses could be proved, this step is repeated
and the narrowest filter used previously is removed. The sec-
ond indicates how likely is it that the correct hypothesis is in
the selected subset. It is used as the first argument added to
the argument tree of each filtered hypothesis.

After a term is successfully mapped, the filter receives the
new bridge as feedback, and uses it to improve its predictive
capability.

Select the best hypothesis

In this step, the system processes the set of hypotheses trees
generated by the previous step, and tries to extract the most
likely one. If the system fails to select any hypothesis, it
goes back to the previous step, relaxes the filter if possible,
and tries to obtain a wider set of hypotheses.

This step is composed of three actions.

Collect evidence For each hypothesis the system gener-
ates arguments using rules. A rule ri is characterised by two
confidence levels, that measure how strong or weak is the
support or the attack of the generated argument: c(hp|arg)
is the confidence that the hypothesis is true, given that the
argument is true, while c(¬hp|¬arg) is confidence that the
hypothesis is false, given that the argument is false. The ar-
gument is produced by an external function, that receives as
input the hypothesis and a set of information specified in the
rule. The information is collected by the system, and it is
relative to the terms in the hypothesis: it can be the super-
class, or the subclasses or the instances of one of the term.
Information about internal terms is easily accessible, while
the agent may ask the information about external terms to
the other agent if it is not contained in the published ontol-
ogy. External information may trigger further mapping to
allow reasoning over the imported terms.

Combine evidence The arguments in the tree are com-
bined to obtain two confidence levels for the hypothesis: one
that the hypothesis is true, and one that it is false.

If a hypothesis is supported by one argument, the confi-
dence that the hypothesis is true is computed as:

c(hp) = c(hp|arg)c(arg)

where c(hp|arg) is given by the rule and c(arg) is computed
for the argument. Similar considerations apply for the con-
fidence of the hypothesis being false. When there is more
than one argument, the confidences must be combined.

It cannot be assumed that the confidences sum to one: if
a rule establishes that a hypothesis is true with 0.4 of confi-
dence, it does not imply that the hypothesis is false with 0.6
of confidence. Therefore, the theory used to combine con-
fidences should be able to express ignorance about the truth
value of the hypothesis.

One possible approach is Dempster-Shafer theory (Yager
1994), which computes the probability of a proposition sup-
ported by evidences. Following Dempster-Shafer theory,
c(hp) is interpreted as the belief that the hypothesis is true.
While 1 − c(¬hp) is the plausibility the hypothesis is true
which is the extent to which the available evidence fails to
refute the hypothesis. The interval between the two values
is the ignorance interval.

The theory provides a formula, called Dempster’s rule of
combination, to combine evidences for a proposition.

Harvest Hypothesis At the end of an iteration i , the hy-
pothesis with the highest confidence is selected. In some
cases there might be more than one hypothesis within a nar-
row band of confidence: in this case the system first tries
to apply more rules - if available - to gather more evidence
for the conflicting hypotheses. If no rules can be applied, the
strongest hypothesis is selected. Then the procedure restarts,
until no more hypotheses can be generated.

Possible models of filters
Filters
Filters must operate rapidly, making it difficult to apply
complex, symbolic or inductive inference methods. Nev-
ertheless, filters can exploit the large volume of event-based
data from the interactions and determine statistical patterns
threaded in the dialogues.

Statistical contexts
A possible pattern to recognise is that some terms tend to
appear together in interactions: some of these terms are con-
textual to the topic of the conversation (buy, computer,...),
while other terms are auxiliary to any kind of conversation
(ask, inform,...).

Following this intuition, the terms can be clustered to-
gether, and each cluster is a possible context for an inter-
action. The contexts are created and updated using the feed-
back from the framework. The contexts are used to classify
dialogues as they unfold, and to predict which are the most
likely terms that can occour during a conversation. This ex-
cludes hypotheses relative to terms that have never appeared
in the context.

Formal description More formally, a context is a triple:

C = 〈id,N, S〉

where N is the number of dialogues classified by the context
and S is the set of internal term elements η that distinguish
the context.

Each term element ηi in S is a pair:

ηi = 〈w, µC〉

where w is the term in the agent’s ontology and µC is the
grade of membership of the term in the context: terms may
appear in different contexts with different frequencies.

Related to the grade of membership of a term there is the
function µC(K) that returns the grade of membership to a
context C of a set K of terms:

µC(K) = 1
|K|

∑
w∈K µC(w)



How they are used Contexts are used to classify dialogues
as they are performed. Every time a new term is mapped, the
system tries to classify the dialogue finding the contexts that
maximise the function µC(W ), where W is the set of the
internal terms in the bridges contained in Bk.

At the beginning of the mapping process, few terms are
mapped and it is difficult to classify the dialogue properly,
because more than a context can do it. As the dialogue un-
folds, the number of terms in W increases and the number
of contexts that can classify them is reduced.

The contexts that classify the dialogue are used to filter
the generated hypotheses set: if some terms in the set never
appear in the contexts, then it is possible to exclude these
hypotheses, adding evidence for the remaining hypotheses.

How they are created When a dialogue is finished, the in-
ternal terms W are added to the context that better classifies
them. If no context classify them well enough, then a new
context is created.

Past mapping experience

Another possible pattern to identify is that some external
terms tend to have always the same semantic relations with
the same terms in the agent’s ontology.

Formal description The set of previous mappings Λ con-
tains a tuple λi for each mapping proved in the past, com-
posed of three elements:

λi = 〈b, sm, na〉

b is the hypothesis proved in the past, sm is the cumula-
tive confidence of the hypothesis, and na is the number of
time the term mapped in the hypothesis has appeared in dia-
logues.

How they are used When the system must select hypothe-
ses for an external term, it can look in past mappings for the
term. It then keeps the hypotheses implied by the past map-
pings, and discards the others.

For the ontology in figure 1, given the generated hy-
potheses Ω = {t v w2, t v w3, t v w4} and the set of past
mappings Λ = {〈t v w5, 4, 5〉}, the filter should keep only
t v w2 as the past mapping t v w5 implies it.

How they are created Mappings established for a partic-
ular external ontology and received as feedback from the
framework are stored for future use. When mappings are
encountered repeatedly, the confidence sm in the past map-
ping λi is increased by the confidence in the bridge.

There is no issue about inconsistency, as conflicting past
mappings are used only as suggestions about the order in
which the hypotheses should be checked: conflicting hy-
potheses are tolerated by collecting evidence in favour or
against them.

Related work
The COMA project (Do & Rahm 2002) is focused on com-
bining different matchers to obtain a plausibility level for the
computed correspondences. It introduces the reuse of past
mappings, although for a different purpose. The abstraction

of the argumentation tree in this paper subsumes the dis-
tinction between simple matchers and hybrid matchers. The
QOM project (Ehrig & Staab 2004) addresses the trade off
between efficiency and quality, introducing the concept of
filtering the mapping candidates before verifying them with
similarity comparators. However, the filtering is based only
on properties of the ontologies (labels of nodes or hierar-
chy): it is does not exploit gained experience and it is not
concerned about the purpose of the mapping as a mean to
prune useless candidates.

In fact, both projects are oriented toward mapping whole
ontologies, without any reference to interactions and their
contexts.

Conclusion
In this paper we proposed a framework that allows agents
with different ontologies to interact in order to perform a
task. The mutual understanding during the interaction is
reached dynamically mapping the ontologies. The frame-
work exploits both the structure of the ontologies and statis-
tical patterns threaded in the dialogues to produce heuristics
used to improve the work of standard mapping algorithms.

The first advantage is that there is no need to foresee and
map in advance all possible combinations of ontologies, be-
cause mappings take place only when needed. The second is
that part of the algorithms developed and tested for this task
can still be used.

This research is at a very early stage, and many details
still need to be studied in depth.

References
Do, H. H., and Rahm, E. 2002. Coma - a system for flexible
combination of schema matching approaches. In VLDB,
610–621.
Ehrig, M., and Staab, S. 2004. Qom - quick ontology
mapping. In International Semantic Web Conference, 683–
697.
Giunchiglia, F.; Shvaiko, P.; and Yatskevich, M. 2004. S-
match: an algorithm and an implementation of semantic
match. In In Proceeding of the European Semantic Web
Symposium, 61–75.
Giunchiglia, F. 1992. Contextual reasoning. Technical
report, IRST, Istituto per la Ricerca Scientifica e Tecnolog-
ica.
Hameed, A.; Preece, A.; and Sleeman, D. 2003. Ontology
Reconciliation. Germany: Springer Verlag. 231– 250.
Kalfoglou, Y., and Schorlemmer, M. 2003. Ontology map-
ping: the state of the art. Knowledge Engineering Review.
Nuno, S., and Rocha, J. 1999. Mafra - an ontology map-
ping framework for the semantic web. In Proc. of the 13th
European Conf. on Knowledge.
Yager. 1994. Advances in the Dempster-Shafer Theory of
Evidence. John Wiley, New York.


