
What Is Ontology Merging?
– A Category-Theoretical Perspective Using Pushouts

Pascal Hitzler and Markus Krötzsch and Marc Ehrig and York Sure
Institute AIFB, University of Karlsruhe, Germany;

{hitzler,kroetzsch,ehrig,sure}@aifb.uni-karlsruhe.de

Introduction
In this paper we explain how merging of ontologies is cap-
tured by the pushout construction from category theory, and
argue that this is a very natural approach to the problem. We
study this independent of a specific choice of ontology repre-
sentation language, and thus provide a sort of blueprint for
the development of algorithms applicable in practice. For
this purpose, we view category theory as a universal “meta
specification language” that enables us to specify properties
of ontological relationships and constructions in a way that
does not depend on any particular implementation. This can
be achieved since the basic objects of study in category the-
ory are the relationships between multiple ontological spec-
ifications, not the internal structure of a single knowledge
representation.

Categorical pushouts are already considered in some
approaches to ontology research (Jannink et al. 1998;
Schorlemmer, Potter, & Robertson 2002; Goguen 2005;
Kent 2005) and we do not claim our treatment to be entirely
original. Still we have the impression that the potential of
category theoretic approaches is by far not exhausted in to-
days ontology research. For our particular case the treatment
will focus on the ontology merging, for which we will give
both intuitive explanations and precise definitions. This re-
flects our belief that, at the current stage of research, it is
not desirable to fade out the mathematical details of the cat-
egorical approach completely, since the interfaces to current
techniques in ontology research are not yet available to their
full extent. We will also keep this treatment rather general,
not narrowing the discussion to specific formalisms – this
added generality is one of the strengths of category theory.

A long version of this paper with a tutorial character is
available from the first author’s homepage.

Categorical preliminaries
In order to approach the concept of a category, we view it
as a system of ontological specifications that includes both
ontologies and their interrelations. Informally, an ontology
can be viewed as something which conveys a certain spec-
ification (e.g. of some data) based on a given classification

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

system. Mathematically, this description allows for a num-
ber of realizations: tree structures, formal contexts, partially
ordered sets, or deductive systems of some logic are only
examples. These approaches vary widely in their expressive
power and may appear rather diverse indeed.

On the other hand, any suitable notion of an ontology
should feature certain properties. This derives from the fact
that ontologies are conceived as a means of sharing and
reusing knowledge. Hence a typical task is to compare sev-
eral (specifications of) ontologies or to combine them into a
more extensive one. The latter process is often termed on-
tology merging, and will be discussed herein. For the sake
of simplicity, our examples will use is-a hierarchies in order
to explain the abstract notions involved.

The mathematical structure of is-a hierarchies is simply
that of partially ordered sets, posets in short. Two posets
can be considered to be equivalent, if there exists a bijective
function (i.e. one which is one-to-one and onto) between
these sets which does also preserve the order (i.e. which
is monotonic). In this case, being monotonic means that a
function respects the internal structure of partially ordered
sets, while bijectivity indicates the equivalence of two or-
dered sets. Structure-preserving functions are a typical im-
plementation of what is called a morphism in category the-
ory, and what we will recognize as a suitable substitute for
the consideration of internal structures.

While monotonic functions are reasonable morphisms for
comparing posets, other mathematical spaces may suggest
different kinds of morphisms: Vector spaces are considered
with linear functions, groups with group homomorphisms,
topological spaces with continuous functions, etc. The idea
that emerges from these observations is that the relationships
between objects are basically captured by the morphisms
that exist between them. By deciding for a particular type
of morphisms, we determine which internal properties of the
mathematical objects are considered “essential” (e.g. order
structure or cardinality). This is the approach taken in cat-
egory theory: a class of objects (e.g. order structures) is
equipped with morphisms (e.g. monotonic functions), thus
forming a large directed graph with objects as nodes and
morphisms as arrows. Depending on the given situation, ar-
rows can be identified with certain functions or relations be-
tween the entities that were chosen for objects, but no such
concrete meaning is required. In order to constitute a cate-

gory, a directed graph only has to include a composition op-
eration (denoted ◦) for pairs of compatible arrows, satisfying
some simple axioms that are typical for the composition of
functions and the relational product. A precise definition is
found in the aforementioned full version of this paper.

Specific relationships between objects can now be defined
in purely categorical terms. Let us explore the notion of
equivalence (or, speaking categorically, isomorphism) for
the category of posets and monotone functions, where com-
position of morphisms is just usual composition of func-
tions. Restating our earlier insights, we find that two par-
tially ordered sets P and Q are equivalent (isomorphic)
whenever there is a monotone function f : P→ Q that has a
monotone inverse, i.e. for which there is a monotone func-
tion g : Q→ P with g◦ f = idP and f ◦g = idQ. Generalizing
this to arbitrary categories, we call a morphism an isomor-
phism if it has a (necessarily unique) inverse morphism. We
continue next with discussing some constructions which will
help in understanding pushouts.

Products and Relations
In set theory, the cartesian product of two sets is defined as
the set of all pairs of elements from two given sets. This
is not a suitable description from the viewpoint of cate-
gory theory, since we want to avoid to mention the internal
(element-based) structure of our objects. In order to rephrase
this in categorical language, we need to find alternative cri-
teria that rely exclusively on properties of the morphisms.
To this end, an important observation is that a product does
in general also provide two projection functions to the first
respectively second component of the product. Furthermore,
the product is distinguished by a universal property given in
the next definition.

Definition 1 Consider a category C and objects A, B ∈ |C |.
Given an object C ∈ |C | and morphisms p1 : C → A and
p2 : C → B, we say that (C, p1, p2) is the product of A and
B if the following universal property holds:

For any object D ∈ |C | and morphisms q1 : C → A and
q2 : C → B, there is a unique morphism 〈q1, q2〉 : D →
C, such that q1 = p1 ◦ 〈q1, q2〉 and q2 = p2 ◦ 〈q1, q2〉.
The latter situation is depicted in the following diagram:

B

D 〈q1,q2〉___ //___

q2 //

q1
//

C
p2

55lllllll
p1

))RRRRRRR

A

For example, in set theory for the usual cartesian product,
we can define the function 〈q1, q2〉 by setting 〈q1, q2〉(d) =
(q1(d), q2(d)). In spite of this, the above defines the carte-
sian product of sets only up to isomorphism (i.e. bijective
correspondence) – any set with the cardinality of the carte-
sian product can be equipped with appropriate morphisms.
This is a typical feature of category theory: isomorphic ob-
jects are not distinguished, since they behave similar in all
practical situations. It is the choice of morphisms that deter-
mines what distinctions are considered relevant in the first

place. We also remark that products do not necessarily exist
in every category.

We remark, nevertheless, that the notion of product of two
objects depends solely on the chosen category, i.e. on the
objects and their morphisms. Fixing, for example, a specific
ontology language, and finding an agreement on which fea-
tures of an ontology should be preserved by a corresponding
morphism, we obtain a notion of product in a canonical way.

The categorical product definition also turns out to be suit-
able to model many well-known product constructions. For
instance, when considering posets and monotone functions
one obtains the usual product order, i.e. the cartesian prod-
uct of the two sets, ordered such that a pair (a, b) is below a
pair (c, d) whenever a is below c and b is below d.

By means of the product construction, we can also in-
troduce binary relations on objects. Indeed an ordinary set-
theoretic binary relation is just a subset of the cartesian prod-
uct of two objects. Hence it makes sense to consider a mor-
phism r : D → (A × B) from some object D to the prod-
uct of A and B as a binary relation between A and B. Note
that this does also give us two functions p1 ◦ r : D → A
and p2 ◦ r : D → B to the two components of the product,
for which the morphism r is already the unique factorization
that exists due to the definition of a product.

Merging ontologies via pushouts
We will now return to our initial motivation. Our intuition
is that the objects of our category represent ontologies and
that the morphisms between them serve as meaningful tran-
sitions between these specifications. The categorical prod-
uct construction is not suitable for the purpose of modelling
ontology merging, since it does obviously not consider any
relationship between two ontologies. Such a relationship –
commonly referred to as an ontology mapping – however is
the base of an ontology merging process, so we have to find
a means of modelling it in our categorical setting. We are in
fact more interested in a certain kind of sum than in a prod-
uct. Indeed, if two ontologies were entirely unrelated, they
could be combined by just taking their disjoint union (pro-
vided that this operation makes sense for the chosen ontol-
ogy representation language). However, we are more inter-
ested in merging ontologies that do overlap (via some map-
ping), where some elements are related while others are not.
Merging two such ontologies should lead to a new ontol-
ogy that identifies equivalent elements but that tries to keep
unrelated elements apart, as far as this is possible without
violating the requirements that are imposed on the structure
of an ontology.

As an example, let us consider the following two partial
orders:

P ?>=<89:;a
llllllll

DD
D

?>=<89:;b
zz

z DD
D

?>=<89:;c

?>=<89:;d
DDD

D
?>=<89:;e

zzz
z

?>=<89:;g

/.-,()*+f

Q ?>=<89:;1
zz

z DD
D

?>=<89:;2 ?>=<89:;3

?>=<89:;4

?>=<89:;5 ?>=<89:;6
We assume that some elements of these structures are known
to be equivalent. This is expressed by a relation R ⊆ P × Q

R
&&NNNNNN r2

))

\ [Z X V U S

r1

$$

4
8

<
A

E

P × Q //

��

Q
e2��

P e1
// mergeR(P,Q)

Figure 1: The pushout construction

(usually called an ontology mapping) that we define as
R = {(a, 1), (b, 2), (c, 4), (f , 5), (g, 3)}. A reasonable result
of merging the posets P and Q would then be the following
structure:

76 5401 23{a, 1}
lllll RRRR

76 5401 23{b, 2}
zz DD

76 5401 23{c, g, 3, 4}

76 5401 23{d}
DD

76 5401 23{e}
zz76 5401 23{ f , 5} 76 5401 23{6}

Observe that all elements related by R are indeed identi-
fied, but that some additional identifications are necessary to
obtain a partially ordered set. Categorically, we can already
specify the data that we have considered for such an opera-
tion. The given situation is depicted in Figure 1. The dotted
arrows r1 and r2 are those that are obtained by composing
the projections of the product with the morphism from R to
P×Q. They project every pair of elements of R to its first and
second component, respectively. Now the result of merg-
ing P and Q is not just some poset mergeR(P,Q), but also
the two obvious embeddings of P and Q into mergeR(P,Q).
The property that R-related elements are identified can now
be expressed in terms of functions: we find that, for any pair
(p, q) ∈ R, e1(p) = e2(q). Still a better way to express this
for arbitrary morphisms is to say that e1 ◦ r1 = e2 ◦ r2.

This condition alone, however, does not suffice. Usually,
there are many objects for which e1 ◦ r1 = e2 ◦ r2 holds.
Which of these is the one which we want to consider as the
merging of P and Q? Clearly, the merging shall not iden-
tify anything unnecessarily. This can be stated by means of
another universal property, as follows.

Definition 2 For a category C , consider objects R, P, Q,
and morphisms p1 : R → P and p2 : R → Q. An object S
together with two morphisms e1 : P→ S and e2 : Q→ S is
a pushout if it satisfies the following properties:

(i) e1 ◦ p1 = e2 ◦ p2, i.e. the diagram in Figure 2 (left)
commutes.

(ii) For every other object T and morphisms f1 : P → T
and f2 : Q → T , with f1 ◦ p1 = f2 ◦ p2, there is a
unique morphism m : S → T such that f1 = e1 ◦ m
and f2 = e2 ◦ m. This situation is depicted in Figure 2
(right).

Condition (ii) in this definition states the universal prop-
erty of the pushout, requiring that it is in a sense the most

R

p1

��

p2 // Q

e2

��
P e1

// S

R
p1 ��

p2 // Q
e2�� f2

��

P e1
//

f1

--

S m

%%K
K

K

T

Figure 2: Diagrams for the pushout

general object that meets all requirements. Let us try to ex-
plain this a bit further. We have already understood that in
this setting we can encode the ontology mapping (e.g. bi-
nary relation) R conveniently, in that the resulting S iden-
tifies (at least) all those elements which are related by R.
But now we want to avoid the identification of other ele-
ments as much as possible. Intuitively, this means that a
suitable pushout object needs to keep elements from both
components as distinct as possible, while still implementing
all necessary identifications, and without including irrele-
vant information. Enforcing the desired identifications was
achieved by condition (i) in the above definition. Excessive
identifications are prevented by requiring the existence of a
factorization m: appending m to e1 and e2 cannot make prior
identifications undone, and hence a pair that was merged in
S can never be separated in an alternative solution (T, f1, f2)
if a suitable m is known to exist. Finally, the possibility of
including entirely unrelated information, like adding some
elements not present in either P or Q, is ruled out by assur-
ing uniqueness of the factorization m: if S would include
elements that are neither in the image of e1 nor in the image
of e2 then a valid factorization can assign these to arbitrary
values in T without loosing the factorization property – but
this would result in many possible choices in place of m. In
other words, having “unnecessary” elements in the S would
result in additional degrees of freedom in the choice of m,
thus violating the required uniqueness.

How to put our approach into practice
Let us now see how our approach can be used as a guidance
for ontology merging. Decisions need to be made step by
step, and we propose the following workflow. Later steps,
however, may indicate that earlier decisions need to be re-
vised, and thus to retrace to earlier points.

1. Decide on ontology representation language used. This
first step is probably the most unproblematic, since there
are standard ontology languages around, and the specific
application case will usually dictate the language. Poten-
tial candidates are e.g. F-Logic (Kifer, Lausen, & Wu
1995) and different variants of OWL (OWL 2004).

2. Determine what suitable morphisms are. This step con-
sists of describing the conditions which morphisms must
satisfy. These conditions will primarily be dictated by the
semantic interpretation of the ontology representation lan-
guage chosen earlier, and by the specific requirements of
the application case. Typical conditions could include the
following.

• The preservation of class hierarchies, i.e. functions
shall be monotonic with respect to the general class
inclusion orders on classes and/or roles.
• The preservation of types (e.g. classes, roles, annotated

objects).
• The taking into account of model-theoretic logical

properties, if featured by the underlying ontology rep-
resentation language, like satisfiability, or the preserva-
tion of specific models.
• The taking into account of proof-theoretic properties,

i.e. such relating to particular inference methods cho-
sen for reasoning with ontologies.
• The preservation of language classes, e.g. by requiring

that the merging of two OWL Lite ontologies shall not
result in an OWL ontology which is not in OWL Lite.

3. Determine what the ontology mapping is for this setting.
Usually, ontology mappings will be given by (binary) re-
lations between elements of ontologies, indicating which
elements shall be identified in the merging process. How-
ever, as the product of two ontologies may not always be
described conveniently as a set of pairs of elements – as
in the case of sets or posets –, it needs to be understood at
this stage, what the product really is, and thus what ontol-
ogy mappings are in this setting.

4. Determine what pushouts are for this setting. While the
characteristics of a pushout are fully determined by the
previous steps, it is still necessary to find a particular in-
stance of the pushout (both for the object and the embed-
ding morphisms) in terms of the ontology language. This
requires to define a possible result for arbitrary pushout
operations and to show that it satisfies the formal require-
ments of a pushout. Difficulties at this stage arise from
the fact that, like products, pushouts are not guaranteed
to exist in general. Negative results may yield effective
conditions for the existence of pushouts or even suggest a
modification of the considered theory.

5. Algorithmize how to obtain the mapping. The issue of
how to obtain suitable ontology mappings is a separate is-
sue from the one discussed here, and will usually depend
heavily on the application domain and on the ontology
representation language chosen. Machine learning tech-
niques may be used here together with linguistics-based
approaches (see e.g. (Ehrig & Sure 2004)). Fuzzy rela-
tions usually obtained by such approaches may however
have to be defuzzified at some stage, in order to obtain
a precise ontology mapping which will be used for the
merging.

6. Algorithmize how to obtain the pushout. At this stage, it is
theoretically clear what the pushout – and thus the merged
ontology – will be. Casting this insight into an algorithm
may require a considerable amount of work. The prac-
titioner may also choose at this step to forego an exact
implementation of the merging, and settle for an approxi-
mate or heuristic approach for reasons of efficiency, while
at the same time being guided by the exact merging result
as the ontology to be approximated.

Conclusions
We have argued that the problem of merging ontologies
based on a given ontology mapping can be formulated con-
veniently in the language of category theory. This lead to the
well-known definition of the categorical pushout construc-
tion, which describes ontological merging independently
from the concrete implementation that was chosen. Since
pushouts do not exist in all categories, this also yields gen-
eral guidelines for devising systems of interrelated ontolo-
gies. Methods and insights from category theory could be
used to assist in the development both of rigorous theoretical
settings for ontology merging and of conceptually sound al-
gorithms for practical implementations. Conversely, similar
considerations can also be useful to validate merging con-
structions that have been conceived exclusively on practical
grounds, since one may ask in which sense (in which cat-
egory) a given merging process produces results of general
validity.

Acknowledgements We are grateful for helpful comments
by the referees on the subject and purpose of this pa-
per. We also acknowledge support by the by the Euro-
pean Commission under contracts IST-2003-506826 SEKT
and FP6-507482 KnowledgeWeb, and by the German Fed-
eral Ministry of Education and Research (BMBF) under the
SmartWeb project. The expressed content is the view of the
authors but not necessarily the view of any of the projects as
a whole.

References
Ehrig, M., and Sure, Y. 2004. Ontology mapping – an
integrated approach. In Bussler, C.; Davis, J.; Fensel, D.;
and Studer, R., eds., Proceedings of the First European Se-
mantic Web Symposium, volume 3053 of Lecture Notes in
Computer Science, 76–91. Heraklion, Greece: Springer
Verlag.
Goguen, J. 2005. Three perspectives on information inte-
gration. In Kalfoglou, Y., and et al., eds., Semantic Inter-
operability and Integration, Dagstuhl Seminar Proceedings
04391.
Jannink, J.; Pichai, S.; Verheijen, D.; and Wiederhold, G.
1998. Encapsulation and composition of ontologies. In
Proceedings of the AAAI Workshop on AI & Information
Integration.
Kent, R. E. 2005. Semantic integration in the Information
Flow Framework. In Kalfoglou, Y., and et al., eds., Se-
mantic Interoperability and Integration, Dagstuhl Seminar
Proceedings 04391.
Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical founda-
tions of object-oriented and frame-based languages. Jour-
nal of the ACM 42.
2004. Web ontology language (OWL). www.w3.org/
2004/OWL/.
Schorlemmer, M.; Potter, S.; and Robertson, D. 2002. Au-
tomated support for composition of transformtional com-
ponents in knowledge engineering. Technical Report EDI-
INF-RR-0137, Division of Informatics, University of Ed-
inburgh.

