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Abstract 
In this paper we develop a formalization and algorithms that 
can manage the evolution of several ontologies from 
different contexts, using automated reasoning. It is in 
general difficult to maintain consistency between several 
ontologies, but we focus on developing computationally 
efficient ways of achieving this. Our formalization uses 
both the notions of several local contexts and of a sequence 
of states. We believe such a system can become a 
component in for example a distributed knowledge 
management system or some other knowledge infrastructure 
that requires semantic autonomy, i.e. lack of centralized 
semantics, but presence of a type of semantic coherence. In 
this paper version we summarize our approach. 
 

Background and motivation1  
We envision that there will be a need for different kinds of 
systems that can support several ontologies, their 
individual evolution and maintain a type of coherence 
between them.  For example, we would like to be able to 
build systems that will function as organizational 
knowledge infrastructures. The organizations using these 
will probably be decentralized and consist of separate 
divisions that have local autonomy in their knowledge-
creating processes. Here we particularly mean semantic 
autonomy (see the partial definition in figure 1). Such an 
organization should act as a unified whole, because 
otherwise entities from outside (e.g. customers) interacting 
with the organization might be disappointed that it 
contradicts itself. Creating an organizational knowledge 
infrastructure is one application area (Zurawski, 2004), but 
there should exist other applications as well that also 
requires semantic autonomy. In both cases, this is modeled 
using several ontologies that can evolve, but where a kind 
of consistency is maintained between them.  
 
                                                 
1Copyright © 2005, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 

We mention here again very briefly a partial definition 
of semantic autonomy (for a full definition and detailed 
discussion about all the requirements, see Zurawski 2004). 
Semantic autonomy requires the properties in figure 1 to 
hold. Considering these requirements it is natural that our 
system should have an explicit notion of states. In the 
mentioned paper we discussed these requirements and why 
they make sense, and have to be possessed by distributed 
knowledge management system (DKM). In this paper we 
will instead focus on how to actually develop algorithms 
that have satisfied the requirements listed here.  
This paper version is only a short summary of our 
approach. We don’t present the full formalization, but 
focus more on the motivation.  

Notions 
We will first explain the basic notions we are using in 
order to design a system that has the above-mentioned 
properties.  
 
 By multi-contextual we mean that we have defined a 
finite set of subsets that all have their unique identifiers, 

Semantic autonomy requires (among others) these 
properties to hold at the same time: 
 
1. The local contexts have the freedom to propose a 

change in their local ontology (i.e. the ontology of the 
local context). 
 

2. The system does “in some way” maintain global 
ontological consistency (although it may be the case 
that the system doesn’t have a global theory). 
 

3. The ontological language is dynamic and open-ended 
(i.e. not confined by a pre-defined set) and there is an 
oracle (knowledge source) that can answer questions 
about this language. 
 

Figure 1. In this paper we focus on developing algorithms that 
exhibit these three properties.  



individual ontologies and represent a certain cognitive 
perspective, i.e. an individual way of representing a certain 
domain. Because different contexts describe the same 
domain (but using different ontologies) it will be natural 
that it is possible to create mappings between concepts in 
the different ontologies. We use the compose-and-conquer 
type of context-sensitivity (Bouquet et al. 2001). 
By ontology we currently mean a subsumption hierarchy of 
logical concepts, that belongs to a certain context (we 
don’ t have any global ontology).  
 
 By evolution we mean that every individual ontology 
can change. We will particularly focus on the case when a 
new concept is added to an ontology together with a 
mapping within its home ontology and a mapping to 
another ontology. Because ontology evolution is so 
important, we have defined the notion of states that 
describe in which state a certain ontology is in. Every time 
an ontology changes it moves from one state to the next 
one, and all states are ordered.  

The logical representation of ontology 
mappings 

Because of limited space we don’ t define the model theory 
here, but we however summarize its characteristics. Now 
we will focus on how to formalize the ontology mappings 
themselves. The logic we are using has two fundamental 
dimensions that are used simultaneously: contexts and 
states. The basic entities that inhabit this logical space are 
concepts. Every concept belongs to a unique context, and 
there are no concepts outside the contexts. Every concept 
has to be created in a certain state and persists either 
forever or until it is deleted in some state in the future. 
Concepts can be applied to instances and then they act as 
logical predicates applied to constants. However, in the 
algorithms that we mention we will only focus on concepts 
and mappings – no instances will explicitly be present. 
Two concepts belonging to the same ontology can also be 
used be combined in these formulas: i iR Q∧  and i iR Q∨  
(and these can be nested). We have to some extent been 
inspired by intensional logic (see L. T. F. Gamut, 1991), 
although we will later focus only on the proof theory and 
rewrite rules.  

State operators and their combination  
In order to understand the ontology mapping notation we 
have understand its three main components, and the first 
component is the collection of state operators. We don’ t 
provide the formal definition here. However, informally 
speaking, Gr means that something will be true in all future 
states after r, that Fr means that something will be true at 
least once in the future after state r and Nr that something 
is true in state r. We also use a state c from which a state 
operator is evaluated (i.e. observed).  
Moreover, we have defined a way of combining state 
operators, so that two state operators can be combined into 

one. The motivation is that this is needed when we want to 
combine two ontology mappings into one (and all 
mappings contain state operators as we will see). The 
reason for introducing the variables r and c is that this 
becomes practical later for talking about when an ontology 
mapping was created and in which states it is valid.   

Quantifiers and their combination 
The second component of ontology mappings is quantifier 
symbols, and there just two of them: 1α and 2α . We don’ t 
provide the formal definitions here, but 1α  approximately 
means that we use a universal quantifier and 2α an 
existential one. The reason why we have introduced these 
symbols is that they will be used in the ontology mappings, 
and can discern the difference between saying that a 
certain concept is true for all instances or for at least one 
instance. 

Boolean functions and their combination 
This is the third component of ontology mappings. We use 
the standard Boolean functions of two variables and they 
are represented in 2-DNF form. Two such Boolean 
functions can be combined by conjunction into a new 
Boolean function, using standard logical operations. 

The ontology mapping notation 
Here we show a part of the notation that is used for 
describing ontology mappings.  The reason why we choose 
this kind of formalization is it that it seems to be good 
when doing efficient and automated proofs about ontology 
mappings.  Let us call every mapping between two 
concepts mi, where i is its unique identifier.  A mapping mi 
that holds between the concept C1 in ontology j and the 
concept C2 in the ontology k can always be expressed 
using on of the two following forms: 
 

1 2 1 2( , ) ( ( ( , )))i j k j km C C op f C Cα= or  

1 2 1 2 1 2( , ) ( ( ( , ))) ( ( ( , )))i j k j k j km C C op f C C op f C Cα α′ ′ ′= ∧  

 
where  

{ }, , ,  , ,a b cop N F G a b c S∈ ∈ (the set of states) 

{ }1 2( ) ,  and α λ α α∈   

{ }1 2 1 2 1 2 1 2 1 2( , ) , , ,j kf C C e e e e e e e e∈ ∧ ∧ ¬ ¬ ∧ ¬ ∧ ¬

where 1 1 2 2( ) and ( )j j k ke C x e C y= =  

(the notation of the Boolean function is the set of the 
conjunctions that a 2-DNF form would contain) 

Combining ontology mappings by using the three 
kinds of rewrite or combination rules 
Using the three kinds of rewrite or combination rules, we 
can now use them in a sequence and use them for 



combining any two ontology mappings into one – that is 
their purpose. The first transformation is the application of 
rewrite rules for state operators in a way that combines two 
state operators into one. The second transformation is the 
application of rewrite rules for expressions with quantifiers 
in a way two combines to operators into one. The third 
transformation is the application of combination of 
Boolean functions in a way that combines two such 
functions into one.  

Examples of mappings 
The language mentioned above allows creating a huge 
variety of mappings. We can for example imitate the five 
proposed mapping types by Giunchglia (see for example 
Bouquet 2003) and restate them in this new concise 
language. Both formalisms use the notion of contexts, but 
the difference is that our definitions utilize the notion of 
states as well. The state when a mapping was created is 
denoted by r. Here are some examples: 
 
CORRESPONDENCE – COR(C1j, C2k) 

1 1 2 1 2 1 1 2 1 2{ , } { , }r rN e e e e G e e e eα α∧ ¬ ∧ ¬ ∧ ∧ ¬ ∧ ¬
 
IS (C1j, C2k) 

1 1 2 1 2 1 2

1 1 2 1 2 1 2

{ , , }

{ , , }
r

r

N e e e e e e

G e e e e e e

α

α

∧ ¬ ∧ ¬ ¬ ∧ ∧

∧ ¬ ∧ ¬ ¬ ∧
 

 
DISJOINT (C1j, C2k) 

1 1 2 1 2 1 2

1 1 2 1 2 1 2

{ , , }

{ , , }
r

r

N e e e e e e

G e e e e e e

α

α

¬ ∧ ¬ ∧ ¬ ∧ ¬ ∧

¬ ∧ ¬ ∧ ¬ ∧ ¬
 

 
COMPATIBLE (C1j, C2k) 

2 1 2{ }rF e eα ∧  
 
(We should stress that for example 
 1 2 1 2 1 2{ , , }e e e e e e∧ ¬ ∧ ¬ ¬ ∧  is equivalent to  

to 1 2e e→ , i.e. it is a DNF-form ) 
 
    For example, the relationship Compatible means “There 
is at least one future state after r where there is at least a 
pair of instances (one from ontology j and one from 
ontology k) where the concept C1j is true (when applied to 
its instance) at the same time as the concept C2k is true 
(when applied to its instance)”. 

Algorithms for verifying consistency between 
ontology mappings 

The problem we are trying to solve can be described as the 
following proof task. Given a set of existing ontology 
mappings 1( , )ax bym C C , 2 ( , )ax bym C C … ( , )n ax bym C C , 

how can we prove if it is consistent the additional mapping 
1( , )n ax bym C C+ or not? The variables x and y refer to the 

ontologies of the concepts and a and b are unique concept 
identities (note that all these variables can be different for 
every mapping).  
To be able to address this proof task we need to have 
operators that let us express the following things:  

x ym m∧ , x ym m� and xm¬ (and formulas that this can 

generate). Please note that this language is different from 
the one that was defined in the beginning (for talking about 
concepts). Now the basic entity is a mapping. 
 
 Then we need two algorithms (called A and B) that will 
build proof trees using refutation proofs and breath-first 
search (for proofs), for solving the proof task mentioned. 
Because of limited space we don’ t write them down here in 
full detail, but the algorithms returns an answer (yes/no) 
each to the following questions: 
 
Algorithm A - “Is mapping G inconsistent with the current 
mappings?” Output: yes/no 
 
Algorithm B - ”Is mapping G valid, because it can be 
inferred from existing mappings?” Output: yes/no 
 
 This means that in both cases G is the newly proposed 
mapping, and there is a set of existing mappings (i.e. these 
are the inputs to algorithms). The algorithms are used in 
the following way. A newly proposed ontology mapping G 
is given and first we run algorithm A. If it answers “yes”, 
then we know it is inconsistent with the existing ones. If it 
answers “no” we run algorithm B. If that algorithm 
answers “yes” then we know that the newly proposed is 
valid because it can be inferred from existing mappings 
(i.e. redundant in some way), and it answers “no” then the 
proposed mappings is consistent with the existing ones, but 
can’ t be inferred from them. Therefore, by using these two 
algorithms we have covered all three possible cases. 
We don’ t provide here a proof of correctness and 
completeness. However, we just want to mention that our 
proof search procedure for refutation proofs using a 
breadth-first search, and the language used are horn 
clauses (since we use conjunction, implication and 
negation). So if the procedure finds a proof, it is valid, and 
if there is a proof, the procedure will find the shortest one.  
 

Applying the algorithms to ontology evolution 
Once both algorithms are in place, it is actually rather 
straightforward to use them for ontology evolution. An 
ontology transformation has to be translated to “one or 
more ontology mappings that are proposed to be added”. 
For example, the addition of a new concept can be seen as 
inventing a new concept in an ontology and adding an 
internal mapping (within its home ontology) and a 
mapping to an external ontology. Then we run algorithms 



A and B for both these proposed mappings, and only if 
there is no created inconsistency detected in neither of the 
cases, the evolutionary step is accepted and the ontology 
changes to a new state. Otherwise, the evolutionary step 
would be forbidden, and the ontology would remain 
unchanged. 

Related research 
Background to multi-context logic is give by (Giunchiglia 
1993) and multiple languages and bridge rules are 
discussed. A description and motivation of cognitive 
context is given by (Giunchiglia et al. 1997) and the 
notions of locality and compatibility are discussed. In the 
interesting paper by (McGuiness et al. 2004) automated 
reasoning using SAT-solvers for class hierarchies is 
discussed. That is a separate case from the one we are 
investigating, because WordNet is not an ontology in the 
sense that there is a strict subsumption relationship 
between all connected terms. The paper by (Serafini et al., 
2003) also investigates semantic matching using SAT and 
class hierarchies. Some of the inspiration how to design 
and formalize our logical representation comes from 
(Gamut, 1991) that describes intensional logic. A variety 
of different ontology-change operations are classified and 
described by (Noy & Klein, 2004). Much of the motivation 
why we need a system that can evolve multiple ontologies 
is given in (Zurawski 2004). 

Conclusions 
It will be important for many applications to be able to 
support many ontologies, that all can evolve at the same 
time as consistency is maintained between them.  We have 
proposed an approach that uses a logical formalization that 
consists both of contexts and of states. Every local context 
has its own individual ontology, and it can evolve – this 
moves it into the next state. We have already implemented 
a part of the system (in Java) and when the whole system 
will be implemented we will evaluate the scalability by 
running some experiments. Our approach is an alternative 
to the model theoretical approach where SAT-solvers are 
used. Many of the systems described in the literature 
usually only allow for a few types of ontology mappings 
whereas our ontology mapping language is relatively rich. 
We have to investigate how this approach compares to 
other approaches (such as SAT-solving) and investigate 
how well it scales in cases when there are extensive 
amounts of ontology mappings that have to be taken into 
account. The problem of maintaining consistency between 
multiple evolving ontologies might seem to be intractable, 
but by adapting the reasoner to the unique properties of the 
problem, we might make the problem tractable (but 
experimental evaluation is needed as well).  Finally, we 
believe that these methods could become one of the 
components in the design of an organizational distributed 
knowledge management system or some other knowledge 

infrastructure that will become valuable in the upcoming 
era of the knowledge society.  
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