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Chapter 1

Introduction

The idea that the order of a system can be increased by its dynamics has a
long history. One of the earliest statements of this idea was by the philoso-
pher Descartes, in the fifth part of his Discourse on Method, where he
presents it hypothetically. He further elaborated on the idea in a book
called Le Monde that was never published.

The ancient anatomists believed that designing intelligence was unneces-
sary, because given enough time and space, organization come certainly out,
although there is not a specific tendence for this to happen. What Descartes
introduced was the idea that the ordinary laws of nature tend to produce
organization.

Starting from 1700 the scientific community tried to understand the
“universal laws of form” in order to explain the observed shapes of living
organisms but nothig concrete happened. In the beginnin of the 20th century
D’Arcy Wentworth Thompson and other researchers resumed those ideas
concluding that there exists a universal law governing the growth and the
form of biological systems.

The term “self-organizing” was introduced in 1947 by W. Ross Ashby.
It was used by Heinz von Foerster, Gordon Pask, Stafford Beer and Norbert
Wiener in the second edition of their “Cybernetics: Control and Commu-
nication in the Animal and the Machine”. Self-organization as a word and
concept was used by those scientists associated with general systems theory
in the 1960s, but did not become commonplace in the scientific literature un-
til its adoption by physicists and researchers in the field of complex systems
in 1970s and 1980s.

1.1 Motivation

The software industry is facing a hard-to-solve problem: computing systems
are getting more and more complex due to the integration and the increasing
presence of the network in the enterprises. This makes ordinary administra-



tion more complex too and seems to be a limiting factor in the economics
development.

This trouble motivates the scientific comunity to propose software sys-
tems which self-organize. Unfortunately, a proper classification of them is
missing and in many cases the self-organizing property is not clearly proved.

In our point of view this is undesirable because it adds useless confusion
to the field.

For those reasons we decided to present a new method for the evaluation
of self-organizing systems. The method is based on the standard perfor-
mance analysis and it has been tested on a real self-organizing system.

1.2 Contribution

The aim of this thesis is twofold: present a rational procedure to evaluate
self-organizing systems and proove that the Implicit Culture framework can
be used to build them. The thesis is divided in four parts:

In the first chapter we focus on self-organizing systems. We give some op-
erative definitions to distinguish self-organizing software from others. More-
over we present some principles and suggestions to follow in order to build
an effective SOS are shown in the final part of the chapter.

The second chapter is on the evauation of a general self-organizing sys-
tem. We take a simple case study and we extend some definitions from
standard performance evaluation to it.

In the third chapter we survey the Implict Culture framework and its
components, then we motivate the choice of Implicit Culture for implement-
ing SOSs.

The fourth chapter presents a real self-organizing software supported by
Implicit Culture, the description of the agents acting in it, their behaviour,
the protocols of interaction and the class diagrams. In the final section we
prove that our system is self-organizing, we carry out the performance anal-
isys and we show how our method for evaluation can be used for organization
detection.



Introduzione

L’idea che il grado di organizzazione di un sistema pud essere incrementato
dai suoi componenti ha una lunga storia. Una delle prime dichiarazioni di
quest’idea fu del filosofo Descartes, nella quinta parte del suo Discorso sul
Metodo, dove I’ha presentata in maniera ipotetica. Egli ha successivamente
rielaborato 'idea in un libro chiamato Le Monde che non fii mai pubblicato.

Nell’antichitd gli anatomisti credevano che progettare l'intelligenza non
fosse necessario, perché data una quantitd opportuna di tempo e spazio, una
sorta di organizzazione emerge sicuramente, anche se non esiste nessuna
particolare tendenza che questo accada. Quello che Descartes introdusse
fa I'idea che le ordinarie leggi della natura hanno la tendenza a produrre
organizzazione.

Dal 1700 in poi la comunitd scientifica ha provato a capire la “legge
universale della forma” con I'obiettivo di spiegare la forma degli organismi,
ma nessun significativo passso in avanti fi compiuto. All’inizio del ventesimo
secolo D’Arcy Wentworth Thompson ed altri ricercatori hanno ripreso queste
idee ed hanno scoperto che esiste una legge universale che determina la forma
e lo sviluppo di tutti gli esseri viventi.

Il termine “auto organizzante” e stato introdotto nel 1947 da W. Ross
Ashby. Successivamente ¢ stato utilizzato da Heinz von Foerster, Gordon
Pask, Stafford Beer e Norbert Wiener nella seconda edizione di “Cybernet-
ics: Control and Communication in the Animal and the Machine”. Auto
organizzazione come parola e concetto € stato usato da questi scienziati in
associazione con la teoria dei sistemi negli anni sessanta, ma non divenne
popolare nella letteratura scientifica finché non fu adottato da fisici e da
ricercatori nell’ambito dei sistemi complesi negli anni settanta e ottanta.

Motivazioni

L’industria del software si std confrontando con un problema di difficile
soluzione: le applicazioni stanno diventando sempre pili complesse a causa
sia dell’integrazione che del bisogno di scambio di informazioni attraverso
la rete. Questo rende anche le procedure di ordinaria amministrazione piu
complesse da eseguire e sembra essere un fattore di limitazione nello sviluppo



economico.

La presenza di questo problema ha motivato la comunité scientifica a
proporre sistemi che si auto organizzano. Sfortunatamente peré una loro
classificazione non esiste ed in molti casi la proprietd auto organizzazione
non ¢ sufficentemente provata.

Nel nostro punto di vista questa situazione porta inutile confusione nel
settore e pud esere migliorata.

Per questi motivi abbiamo deciso di presentare un nuovo metodo per
la valutazione di sitemei auto organizzanti, basato sulla valutazione delle
performance dei sistemi tradizionali, e lo abbiamo successivamente testato
su un sistema reale.

Contributo

Lo scopo di questa tesi ¢ duplice: presentare una procedura ragionevole per
valuare sistemi auto organizzanti e provare che il famework Cultura Implicita
pud essere usato per la loro costruzione. La tesi ¢ divisa in quattro capitoli:

Nel primo abbiamo focalizziamo sui sistemi auto organizzanti. Diamo
alcune definizione operative che ci permettono di distinguere i software auto
organizzanti dagli altri. Inoltre presentiamo alcuni principi e suggerimenti
da seguire durante la costruzione di un SOS, nella parte finale del capitolo.

Il secondo capitolo e sulla valuatazione di un sistema auto organizzante in
generale. Prendiamo un semplice caso di studio ed estendiamo le definizioni
prese dall’anallisi tradizionale delle performance .

Nel terzo capitolo riassumiamo il famework Cultura Implicita con una
breve descrizione dei suoi componeti e delle loro funzioni. Successivamente
motiviamo la scelta della Cultura Implicita per implementare un sistema
auto organizzante.

Nel quarto capitolo descriviamo il software che abbiamo costruito uti-
lizzando il supporto alla Cultura Implicita. Descriviamo gli agenti, i loro
comportamenti, i protocolli di interazione e i diagrammi delle classi. Nelle
ultime sezioni dimostriamo che il nostro sistema & auto organizzante e suc-
cessivamante ne analizziamo le prestazioni.



Chapter 2
Self-organizing systems

There are many definitions of self-organizing systems, and we use them in
many differnt contexts: cybernetics, information theory, thermodynamics.
In agreement with [7], we can split the problem of defining a self-organizing
system in three:

e how to define self,
e how to define an organization,
e how to define a system.

Self is a concept that comes from psychology, it is the set of an entity’s
features perceived as continue in time, in relation to the external world. An
organization is a set of entities and resources that operate in an ordered and
functional way. The concept of system is similar to the previous one, but
more emphasis is given to the belonging of a single group of entities and the
interrelations between elements. We can apply this definition to software
systems to distinguish, in an effective and uniform way, the self-organizing
systems from the others, as presented in [8].

2.1 Operative definitions

Definition 1 (Software system) A software system is defined as a set of
interacting and well-defined components.

Definition 2 (Adaptive software system)
Let: S a system,

W a criterion of acceptability,

{I,} a family of input functions,

r a selection function,

P(v) a performance funtion.



A software system is adaptive iff S : T'— W, so in accordance with [9],
we can describe the following model for adaptivity (Figure 2.1).

A subset of the input functions is selected by I', and the system S is under
the influence of it. The behaviour of the whole system must be observable
and measurable, and indicates the effect produced by the given input. Now
we evaluate the behaviour using the performance function, and using the
criterion W we can accept or reject the adaptivity of the system for the
given input.

input

behaviour

Figure 2.1: Zadeh’s model for adaptivity

Definition 3 (Structure) A structure is the property of a system by which
it constrains the degrees of freedom of its components.

Proving that a system is structured is a hard task if we use this definition
alone, because it is too abstract. The concept of entropy give us a great help,
in fact entropy is a measure of the degree of disorder in a general system.
If a system is free to assume any state of the state space the entropy is
maximal, while if there are some constraints that limit the configurations to
assume, the entropy decreases. A definition of entropy is given by Shannon
in [10].

Definition 4 (Entropy) The information entropy is given by

H(P)=-K Z P(s) - logP(s)
seS

with: K  a constant, to decide the measurement unit,
S the state space
S a state of the state space
P(s) the probability, according to the distribution P for the system
to be in the state s.

The entropy is strictly related to the definition of the state space, thus its
definition is a critical task for detecting structures and how varies in time.



Figure 2.2 represent an unstructured ant colony on the left and a struc-
tured one on the right. In this case the state space is given by the cartesian
product of the state space of each ant. The state space of an ant is given by
its position and the orientation of its head. In the right part of the figure we
can note that the ants are located near the segment H F and the orientation
of heads is towards H or towards F. Obviously the entropy is decreased.
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Figure 2.2: An ant colony

Definition 5 (Central controller) A central controller for the software
system S is a subset C' of the components of S able to control the execution
of the components in S\ C.

If a system has a group of components like C, the system looses the ability
of self-organizing: it rather consists, in two subsystem, where one organize
the other. In order to proove that a paricular system lacks of a central
controller, one must show that it is impossible to decompse it destructively.
The decomposition theorem helps a lot in this task.

Theorem 1 (Decomposition) If a software system S has a central con-
troller, then S can be decomposed in two subsystems C and S = S\ C, such
that neither C nor S’ can perform the original function of the whole system

S.
Note that the reverse implication is not always true.
Definition 6 (Single point of failure) A system has a single point of

failure if a problem in a single component is sufficent to inabilitate the system
to accomplish tasks.



Definition 7 (Self-organizing software) A Self-organizing software is a
software system satisfying the following:

e it is adaptive, according to the Zadeh’s model for adaptivity,
e its entropy is not maximal and changes in time,

e it does not have a single point of failure.

2.2 Design principles

In this section we present a set of guidelines to be taken into account when
planning a new self-organizing system. This collection, given in [11], comes
from the analysis of natural systems where the emergent property is easy to
detect, for example ant or bee colonies.

2.2.1 On agent population

e If actors are limited in the actions, they can be simple and functional
at the same time. A distributed environment induce this limitation
enhancing the localization of each agent and increasing the scalability
of the system.

e The developer has to implement an automatic procedure to remove ob-
solete informations. This allows the environment to be more dynamic
and prevent actors from worrying about information cleaning.

e The developer has to prefer many small agents instead few large ones.
If angents are limited in number, they have to cover more problem
space. On the contrary if there are many agents the localization of
interaction is better supported.

e The developer has to map components to agents and not functions to
agents. This allows to keep an agent responsible only for a small part
of the problem. Conversely, each agent need much more informations
to produce output, and trying to include special cases its complexity
increases.

2.2.2 On agent interactions

e Do not think in term of transition between discrete and autonomous
state, but in term of information flows. To fulfill the requirement of
multiple interacions among the agents, it is also necessary to include
closed loops of informations.



e The mechanism of moving information from an agent to others needs
some constraints to prevent from redundancy. It can be done in two
ways: implementing positive and negative feedback loops, or termi-
nating every agent after a specific time period. This second option is
called programmed agent death.

e Randomize the agents’ behaviour. Sometimes the localization of agents
is sufficient to act in different way, but a general rule is to incorporate
stochastic elements in the agent’s decision tree. In this way identical
code will diversify its run, so the decision process becomes a random
variable. It follows a probability distribution and changes in time re-
lated to experience.

2.2.3 On supporting the emergence of desired functions

e Let each agent support multiple functions, and provide a mechanism
for switching among them. In this way an agent can contribute to the
solution of a wider part of the problem.

e Let each part of the problem to be solved, be composed of many inter-
connected agents. This avoids single point of failure and keeps agents
simpler.

e Give agents the possibility to measure their level of task completion, to
receive feedback on their duties. One of the major challenges is finding
local interactions strictly correlated with the general behaviour of the
system. Finding such interactions allows to make intelligent decisions
based on a subset of the state space.

e Provide an automatic mechanism for selecting among alternative be-
haviours. In this way agents can modify their behaviour or change the
composition of the population.

2.3 How to guarantee a high task completion rate

To be sure that a self-organizing sistem performs the right tasks, a control
mechanism is needed. This control should be distributed within the system
in agreement with the self-organizing framework.

The control mechanism can be seen as a mediator which on the one hand
guarantees the right interation of the element of the system, on the other
hand helps producing the desired performance. However a strict control over
the system is not possible without loosing the self-organizing property.

In order to build a control, the designer have to distinguish between
friction elements and elements increasing the synergy. The former should



be minimized while the latter should be maximized. The performance of a
general mediator can be measured using the following equation:

Usys = f(0-150-250-15 «e oy, Op, WO, W1, W2, ... >wn)

with: o4y the satisfaction of the whole system,
f f:[0,1"uUR! —0,1],
o;  the individual statisfaction of agent ¢,
wg a constant value,
w;  the weight of agent 4,
n  number of agents in the system.

If the system is homogeneous f is the weighted sum of the individual satis-
faction, it can be any function for heterogeneus system.

Another property of a control mechanism is the adaptivity. Since the
system changes in time, the control mechanism must deal with those changes
without external input.

The following mechanisms can be applied when an agent A is negatively
affected by another agent B [12].

Tolerance A can tolerate B by modifying itself, for example move to an-
other location, find other resources, or modify its behaviour. After an
application of the tolerance method op remains unchanged, the friction
between A and B decrease and o, increases.

Courtesy It is the opposite of tolerance. Agent B have to modify itself in
order to not reduce o,.

Compromise It is a combination of tolerance and curtesy. Here both A and
B modify their behaviour in order to reduce friction. The application
of the compromise method is common when actors are similar.

Imposition A kind of courtesy forced by the system. The controller can
apply imposition by limiting B actions or imposing internal changes.

Eradication A special case of imposition: the controller kill the agent B.

Apoptosis The suicide of B, without input by the controller.

2.3.1 Metods for increasing synergy

The methods proposed in this section are useful to increase the satisfaction
of the system oy, reducing some individual satisfactions.

Cooperation It is similar to courtesy but the target is different. Here two
or more agent change for the advantage of the system.

10



Individualism An actor can try to rise its satisfaction if it increases the
satisfaction of the system. Conversely a controller must deny that
increasing same individual satisfaction will decrease ogy;.

Altruism An altriustic agent A reduces its satisfaction to increase ogys.
The role of the controller here is to guarantee that the relative incrase
in o4y, if greater than the decrease in o,.

Exploitation The controller decrease an agent satisfaction to increase o gys.

2.4 Organization detection

It is part of the common experience that social networks form communities
of strictly correlated entities. This structure is called modular (Figure 2.3).
Moreover it is widely belived that the modular structure of a networks affect
the functionality of the network itself [38].

Figure 2.3: An example of modular structure

The mechanisms by which the modular structure naturally emerges in
complex systems have not be discovered so far, but some results are known.
Recently Solé and Ferndndez have pointed out that networks without any
input from extern are able to build a modular network [39]. The need of
finding algorithms to identify modules inside a network is high and some
new algorithms have been presented recently. Those algorithms are based

11



on many different ideas. In table 2.1 we present a list of them. The features
and how the details on each algorithm works are presented after the table.

Algorithm’s authors Reference | Time Complexity | Year
Eckmann & Moses [16] O(m - k%) 2002
Girvan & Newman [22] O(n?m) 2002
Bagrow & Bollt [27] O(n?) 2004
Capocci et al. [28] O(n?) 2004
Donetti & Mufioz [25] [26] O(n?) 2004
Fortunato et al. [23] O(n*) 2004
Guimera et al. [20] param. depend. | 2004
Latapy & Pons [17] O(n?) 2004
Newman [19] O(n - log®n) 2004
Newman & Girvan [18] O(m?n) 2004
Radicchi et al. [24] O(n?) 2004
Reichardt & Bornholdt [31] param. depend. | 2004
Wu & Huberman [29] O(n +m) 2004
Zhou & Lipowsky [33] O(n?) 2004
Duch & Arenas [21] O(n®logn) 2005
Palla et al. [30] O(exp(n)) 2005

Table 2.1: Algorithms for finding modules inside a social network: n number
of nodes, m number of links, k average degree.

2.4.1 Eckmann & Moses

This algorithm was devaloped to find the meta-informations localized in the
connectivity of the World Wide Web. Meta-informations are those based
only on the structure of the graph of connections. This algorithm is the
composition of four well-known concepts:

e clustering,
e co-links,
e triangles,
e curvature.

In detail the procedure is the following:

1. Group in a sigle node the pages connected to a home page.
In this way all the pages of a site are gathered together, the size of the graph
is reduced, and proximity links are erased.

2. Find co-links between nodes. Two nodes A, B are co-linked only
if A is linked to B and viceversa. The presence of such a relation implies

12



mutual recognition.

3. Find triangles. A trinagle is a set of three nodes co-linked one to
each other. Since this relation is extremely rare in random network with
bounded cardinality, is a good signal of cooperative content.

4. Quantify the nodes’ local curvature parts of one triangle
or more. The local curvature is defined as

2,

= (Vp — 1) - vy

with: ¢,  number of triangles containing n,
vp  is the number of links leaving the node.

2.4.2 Girvan & Newman

This algorithm instead of finding and measuring the most central nodes by
adding them progressively, starts from the whole graph and removes the less
central nodes, one to one. The key idea is:

“If a network is organized in communities, all shortest paths between the
communities connect only few edges”.
Moreover removing those edges, we are able to separate each group rom the
other. The details of the procedure are the following:
1. Calculate the betweenness for all edges in the network.
2. Remove the edge with the highest betweenness.
3. Recalculate the betweenness for all edges affected by the removal.
4. Repeat from step 2 until no edges remain.

2.4.3 Latapy & Pons

The approach of Latapy and Pons follow the well documented intuition that
small lenght random walks in a graph tend to get trapped inside the densely
connected parts of it. The innovation is the implementation of a measure-
ment of the structural similarity between nodes based on the random path
created. The procedure in detail is the following:

1. Start with a partition where each vertex is alone.

2. Compute the distance between all adjacent vertices.

3. Choose two comunities, according to a criterion based on the dis-
tance between comunities.

4. Merge this two comunities and create a new partition.

5. Update the distance between communities.

6. Repeat 3-5 for n-1 step.

To evaluate the quality of the partition found, the ratio 7 is used.

Aoy opqp1 — oy

Nk =
Aog_1 o) —0p1

13



with: k  a step in the process of clustering,
o) the mean of the squared distances between each vertex and its
community. See [17] for more details.

2.4.4 Duch & Arenas

This algorithm is a divisive one, if fact it starts with the whole graph and
progressively divides it in smaller and densely connected subgraph. It uses
a heuristic search to find the optimal modularity value Q. According to [18]
the definition of @ is the following;:

Q= Z(err - af)

with: r a comunity,
er the fraction of links connecting two nodes inside r,
a, the fraction of links that have one or both vertices inside r.

In detail the heuristic proposed evolves as follows:

1. Split the nodes in two random partitions. The subdivision cre-
ates two comunities, understood as connected components.

2. The system itself moves some node from a partition to the
other, increasing ). Every movement causes the recalculation of the
fitness measure.

3. Repeat 2 until the maximal () is reached. Then deletes all links
between the partitions and proceeds recursevely with each partition.

4. The algorithm ends when () cannot be improved any more.

2.4.5 Palla et al.

The main advantage of this algorithm is that it allows to find overlapping
communities. Two communities overlap if some nodes belong to two or
more communities at the same time, and this characteristic is present in
many actual networks.

The algorithm finds the groups of nodes fully interconnected (cliques)
in the graph of relations, but this restriction can also be relaxed allowing
groups not fully connected.

2.5 Examples of self-organizing systems

2.5.1 Ants

Those animals are interesting from a computer science’ point of view because
they are social insects and form highly organized colonies of millions of

14
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Figure 2.4: An example of overlapping comunities

individuals. The interaction between organisms is so high that sometimes a
colony is described as a unique superorganism.

Communication

The main channel of comunication is through pheromones. They are che-
mical substances left on the ground during the transit. The concentration
of those pheromones decreases in time, and needs an uninterrupted supply
of new material to maintain or increase its level. For example when an ant
finds a new source of food, she will leave pheromones on her way to the
nest. After a short period other ants will follow the pheromones trail and
reinforce it returning home. When the source is depleted, the pheromones
trail is no longer reinforced and decrease its intensity. In this way dissipation
of pheromones acts as a cleaner for information out of date.

Behaviour

Ants are the only group of animals except primates and some other mam-
mals which interactive teaching behavior has been observed so far [15]. The
process of learning is called tandem running. In a queue, each entity tend

15



to maintain the same distance between the previous and the following one,
leading the swarm to the source of food.

Cooperation and competition

The aggressiveness and propension to expansion vary in each specie. Some
are known for attacking and taking over the colonies of others species, while
others attack colonies to steal eggs or larvae. Amazon Ants depends on
captured worker ants to find and transport food to the nest. Some species
engage huge battles between colonies in order to expand their territory and
control the food supply. Those battles often cause thousands of deads and
they performed a central role in the development of ants’ cleverness.

2.5.2 Pollination

It is an important biological process, where the male gametes present in a
flower are transferred to another flower which contains the female gametes.
In every process, pollination is the result of the interation of two kind of
actors [13].

Flower can be a source of pollen or a receiver. In a source a variable
quantity of tranferable material is present, while a receiver can collect
this material.

Vector is responsible fpr the movement of pollen. In nature there are many
situation where the pollination is done by insects, and only a few cases
where the random pollination of the environment is used. In some
cases the dependency between the plant and the pollinator is so high
that each of them depend from the other for surviving.

The central problem of the pollination process is how to attract the polli-
nator to the right flowers. In nature it is done using combination of colors
and various fragrances. Every kind of vector, in fact, is attracted by a spe-
cific combination of the two. Moreover insects have generaly limited visual
capabilities and strong smell so the effect of the two actractors changes in
space.

In the pollination process a method for rewarding vectors is also present.
Flowers give nectar and other substances to vectors as a result of its visit,
and vectors visit only similar flowers during a trip. In this way the possibility
of pollination is high and the reward collected is high too.

This system, autonomously evolved in milions of years, is characterized
by six useful properties.

Self-configuration. When adding new flowers or vectors, the system is
able to configure itself without human activity.
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Self-optimization. Faster vectors will collect more rewards, and flowers
providing more food will be visited more.

Self-healing. If some flowers acts no more, the system is able to cope with
this change, the vectors simply search for new flowers to visit.

Self-protection. The reward is only provided to vectors carrying pollen,
there is no way to be rewarded without carrying it.

Self-adaptation. If a plant is not able to attract vectors it is going to die
over a long run.

Self-organization. The system presents all three elements of self-organizing
systems: it is adaptive, it has not a single point of failure, and its en-
tropy changes in time.

2.5.3 Modular robots

In systems composed of modular robots, each of them is a set of module
able to reconfigure and assembly itself [14]. One of the first applications
of modular robots was building a machine to operate in autonomous way
inside a nuclear plant. Since robots can modify their structure, the domain
of the application is wide. The intelligence of a robot is decentralized and
located in each module.

Some variations of the system were proposed in the past years.

Manually assembled vs. self reconfigurable. In the first case the ro-
bots need external intput to modify their structure, in the second they
are more skilled and each set of modules is able to assemble itself.

Homogeneity vs. heterogeneity. Each module must be able to cope with
a subset of tasks called basic tasks (first case), on the contrary a mod-
ule is specialized in only one of them.

The rules to follow for making modular robots are quite simple.

e The artificial intelligence is the result of the linear combination of
many elementary behaviours.

e Each intelligence is evaluated according to progress and results.

e Each elementary behaviour has at least one capability not performed
by any combination of other elementary behaviours.

The set of all elementary behaviours of a modular robots system is called
a substrate. A possible substrate is presented in table 2.2.
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Behaviour

‘ Goal

Safe Wandering

Following
Dispersion

Aggregation
Homing

Connecting
Disconnecting

The ability of moving without colliding with ob-
stacles

The ability of retracing a path of another module
The ability of maintaining a minimum distance
with another module

The ability of maintaining a maximum distance
with another module

The ability of finding a particular location in the
state space

The ability of interconnecting one to each other
The ability to terminate the connection with a
previously connected module

Table 2.2: An example of substrate
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Chapter 3

The evaluation of a
self-organizing system

3.1 Our procedure for the evaluation

We can model a self-organizing system at least in two ways:

e the first focusing on the internal mechanisms of the software, it is
useful to control how decisions are made;

e the second representing the whole system as a function and analyzing
its inputs and outputs.

If we adopt a white box view (Figure 3.1), we are interested in knowing if
the internal organization of our software changes in time, and in agreement
with the definition, if it has a single point of failure.

If we adopt a black box view, our system is depicted as in figure 3.2 and
can be evaluated as a traditional software system.

Following four aspects are of our interest:

Task completion: the probability that a user will receive the required ser-
vice at the desired quality.

Availability: the fraction of time in which the system is able to receive
and process inputs.

Survivability: is measured when the system operates in unusual condi-
tions, is high if it responds well.

System performance: measures the utilizzazion of each resource and the
throughput of the system.

We propose now a two-phases procedure which allows us to build and
evaluate a general self-organizing system. This procedure is based on the
tautology: “any system tends to its more probable state”.
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Figure 3.1: A white box view of a self-organizing software, if the connection
is stronger, the connecting line between two agents is thicker.

Input Output

Figure 3.2: A black box view of a self-organizing software.

Requirements of the procedure A software system and its requisites,
the knowledge of the domain of the application, and a list of cases
that can generate problems in the software.

Phase 1: Here the system processes a huge amount of inputs, with the
objective of building up the internal structure. This phase takes a
variable time to be performed: it begins with the first input and ter-
minates when a reasonable stability in the organizzation is reached,
and the task completion rate is acceptable. Our goal is building up an
efficent software able to cope our inputs. In this phase the following
indexes are of our interest:

e the organization stability,
e the task completion rate,
e the availability of the system,

e the system performance.
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Phase 2: We use now the list of cases that will probably generate problems
at runtime. This phase ends when a reasonable stability in the orga-
nizzation is reached. An useful method to follow, comes from a review
of a widely-used one. The original procedure is taken from [35], and
it is used for finding errors in a general application.

1. Take the probable problems and group similar ones.

2. For each group of probable problems F; select the
problem p; where the highest probability to fail is
expected.

3. Set a list of requirements R; for each p;,using the

requisites of the software.

Set two naturals m; < n; for each p;.

. Run each p; exactly n; times, in random order.

Store the outputs in chronological order.

Control for each i: if the last m; outputs for p;

are similar and satisfy the requisites R; then we

claim that the software is able to cope with all

kinds of problems in F;, otherwise not.

~N O O

In this phase we are interested only in the survivability of the system.

3.2 A Simple case study: traffic lights

Steering vehicles in a city is a very complex task, because to improve the
efficency there is the need of coordination of many actors. The traditional
approach for this kind of problem is to maximize the efficency for a par-
ticular distribution of traffic, hoping that the model will not work so bad
if the distribution changes. The main limitation of this approach is that
traffic canges distrubution constantly. For those reasons many studies have
proposed self-organizing systems that handle this problem as an adaptation
problem.

Some rules have been introduced to limit the behaviour of the vehicles,
for example the side of the street where driving is possible, the rules for
precedence, the signals, and trafic lights to regulate the crossroads.

Unfortunately, if the car density is too high, there is no solution for
the traffic congestion problem. Thus our goal becomes finding solution to
improve the traffic management.

In the past, to solve those problems, the consuetude was to find the
most appropriate timing in traffic lights, but this method does not count on
the current state of the traffic, and is unable to handle abnormal situations
in a suitable way. In real life abnormal situations are quite frequent, for
example queues near a stadium before and after an important match, queues
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in the morning to reach the workplace or queues on Sunday near commercial
facilities.

To build the basis for a self-organizing system that tries to solve traffic
congestions is quite easy because it is simply composed of two classes of
actors.

Car: its goal is to travel from a place to another minimizing the time spendt.
Traffic light: its goal is to avoid long queues in the crossroads.
Our model for traffic is based on the following assumptions.

e The number of streets and the position of traffic lights is constant.

e The total number of vehicles in the city is constant but their localiza-
tion varies in time.

e Collisions can happen.

To proceed with the two-phases evaluation we have to provide the require-
ments of the application and a list of possible problems where we can test
our system. Our requirements are basically two.

e In general we want to ensure an acceptable speed during movement.

e Our system must respond well in abnormal conditions, since they are
frequent in real traffic.

We have selected the following possible problems:
e many casualities happen in the same time,
e a specific part of the city is crowded while the others are empty,
e many cars have to reach the same place,

e for a while a part of a street is closed.

3.3 Stability in similar tasks

Finding stability in a self-organizing system means that similar tasks given
to the system are performed using similar actions. As for every organized
system, the evolution in time of the agents’ behaviour and their actions
allows to point out some mechanisms of action-effect. A useful mechanism
to find stability is composed of two steps:

1. find two or more actions with similar initial situation
and final situtation;
2. verify if the task done is similar.
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An important part of the algorithm is the definition of the similarity
function. Our first choice was considering two task similar if they are equal,
but finding different tasks with the same initial and final situations is ex-
tremly rare in a self-organzing system. So we have chosen a new similarity
function depending on the application context.

e The initial situation is well represented with the current position of
the car inside the city grid.

e The final situation is the arrival position after the journey.

e The task done is the path followed to reach the arrival position from
the departure position.

e Two positions are similar if are reasonably close one to each other.

e Two paths are similar if have similar lenght and reach similar cells in
the same order.

Using the current implementation of the system for implicit culture sup-
port we can easily implement this similiarity function. we only need to set
properly the file similarity_config.xml.

3.4 How to guarantee the absence of a single point
of failure

Here we want to apply the decomposition theorem previously stated, for
showing that our system has not a single point of failure. A common way
to operate is the following:

1. repeat

2 take a component of the system and remove it;

3. show that the system performs the same tasks as before;
4 re-add the component to the system;

5. until each component has been tested.

The result of the procedure is a boolean value. If after removing some
component the system is unable to perform some tasks then our system is
not self-organizing, in agreement with the definition.

In our case study the system fails for example if removing a traffic light
some cars stop for a too long time or if causalities happen frequently.

3.5 Task completion

As explained before, calculating the task completion rate of a system consists
in finding the proportion of tasks correctly processed which the time inside
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the system does not exeed a threshold given. Clearly this rate canges in
time depending on the system’ ability to solve the input given. Since the
output of our system depends strictly on its experience, we can apply several
methods for forecasting. In particoular we have selected three of them that
suit well to our problem.

Linear moving average. The most simple of the three. It simply compute
the average of the performance measured in a fixed interval.

Logistic fit. We try to model the performance measued with logistic a
well-known curve that has some good properties:

e The explicit formula of the derivative in time is known.

e The derivative depends on two parameters only: the improove-
ment rate that measures the aptitude of the system to learn and
to organize and the limiting rate that measures the limitations of
our system in solving problems.

e Has an horizontal asymptote, it identifies the steady state.

Smoothing functions. They are a wide class of curves that try to clean
up the data from rumors. In this class we have selected lowess: its
degree of smooth is controlled by threee intuitive parameters and is
already implemented and well tested in our evironment for analysis.
For more complete imformation about this curve see [3];

In the case study, the task completion measures the fraction of vehicles
reaching their destination in acceptable time. Our method allows to dis-
tinguish between systems with same task completion rate at steady state
(Figure 3.3). Simply comparing the parameters we can say that one of the
systems is twice fast as the other in the learning. In the general case, we
are able to quantify how better a system learn than another.

3.5.1 The process of logistic fitting

Logistic is a well-known ordinary differential equation, which is also known
the analitycal solution. It is suitable for us because like task completion,
it is always included in a closed interval and allows to explicit easily the
improovement rate and the limiting rate. The logistic model is the following.
Let A be the improvement rate, B the limiting rate, and « the initial value:

If a < % the shape of the curve is like figure 3.4. Moreover we derive
from the model that the initial value is a while in the final stage the curve
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Figure 3.3: The task completion trend for two different As

is limited by %. We use now some values obtained from the linear moving
average method:

a « the initial value,

% «— the final value.

We use the following definition for the error:
- Aa 2
°T z:zl <Ba + (A — Ba)e=4i yl)

with: n  number of measurements,
y; real values,
A improvement rate,

«  initial value,
B limiting rate.

To find the values for A and B that minimize the error we use a binary
search algorithm, when we first need to set a range for A. The solutions
found are similar to figure 3.5.

3.6 How to determine the availability

The procedure for analyzing the availability of the system is quite similar
to the task completion one, because both of them uses information about

25



TR

0.8
=

Task completion
0.5

0.4

0.1
|
R

Time

Figure 3.4: A very well fitting to a logistic curve

Error

80

60
|

40

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 3.5: The trend of the error for different As

past experience to try to predict how the system will behave in the future.
Moreover the availability changes in time, depending on the input and the
experience of the system. For these reasons we can apply exactly the same
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methods used for determining the task completion rate, in the same way.

The availability is the fraction of time where the sytem is ready to process
new inputs. The results of this analysis is the availability at steady state,
calculated using linear moving average methods. If the trend of availability
follow a logistic law then we can find the improvement rate, the limiting
rate and the error of the process.

In the case study example we say the system is available if new cars can
start immediately to travel in the city.

3.7 How to evaluate the survivability

The survivability of a system expresses its ability to react well in abnormal
conditions. To control if our system has such a property, we test our system
in the abnormal condition we have previously found. We choose the possible
problems that have the highest probability to crash the system and we repeat
them n times, with n fixed.

A similar method is described in [35], when a system is tested seaching
for errors. There are five rules to follow to execute a survability evaluation:

e a test case is valid if it has a high probability to fail,
e a test case has to be the best of its category,
e a test case has to be neither too simple nor too complex,

e we do not have to use many test case, but we have to consider all the
functionality,

e we want to minimize the redundancy.

The result of the survability analysis can be efficiently summarized in a
table. Note that the value n need to be set before the evaluation, and a bad
choice of it can cause a negative result even if the system is able to cope
with the input.

3.8 System performance

Measuring the perfomance of the system often means measuring the utiliza-
tion of the resources or the system throughput. Both of them are interesting
for our evaluation because they focus on different aspects:

e the utilization of the resources is useful to control if our system uses
a constant amount of resources during executions.

e the system throughput indicates the improvement of the system; in
our case study it is the number of cars reaching the arrival position in
a fixed time slot.
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3.9 Useful characteristics of the method

e Guide the developer from the first simulation to the performance eval-
uation.

e Allows us to apply some concepts coming from the traditional perfor-
mance evaluation: task completion, survivability, system performace,
throughput, availability and stability.

e Gives the possibility to evalutate how the system works in the presence
of abnormal conditions, evaluating its survivability.

e Keeps track of the time needed to reach a stable organization, gives
us the organizing rate.

e Allows us to judge if the system has a single point of failure or none.

e Allows us to quantify the availability of the system in the general case
and in particular cases.

e Needs few simple data structures to be completed.

e Uses the variations of the system’ behaviour to determine if the system
is sufficently stable.

e All the algoritms needed have polinomial complexity.
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Chapter 4

Implict culture

The culture of a group is a set of notions, traditions and behaviours that
characterize that group in a unique way. A culture is implicit if some entities
behave like the group without explicitly knowing the rules of the comunity.
The primitive concepts of implicit culture are agents and object, and we
refer to them with strings.

The agentss operate in the set of possible actions, those actions are chosen
depending on the state of the environment and to the state of the agent
itself.

The objects are the target of the actions.

We give now some definitions, to formally define the meaning of implicit
culture.

4.1 Definitions

Definition 8 (set of agents) A set of agents P is a set of agent-name
strings.

Definition 9 (set of objects) A set of objects O is a set of object-name
strings.

Definition 10 (environment) The environment £ is a subset of the union
between the set of agents and the set of object. £ CPUQO

Let action-name be a type of strings, and let ¥ C £ and let s an action-
name.

Definition 11 (action) An action « is the pair (s, E),where E is the ar-
gument af o(E = arg(a))

Let A be a set of actions, A C A and B C £.
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Definition 12 (scene) A scene o is the pair (B, A) where for any o € A,
arg(a) C B; «a is said to be possible in o. The scene space Sg a is the set
of all scenes.

Let T be a numerable and totally ordered set with the minimum ¢g; ¢t € T'
is said to be a discrete time. Let a € P, a an action, and o a scene.

Definition 13 (situation) A situation at the discrete time t is the tuple
(a,o0,ty: “a faces o at time t”.

Definition 14 (execution) A situation at the discrete time t is the tuple
(a,c,ty: “a performs « at time t”.

Definition 15 (situated executed action) An action « is a situated ex-
ecuted action <= ewists a situation (a,o,t), where a performs « at the
time t and « is possible in o.

The function Fg : A x Sg 4 x T' — Sg_4 describes how the situation at time
t + 1 is determined:

Ot4+1 = Fg(at, g¢, t)

with Ot,0t41 € S&A; a € A.
Let the action performed by the agent a at time ¢, h,; be a random
variable that assumes values in A

Definition 16 (expected action) The expected action of the agent a is
the expected value of the variable hqy, that is E(hgy).

Definition 17 (expected situated action) The expected situated action
of the agent a is the expected value of the variable hq; conditioned by the
situation (a, 0,t), is E(hqt|(a,0,t)).

Definition 18 (party) A set of agents G C P is said to be a party.
Let £ be a language to express the environment, and let G be a party.

Definition 19 (cultural constraint theory) The cultural costraint the-
ory for G is a theory expressed in L that predicts the expected situated actions
of the members of G.

Definition 20 (group) A party G is a group if there exists a cultural con-
straint theory % for G.

Definition 21 (cultural action) An action a is a cultural action for the
group G if exists b € G and (b,0,t) such that

{E(hb,th? U7t>) = Oé}, )Y }71 1

with 3 cultural constraint for G.
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Definition 22 (implicit culture) G ang G’ are in the implict culture re-
lation <= G is a group and the expected situated actions of G’ are cultural
actions of G.

Culture is represented by a theory. The theory consists of one or more
rules of the form

AINAN . NA, - CLANCo N NCy,

with: A; antecedents of the rule,
C; consequences of the rule.

Definition 23 (implicit culture phenomenon) the implicit culture phe-
nomenon is the pair (G,G’) where G and G’ are related by the implict culture.

To let implicit culture phenomenon happen, we need a software that
implements the concepts given. It is called Ic-Service and it is developed in
java [4].

4.2 The system for implicit culture support

It provides a set of primitives to implement in a simple way agents with
implicit culture capabilities. Basically, it is composed of three sub-systems
(Figure 4.1).

The observer allows to store the observation about action performed by
the agents and guarantees the access to the observations.

The inductive module analyzes the data base of the observations and,
applying data mining techniques, tries to discover rules among data.

The composer uses the informations stored by the observer and the rules
discovered by the inductive module to produce suggestions. Following
one of those suggestions means having a beaviour consistent with the
culture.

The first definition of the framework is given in [1].

4.2.1 The observer in detail

The current version of SICS allows to store observation in both databases
and xml files. By modifying few parameters it is possible to switch among
them simply. Every observation stored is composed of:

e the agent who performed action;
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Figure 4.1: The architecture of the System for Implict Culture Support

e the scene faced by the agent;
e a set of possible actions;

e a set of objects;

e the action performed;

e the time when the action was executed.

4.2.2 The inductive module in detail
It is composed of two subsystems (Figure 4.2).

e The first extracts new associations from the observations. The current
implementation the Apriori algorithm to produce associative rules.

e The second updates the old culture with new rules just discoverd.
Moreover it allows to manually insert an initial set of rules and clear
automatically out of date ones.

The implementation of the inductive module is presented in [4].
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4.2.3 The composer in detail
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Its goal is to change the current scene in such a way that the agents are more
likely to perform cultural actions. It is made of three subsystems (Figure

4.3).
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Figure 4.3: The structure of the composer

The cultural action finder: it selects from the database of observations,
actions that match antecedents of the rule. Once found such actions,
it returns the consequent of the rule as cultural action.

The pool: it manages cultural actions taken as input from the cultural
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action finder and from the scenes producer. It solves possible conflicts
among them.

The scenes producer: it takes as input the output of the cultural action
finder and searches in the database for actions similar to the cultural
action found. After that it tries to define which scenes lead to that
action. Those scenes are subsequently returned.

4.3 Why implicit culture

We have chosen the implicit culture for reasons related to the easiness of
use and to the possibility of personalization.

In the implicit culture framework the environment is dynamic because
agents change it by performing actions. Also their actions are recorded as
observations which take part in the next decision processes. This behaviour
is well-suitable for self-organizing systems because they need a mechanism
for building up a stable organization starting from disorder.

We consider the procedure of learning from observations very difficult
to implement. Fortunately it is already implemented in the implicit culture
framework. Moreover some software systems have been already implemented
with implict culture capabilities, and they accomplish well the tasks given.
For example:

e Implicit: An AgentBased Recommendation System for Web Search [5]

e A MultiAgent System that Facilitates Scientific Publications Search
[6]

The procedure for testing stability can be performed with few lines of
code because a similarity function is already implemented in the SICS core,
it is easily configurable by xml files.

In the system we are going to build, all the agents are at the same
experience level. In the IC framework there are two distinct groups of agents
with different capabilities and experience. We resolve this possible problem
defining the two identical groups.

Finally we want to test the framework in the field of self-organizing
systems to promote the software and to improve its usefulness.
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Chapter 5

A Self-organizing system
based on the implict culture
framework

5.1 Description of the System

Our system is composed of three classes of agents:
e car,
e semaphore,
e city.

An agent of type car have the goal of reaching its destination as faster
as possible, avoiding collisions in the meantime. It moves through adjacent
cells if the target cell is free respecting the indications of the semaphores.
If a casuality occours, the car has to restart its journey from the beginning
(Table 5.1).

‘ Objectives ‘ Actions
Reach the destination Move through adjacent cells
Avoid casualities Inform the city of its journey

Learn from other agents
Restart in case of crash

Table 5.1: Objectives and actions of Car agents
An agent of type semaphore manages the traffic in a specific location of

the city and switches its light in an endless loop. Its goal is maximizing the
speed of the cars in its intersection, avoiding long queues. The main actions
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to achieve it is to change light periods (Table 5.2). Every semaphore has
only a limited view of the traffic inside the city, but in general should be
aware of the activities of the other semaphores.

‘ Objectives

‘ Actions

Manage the traffic in a single inter-
section
Be useful for the traffic management

Change position in the city (not im-
plemented)
Change light periods

Table 5.2: Objectives and actions of Semaphore agents

The system must ensure that exactly one agent of type city is active
on the platform. For this reason an agent of this type has to control its
uniqueness on startup. Moreover an automatic procedure to restart crashed

city must be present. The city moves the cars and updates the semaphores
(Table 5.3). The average speed of all the car inside the system is used to
control the performance of the system, so one of the objectives is maximize

it.

‘ Objectives

‘ Actions

Be always active

Be unique

Manage cars’ movements
Manage semaphores’ updates

Send update to semaphores

Send movements to cars

Control its uniqueness

Receive informations from cars and
semaphores

Table 5.3: Objectives and actions of City agent

5.1.1 Behaviours

In the following section we present how agents of different classes behave,

during the simulation.

The behaviour of the city is quite simple at high level (Figure 5.1) and
is composed by two sub-behaviours running in parallel.

Traffic simulator: it manages the traffic in the city grid. At fixed time
interval it starts a new turn. In each turn the cars move in the grid
trying to reach their arrival position. A turn ends when none of the
cars can move. After that the semaphores receive an evaluation on

their actions.

Messager: it replies to incoming messages and is responsible of the deletion
of the agents if a terminate message arrives. New cars are added to
the city when a proper message arrives and this behaviour is executed.
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Figure 5.1: The behaviour of a city

The behaviour of a semaphore can be well described with a finite state
automata (Figure 5.2).

TERMINATE

NORMAL

TERMINATE

TERMINATE

Figure 5.2: The behaviour of a semaphore

Normal: it characterizes the regular execution of the agent. It basically
waits for evaluations sendt by the city. From time to time a function
for auto-evaluation is called. The agent uses the evaluations collected
to better manage the traffic.

Error: it is called when an error occurs during the execution and here is
managed. Some actions that can be done for the correction are: ask
for a new city grid and create a new agent city.
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Terminate: it is called when a message of termination arrives. The do-
Delete() method is called and the agent terminates.

The behaviour of a car is the most complex of the three and is composed

by five sub-behaviours. Like for semaphore, it can be represented with a
finite state automata (Figure 5.3).

oK

TERMINATE oK

Y
ERROR
SEND JOURNEY
TERMINATE
oK ERRO
k |
s ™y
RECEIVE MOVE
TERMINATE

TERMINATE

Figure 5.3: The behaviour of a car

Wait: characterizes the car when is parked, it does not move and does not
receive any move messages from the city. This sub-behaviour is called
when the agent is created and after the completion of the journey.
After the behaviour for error management, wait is chosen in many
cases.

Send journey: is the act of sending a new journey to the city. If it ends
with ok the city accepts the journey, while ends with an error if the
time for reply expires or the city rejects the journey.

Receive move: in this, the car waits messages of movement from the city.
It terminates with OK when the car reaches the arrival position, with
ERROR if some error occurs and with TERMINATE if a message of
termination arrives.
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Error: it is the behaviour for errors management. Here errors are analyzed

and handled.

Terminate: like for semaphores, characterizes the agents when a message
of termiation arrives and the agent has to be deleted.

5.1.2 Protocols of interaction

The protocols of interaction show which messages are sended during the
execution.
The following sequence diagrams represent such protocols.

Car City
_._ RequestGrid 4
ReplyGrid
17 i NewJourney

[id not present] Ok

[id already present] No

b

-

Pl -]
-

1 Move

Figure 5.4: Interactions between car and city

The first operation to perform after the creation is obtainig the city
grid. Both semaphores and cars need it and utilize the same interactions.
The grid sendt is represented by a matrix and two integers representing the
number of columns and the number of rows.

After the completion of any turn the city sends a move message to all
car present in the city grid. The car does not have to reply. We have chosen
this simple protocol to reduce the number of messages exchanged between
agents. This kind of interaction is in fact the most common. The move
message received represents the position reached in the city grid.
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When a car wants to travel from a departure to an arrival position, it
has to send a new journey message to the city. It returns an ok message if
the car is not already present in the city grid, or a no message otherwise.
The no message comes with a numerical value that explain the reason for
the rejection (Figure 5.4).

Semaphore City
__ RequestGrid A
ReplyGrid
il UpdateSemaphore

[position free] Ok

[position not free] No

-1 SemaphoreEvaluation

Figure 5.5: Interactions between car and city

Like for cars, the first operation to perform is requesting the city grid.
The protocol is the same.

To modify its behaviour in the traffic management, a semaphore has to
send an update message and then wait for the response. The response can
be negative if the new position to occupy is already occupied by another
semaphore, and is positive otherwise.

An evaluation for a semaphore is sended at the end of each turn. With
this message the city comunicates how many cars were stopped and passed
in both directions Similarly for move message, we decided not to reply to
this message for speeding up the simulation (Figure 5.5).

5.1.3 Class diagrams

In this section we show the internal structure of the classes through some
class diagrams. All the agents are impemented using JADE. In JADE each
agent uses behaviours to perform its duties. They represent the logical
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threads of a software agent implementation.

Car

The class Car (Figure 5.6) extends jade.core.Agent, the basic class of a
JADE agent and it is abstact. The following methods must be implemented

Car

(from basefgents)
eerialversionID : long =0
BowvaitingTime : long = 3000
BomyJoumey : Vector = null
PomaxSpeed : int=3
Tegrid(][] : int
BonCals © int
FonRows : int
BejourneyDone : boolean = false
TjourneyStartTime : long =10
TgjourneyEndTime : long =0
lQ}isﬁegisterel:i . boolean = false
l%errorCude cint=0
Epositionindoumey : int=10
&preplyTire : long = 2000
&turnTirme : long = 3000
BSTATUS OK :int=5
ESTATUS TERMIMATE - int = 10
ESTATUS FRROR - int=15
ETOVVAIT - int = 20
ETOSEND - int = 25 )
&TORECEIVE - int =30 -cityAD
ETOTERMINATE - int = 35
'%WaitState . String = "W
l%Senl:I.JDurnE\n’State : String = "J"
&R eceivelavaState - String = "R”
&ErrorState : String = "E”
& TerminateState : String = "T"
l%‘-z"vfaitEi Handlehdex UnreadableException : int = 1
@SendJournevB onStart_cityAID null - int =10
@SendJournevB onStart [OException @ int =20
@SendJournevB action_TimeExpired : int =30
&SendloumeyB_Handlehex_UnreadableException : int = 40
&SendloumeyB_Handlehex_MsghloReceived : int = 50
& Receivetlovel_action_TimeExpired - int = B
& ReceiveMoveB HandleMex LnreadahleException : int = 70
EReceiveloveB_HandleMesx_positionOutOflourney : int = 80

AlD

(from core)

PthinkJourneyAndWaitingTime()
?’DnStar‘[O

?‘onEndO

&updateGrid)

Pezatup()

@updateRey)

?’takeDownO

Figure 5.6: Class diagram of Car

in the subclasses:

thinkJourney AndWaitingTime() is called only in the SendJourney Be-
haviour, it allows to set the new journey to do and the time to wait after
the completion.
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onStart() is called only when the agent starts in the setup method, it al-
lows to set the initial values.

onEnd() is called only in Terminate Behaviour, it allows to do some oper-
ation before finishing.

The following methods are implemented:

updateGrid(): updates the representation of the city in the agent, sends
a RequestGridMsg to the city.

setup(): called for the initialization of the agent. Registers the agent to
the DF and adds the behaviours.

updateReg(): updates the registration to the DF.

takeDown(): deregister the agent from the DF.

The class has the following attributes:

serialVersionUID: used to implement correctly the class Serializable.
waitingTime: the time in milliseconds to wait after the completion of the
journey.

myJourney: a list of adjacent cells.

maxSpeed: the maximal speed of the car, in cells/turn.

grid, nCols, nRows: the representation of the city grid.

journeyDone: true when the journey comes to the end, false otherwise.
journeyStartTime, journeyEndTime: used to calculate the duration of
the journey.

isRegistered: keeps track if the agent is registered to the DF or not.

city AID: the agens identifier of the city.

errorCode: keeps track of the last error occurred.

positionInJourney: the curent position of the car.

replyTime: milliseconds of a reply, maximum.

turnTime: mlliseconds of a turn, maximum.

STATUS_*, TO*, *State: used to control the behaviour of the agent.

Semaphore

The class Semaphore (Figure 5.7) extends jade.core.Agent and it is abstact.

The class has the following abstract methods:
evaluateAndThink() here we evaluate the managemend done by the sem-
pahore. If the actor decide to change some parameters, the city has to be
informed.
onStart() is called only when the agent starts in the setup method, it al-
lows to set the initial values.
onEnd() is called only in Terminate Behaviour, it allows to do some oper-
ation before to end.
The class implements the following methods:
sendUpdateToCity(): sends an updateSemaphoreMsg to the city.
updateGrid(): updates the representation of the city in the agent, sends
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Semaphore
ffram baseAgents)

PositionY
gseralersionUID @ long =0 (oﬂs:rr:our:“)
%;?d’a‘i\f?'mgﬂme * lang = 30000 @setialversionUID : long =0
BenCols © int .%X ::1
FonRows © int g

Tpred_red1Period ; int=0

PR
Tpygreen_redPeriod © int =0 POSEEATY

Toyellow_redPeriod : int=0 :EED&ISMXYO
Tred_red2Period ; int=0 ooty
Tpred_greenPeriod : int =0 #newPos ‘Setx\g
Fered_yellowPeriod : int=10 / ‘Se v 0
l%isRegistered . boolean = false #os ‘geIYO
&errorCode ; int=0 ‘ge .tQ o
&STATUS_OK - int = 5 D 0
EBHSTATUS_TERMINATE - int =10 & qSt )
&STATUS_ERROR . int = 15 ostring()
&ormalB_action_TimeExpirad : int = 1

e sendUpdateToCity_citylDnull : int = 10

EMe sendUpdateToCity_|OException : int = 20 _CitvAID

& MormalB_HandleMex UnreadableException : int = 30 \Y
&tlormalE_Handlehdex MsghMoReceived : int = 40 AlD
& llormalState String = "N" (fram core)
l%ErrorState . String = "E"

& TerminateState - String = "T

%”onStano
?‘mEndO
PevaluateAndThink)
PrsendUpdateToCity()
@PupdateGrid()
Psetup()
@PupdateReq)
?’takeDownO

Figure 5.7: class diagram of Semaphore

a RequestGridMsg to the city.

setup(): called for the initialization of the agent. Registers it to the DF
and add the behaviours.

updateReg(): updates the registration to the DF.

takeDown(): deregisters the agent from the DF.

The class has the following attribures:

serialVersionUID: used to implement correctly the class Serializable.
maxWaitingTime: maximum time passed waiting an update from the
city.

grid, nCols, nRows: the representation of the city grid.

pos, newPos: point to the curent position of the semaphore and the new
position to occupy, if it is free.

*Period: number of turns for each combination of lights.

isRegistered: keeps track if the agent is registered to the DF or not.

city AID: the agent identifier of the city.

errorCode: keeps track of the last error occurred.

STATUS_*, *State: used to control the behaviour of the agent.
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City

The class City (Figure 5.8) extends jade.core.Agent and has the following
methods:

setup(): called for the initialization of the agent. Registers it to the DF
and adds the behaviours.

updateReg(): updates the registration to the DF.

takeDown(): deregisters the agent from the DF.

The class has the following attribures:

serialVersionUID: used to implement correctly the class Serializable.
isRegistered: keeps track if the agent is registered to the DF or not.

tc: this instance of the class trafficController manages every movement
inside the city grid.

isFinished: controls the end of the agent, is setted in the behaviour for
message management.

TrafficController
Cfrom util)
_@waitingCars - Wector = null
&wectorCarPos - Wector = null
&nCols int=0
EnRows ; int=0
GERROR :int=-1
GMOTHING ;. int=0
GoTREET int=1
SPARKING - int=2

City

rfrom bazefgents)

gserialversionUJID : long =0
BgisRegistered : boolean = false
%isFinished . boolean = false

SRESIDENTIAL - int=3
SLOMMERCIAL - int=4
SINDUSTRIAL - int=5
GEUN - int=6

Psatup)
PupdateReq)
PtakeDown()

Eygrid[]] : Cell

%semEval . SemaphoreEvaluator

$TrafficContraller])
SgethCols()
SgethiRows ()
SgetCallkind)
SnewTurm()
SyetPositions OTurm ()
SpetSemEval()
SpritGrid()
SupdateCar))
@yetSemaphaoraPos()
¥updateSemaphore()

Figure 5.8: class diagram of City




Messages

The class MoveMsg represents a move and is sendt only by cities to cars
(Figure 5.9). It has two attributes:

Positionxy
(from util)
gaetialversionD - long =0
& int
Mowvelisg &y : int

(from ontalogy) ‘Pgsitign}(\fo
gserialversionUID : long =0 -position ®positionX ()
Sooti])
$setv)
Boetly()
Sgeti])
Sgety()
$Position®Y ()
Tequals()
StoString()

Shiovelsgl)
‘getF‘UsitiDnO
StoString()

Figure 5.9: class diagram of MoveMsg

serialVersionUID: it is used to implement correctly Serializable.
position: is the position to communicate.

The class NewJourneyMsg is used to exchange information about jour-
neys between cars and the city (Figure 5.10). It has three attributes:

MewJlourneyhlsg
(from ontology)
gaetialersionJID - long =0
l§>pnsiti0ns - ector = null
&yrnaxSpeed int=10

Shlewlourmeyhsgl)
®hewelourney syl
SaddPosition)
®oetloumey()
SsothanSpesd])
FyetiaxSpead])
$toString()

Figure 5.10: class diagram of NewJourneyMsg

serialVersionUID: it is used to implement correctly Serializable.
positions: the journey to be done.
maxSpeed: the max speed of the car, in cells/turn.
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The class NoMsg is used to communicate a rejection (Figure 5.11). It
has two attributes:
serialVersionUID: it is used to implement correctly Serializable.
errorCode: the reason of the rejection.

Mohdsg
ffrom ontology)
gseralersionID : long =10
gduplicatelD : int = 1
EerrorCaode ; int=0

MBI EDTY]
®getErrarCodel)
o Strig)

Figure 5.11: class diagram of NoMsg

The class OkMsg is used to comunicate an accept (Figure 5.12). This

OkMsg
tfrom ontology)

gaetialversion|D : long =0

S0kMsg)
o Strig()

Figure 5.12: class diagram of OkMsg

class has only one attibute: serialVersionUID: it is used to implement
correctly Serializable.

With a RequestGridMsg cars and semaphores can ask the city for the
grid (Figure 5.13). This class has only one attibute: serialVersionUID: it

ReguestGridhdsg
(from ontology)

gaetialersionlID : long =0

SRequestGridMsgl)
toStrigl)

Figure 5.13: class diagram of RequestGridMsg

is used to implement correctly Serializable.
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The class ReplyGridMsg is used to communicate the city grid (Figure
5.14). It has four attributes:
serialVersionUID: used to implement correctly Serializable.
grid: a matrix of integer values, it represents the city grid.
nCols: the number of columns of the matrix.
nRows: the number of rows of the matrix.

ReplyGridisg
ifrom ontology)
gaenalversionUID : long =10
$EREOR : int=-1
Egrid[][] ; int
nCaols : int
EsnRows : int

SReplyGridMsg()
SetPos()
SethCols()
SpethRows()

S0 Strig)

Figure 5.14: class diagram of ReplyGridMsg

The UpdateSemaphoreMsg is sendt by semaphores to the city. It in-
cludes new position to occupy and new periods for lights (Figure 5.15). It
has eight attributes: serialVersionUID: it is used to implement correctly
Serializable.

*Periods: the new durations of lights
pos: new position to occupy, if it is free.

The SemphoreEvaluationMsg is sendt by the city to semaphores to let
them know of how many cars are stopped or passed in the last turn (Figure
5.16). It has five attributes:
serialVersionUID: it is used to implement correctly Serializable.
topDownStopped: the number of cars stopped along y-axis.
topDownPassed: the number of cars passed along y-axis.
leftRightStopped: the number of cars stopped along x-axis.
left RightStopped: the number of cars passed along x-axis.

Receiving the TerminationMsg causes the termination of the agent. It
has only one attribute (Figure 5.17).
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UpdateSemaphorehdsg
tfrom ontology)

- , Fosition:y
gseralversionJID : long =0 (Dfilninur:“)

%;SELEE:;EPEZESJ 'mitn:f[l oseri_al\f‘ersionUID Clong =0
Q}yellov\T_redPerind cint=10 %}{ :EI

Q}red_redQF‘erind cint=10 v
IQ)red_greenF‘erind sint=10

$Positiony ()

&red_yellowPeriod : int =0 -pos :F'Dsitinn}{‘ﬂj
QUpdate_S_emaphoreMng ‘ggﬁ%
BetPosition()

SyetRed_redPeriody) Fsetxy(
d - “get}{lj

SyetGreen_redPeriod()
“getYeIInw_redF'erindﬂl :g-?;ﬁnnxm
®getRed_redZPeriod]) Saguals))
®etRed_greenPeriod) W qSt i
SetRed yvellowPeriod() oStringd
“toStringl:l

Figure 5.15: class diagram of UpdateSemaphoreMsg

SemaphoreBEvaluationdsg
(from ontology)
GsetialvVersionUJID : long =10
&topDownStopped © int =0
&EtopDownPassed © int=0
EleftRigthStopped : int=0
&leftRigthPassed ; int =0

¥SemaphoreEvaluationMsgo)
St TopDownStoppedo)

%t TopDownPassed()

et eftRigthStopped])
SyetLeftRigthPassed))

S0 String()

Figure 5.16: class diagram of SemaphoreEvaluationMsg

5.2 The creation of the implicit culture phenomenon

The observations are stored in the in the database of observations for a

limited time. This automatic procedure allows the environment to be more

dynamic and prevents agents from worrying about information cleaning.
We have identified two kind of high-level actions performed by cars.

WantMove: the car is searching a path to connect departure to arrival
position without colliding with others vehicles. The path has to be
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Terminatehdsg
ifrom ontolagyl

GseralersionD : long =0

*TerminateMng
S0 Strign)

Figure 5.17: class diagram of TerminateMsg

as fast as possible. An observation containing departure and arrival
positions and the desire to move is then sendt to the SICS.

Journey: the car has already done a journey from the deparure positon
to the arrival position. An observation containing departure, arrival
position, the path followed and the duration in time is sendt to the

SICS.
The cultural theory in our application has the following form:

WantMove(actor, departurePos, arrival Pos)

4

Journey(actor, departurePos, arrival Pos, path, time)

with the intuitive meaning of: “If a car wants to move from a departure

position to an arrival position, then it travel from the same departure to the

arrival position following a certain path and spending an amount of time”.
The decision process is defined by the following pseudocode:

if (journeyDone equal true) then

.2, sendJourney0bsToSics(departure,arrival, journey,duration) ;
end if;

waitingTime = random between 1000 and 5000;
journeyDone=false;

decide departure position;

decide arrival position;
sendWantMoveObsToSics(departure,arrival);
askSicsForSuggestions;

evaulate the suggestions, return a number in (0,1);
10. compare the evaluation with a random value in (0,1);
11. if(rndValue < evaluation) then

11.1. follow the suggestion;

© 00 N O O WN - =

12. else
12.1. make a self-decision;
13. end if;
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The evaluation of a suggestion is performed in this way:

calculate the length of the path;

if (lenght <10) then

.1 return 0.95 - (length)*0.05/10.0;

end if;

if (lenght <20) then

1 return 0.90F - (length-10)*0.10F/10.0F;
end if;

if (lenght <40) then

.1 return 0.80F - (length-20)*0.20F/20.0F;
end if;

if (lenght <80) then

.1 return 0.60F - (length-40)*0.30F/20.0F;
end if;

return a random value between 0.00 and 0.30.

O OO Ol WWWNDNNE

The self-decision is performed in this way:

Create an empty journey;

lastPos = null;

currentPos = departurePosition;

lastPos = null;

journey.add (currentPos);

do {
nextPos = selectNextPosition(lastPos,currentPos);
lastPos
currentPos = nextPos;
journey.add(currentPos) ;

} while(!currentPos.equals(arrivalPos));

remove repetitions from journey;

currentPos;

~N OO OO0 OO O W
oD W N e

In the implicit culture framework it is possible to distinguish between
skilled actors and beginners. Since in our system the culture is shared among
all actors, each of them has the same level of knowledge. A consequence is
that the group G is equal to the group G’.

5.3 Experimental results

In this section we show that our software acts as a self-organizing system.
In agreement with the definition given in Section 2.1 we have to prove three
statements:

1. it is adaptive, according to the Zadeh’s model for adaptivity,
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2. its entropy is not maximal and changes in time,
3. it does not have a single point of failure.

For simulations, and for performance evaluation our system is composed of
the following agents:

e one agent of type city,
e six agents af type car,
e one agent of type semaphore.

Six streets two cells wide are present in the city, taking the shape of a square
27 x 29 with a cross inside.

The semaphore is positioned in the middle of the cross (Figure 5.18).
The simulation was carried out on a 1.6 GHz Centrino PC with 512 Mb
ram.

Figure 5.18: The city grid

5.3.1 On adaptivity

Our objective is to recognize if our system is adaptive or not. We observed
the system for 100 minutes. We obtained the following results (Table 5.4
and Figure 5.19).

We observed that the first result is bad, three times higher than the last
value. Between 20 and 40 minutes the number of collisions increases, while
it decreases between 40 and 70. After 70 minutes it remains more or less
stable.

We consider this result a clear signal of the adaptability of the system,
because the cars have learnt how to move avoiding casualties with other
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| Time (from - to) | § of collisions for each car |

0 - 10 min 2.0
10 - 20 min 1.3
20 - 30 min 2.6
30 - 40 min 1.6
40 - 50 min 2.0
50 - 60 min 1.0
60 - 70 min 0.3
70 - 80 min 0.6
80 - 90 min 0.3
90 - 100 min 0.6

Table 5.4: Results for adaptivity test
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Figure 5.19: Results for adaptivity test

vehicles. The Zadeh’s model for adaptability require a performance function
and a criterion of acceptability. If we accept 0.6 collision per minute then
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we can say that our system adapts in 80 minutes. The achievement of the
steady state allows us to conclude positively.

5.3.2 On entropy

Our goal is to judge if the movement of cars is casual or if some restriction
is applied on the path. The system under observation is the same as before:
six cars, a semaphore, and the same city grid. At fixed time step we stopped
the simulation and calculated the average evaluation of all the observation
stored. This function for evaluation, in fact, represents the probability for
a suggestion to be followed and measures how journeys are similar one to
each other.
We found the following results (Table 5.5 and figure 5.20):

‘ Time ‘ Average evaluation ‘

10 0.1224377
20 0.3473833
30 0.5432323
40 0.5394043
50 0.6794746
60 0.7244323
70 0.8774334
80 0.8424859
90 0.8334779
100 0.8498037

Table 5.5: Results for entropy test

With the progress of the simulation, the cars tend to follow the sug-
gestion obtained to connect similar positions because SICS produces better
suggestions and the evaluation increases. An effect is that the path is also
similar and is clearly a signal that the entropy is not maximal. This phe-
nomenon occurs with a high probability when the actors are skilled and is
uncommon otherwise. Since we have implemented an automatic method to
clean up out of date informations, an observations remain in the database
for a limited period. This allows increase their quality and composition. As
required for a SOS, the entrophy changes in time.

5.3.3 On failure’s point

Our goal is to show that if an element crashes, the system is still able to
perform the same tasks as before.

If the city crashes, all the messages sendt to the city do not receive a
response. If no response is received for a prefixed time interval, then cars
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Figure 5.20: Results for entropy test

and semaphores ask the directory facilitator for the agent identifier of the
city. If this identifier not valid then the receiver invoke the creation of a
new agent city. If more than a city is created in the same time, the older
remains active, the other terminates. After the creation the resulting system
is equivalent to the previous. In this case the statement is vaild.

If an agent of type semaphore crashes, it is not automatically replaced
by another equivalent agent. In the city, the semaphore keeps acting for
a while and then is deleted. Since semaphores are not critical agents, the
traffic management is still possible. So the statement is valid.

Like for semaphores, if an agent of type car crashes, is not automatically
replaced. Cars are not critical agents so the statement is valid in this case
too.

We have proved the truth of the statement in all cases, so our system
does not have a single point of failure.
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5.4 Performance analisys

5.4.1 System throughput

We decided to evaluate the throughput of the system, considering the aver-
age number of destinations reached by a car in a fixed time slot. We took
the same target system and we obtained the following results (Table 5.6 and
figure 5.21):

| Time (from - to) | # of destinations reached |

0- 10 min 4.0
10 - 20 min 17.3
20 - 30 min 26.3
30 - 40 min 24.0
40 - 50 min 23.3
50 - 60 min 21.0
60 - 70 min 20.3
70 - 80 min 26.3
80 - 90 min 22.3
90 - 100 min 19.0

Table 5.6: Results for system throughput

We noted that the starting performance is low, approximately one sixth
of the maximal value reached. Moreover the throughput increases fast in
the first 30 minutes of simulation and then remains more or less stable. We
consider this a kind of progress following a logistic law. Our best choice for
the logistic fit is summarized in table 5.7.

‘ Parameter ‘ Value ‘
A 0.1393311088345
B 0.0059338458317
«@ 3.3437667954774
Error 99.1620810790081

Table 5.7: Parameters for logistic fitting - throughput

We can conclude with a throughput at steady state ~ 2.348 destinations
per minute, and with an improvement rate ~ 0.14.

5.4.2 Resources’ utilization

Now we want to analyze what resources are utilized more during the simula-
tion. Since our system was the only active application, we decided to use the
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Figure 5.21: System Throughput

analysis tool included in the operative system. We made two observations
on the fly:

e when an actor asks the SICS for suggestions, the utilization of the cpu
is maximal for about one second;

e during all the simulation the hard disk is accessed continuosly, to store
performance data and observations.

We then asked ourself why our laptop support only six cars running in
parallel. We found two reasons:

e the java virtual machine needs a huge amount of memory to work and
we need eight of them since each agent is created in a new container;

e the agent are coded using the jade framework: this platform wastes
resources again, in fact it maps each container to a java virtual machine
and each agent to a thread.
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5.4.3 Task completion

We had a look on how many cars travel from the departure position to
the right arrival position in less than one minute. In our target system we
measured the following (Figure 5.22).
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Figure 5.22: Task completion

We saw two trends. For the firsts 35 minutes the performance is decrea-
sing. In particular we used a second order polynomial to smooth the real
values. Our best choice is y = 0.95 — ﬁx% starts from 0.95 and ends
to 0.81. After 35 minutes of running we attend to a different trend: the
system quickly incrases its performance following a logistic law. We found
the parameters in table 5.8:

We can conclude with a task completion at steady state ~ 0.88, and with
an improvement rate ~ 0.065.
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‘ Parameter ‘ Value ‘

A 0.0650756238941895
B 0.0739495726070335
@ 0.8111145903829003
Error 0.0693362493098065

Table 5.8: Parameters for logistic fitting - task completion

5.4.4 Availability

The system is said to be available if the arriving car starts moving in 700ms
at maximum. We found the following results (Figure 5.23).
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Figure 5.23: Availability

We realized that the availabilty decrease fast for 17 minutes. After,
the average performance is stable at 0.81. From 65 minutes to the end,
the availability seems to increase slowly. We consider this result not so
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important due to the increased variance.
The availability at steady state of our system is ~ 0.81.

5.4.5 Stability in similar tasks

The results obtained for the entropy test are useful to evaluate the stability
in similar tasks too, we simply consider them from another point of view.

If a suggestion has a low evaluation then it has a low probability to be
followed. If another suggestion has a high evaluation its probability to be
followed is high and the system is stable in this task.

Let us observe Table 5.5 and Figure 5.20 again. After 100 minutes of
simulation an average observation is followed with probability ~ 0.85, and
we consider stability reached in the general case.

5.4.6 Survivability

For survivability tests we use the following:
1. many collisions happen at the same time and all the city is open;

2. a specific part of the city is crowded while the other parts are empty,
all the city is open;

3. many cars have to reach the same place and all the city is open;

4. for a while a part of the city is restricted.

Test 1

To do many casualties happen in the same time we simply kill the agent city.
What happen is that cars and semaphore realize that the city is unreachable
and some time after at least a new city starts. If more than one city is active
in the system the first registered to the DF keep running while the others
stop their execution.

So the system is able to cope with this kind of problems.

Test 2

To perform the second test we impose that two of five cars are limited in a
specific part of the city. No difference were noted in the simulation and the
others cars uses the crowded part as before.

The result is not the espected but our system is able to cope with this
kind of problems.
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Test 3

Here all the cars follow the same path, what happens is that the cars simply
form a queue and no crash happens. This test point out that this is not a
problem for the software, and the overall performance is increased.

Test 4

To close a part of the city for a while we change the city grid on the fly.
Happens the following: the cars are not able to understand that a part of
the city is closed and trying to reach the closed part, the cars enter in an
endless loop.

So we conclude that our system crashes if a part of the city is restricted.

5.5 Organization detection and evaluation

In this section we compare the result obtained by the the analisys of task
completion, system throughput and number of casualties. We note the fol-
lowing:

e after 35 minutes the task completion starts to increase following a
logistic law (Section 5.4.3);

e after 40 minutes the system throughput reaches stability, through a
logistic law (Section 5.4.1);

e after 30 minutes the number of casualties is at maximal value and start
decreasing (Figure 5.19).

We recognize that the system starts acting in the desired behaviour from
35 minutes, so we say that the components of our system reaches a suitable
organization approximately in that time. In section 5.3 we proved our sys-
tem to be self-organizing so this oganization emerges automatically without
human operations.

Moreover, by using performance meausures, we have an effective way to
evaluate the order reached (Table 5.9 and table 5.10).

‘ Parameter ‘ Value ‘ Measurement unit
Task completion at steady state 0.88 pure number
Availability at steady state 0.81 pure number
System performance at steady state | 2.348 | destinations per minute
Number of casualties at steady state | 0.6 per minute
Stability in similar tasks 0.85 | pure number (after 100 min)

Table 5.9: Evaluation of the organization
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‘ Problem ‘ Coped ‘

Many casualties in the same time Vv
A part of the city crowded partial
A part of the city unreachable X
Cars follow the same path Vv

Table 5.10: Survivability of the organization
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Chapter 6

Final considerations

In this thesis we presented a novel procedure to build and evaluate a general
self-organizing system. It includes two phases.

e In the first many inputs are submitted to the system with the goal to
increase the skills of the agents. Here we evaluate the task completion,
the system throughput, the availability and the stability in similar
tasks.

e In the second the system is tested under particular conditions that
can decrease the performance of the system. Here the survivability is
evaluated.

We applied some concepts coming from the performance evaluation to the
field of self-organizing systems.

e For system throughput we focused on the number of destinations
reached by a car in a fixed time slot.

e For task completion we fixed a maximum period to complete the tasks
given and we verified periodically their completion.

e For the availability we said that the system is available if the task is
started immediately.

e For the stability we tested if similar tasks are performed with similar
actions.

e For the survivability we verified if our system is able to cope with
specific tasks in controlled environment.

Later we introduced the implict culture framework and we explained why it
can be used to implement a self-organizing system. A concrete system was
then implemented with the support for the implicit culture: we presented
the different actors and how they concur to the creation of the implicit
culture phenomenon.
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6.1 Results

The throughput of our system follows a logistic law with improvement rate
~ 0.14, reaching the steady state of 2.348 destinations per minute in ~ 40
minutes (Figure 6.1).
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Figure 6.1: System throughput

At the beginning task completion decreases with a second order poly-
nomial: y = 0.95 — ﬁx? After 35 minutes it starts increasing following
a logistic law with improvement rate ~ 0.065, reaching the steady state of
0.88 (Figure 6.2).
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Figure 6.2: Task completion
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The availability remains stable for all the simulation. It is the constant
function y = 0.81 (Figure 6.3).
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Figure 6.3: Availability

The stability in similar tasks increases from 0.12 to 0.85 and then remains
more or less the same, reaching a steady state. For those reasons we can say
that the stability at steady state is ~ 0.85.
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Figure 6.4: Stability in similar tasks
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6.2 Future work

For the future we can develop two aspects: the first is to apply the method
for evaluating self-organizing system to existing software to quantify their
performance; the second is to improve the traffic simulator, to allow more
cars to be active in the system at the same time.

We know that Hermann, Werner and Miihl, are currently building a
classification of a certain number of existing systems in order to compile a
catalog of SOSs. However their work does not focus on the performance of
the systems, only on their adaptivity and their final structure.

For the improvement of our simulator we suggest not to use the jade
platform any more since for this kind of systems too many hadware resources
are required.
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Considerazioni finali

In questa tesi abbiamo presentato una nuova procedura per costruire e va-
lutare un qualsiasi sistema auto-organizzante. E composta da due fasi.

Nella prima il sistema processa un notevole quantitativo di input con
I’obiettivo di incrementare le capacitd degli attori. Qui vengono va-
lutati task completion, throughput del sistema, disponibilita e stabilita
nei task simili.

Nella seconda il sistema viene testato in particolari condizioni che pos-
sono decrementarne le prestazioni. Qui viene valutata la survivability.

Abbiamo applicato alcuni concetti dell’analisi tradizionale delle performance
al campo dei sistemi auto organizzanti.

Per il throughput del sistema abbiamo considerato il numero di desti-
nazioni raggiunte da un automobile in un tempo prefissato.

Per il task completion abbiamo fissato un tempo massimo per com-
piere il lavoro richiesto ed abbiamo verificato periodicamente il loro
completamento.

Per la disponibilitd abbiamo considerato il sistema disponibile se il
task appena immesso veniva svolto immediatamente.

Per la stabilitd abbiamo testato se task simili erano svolti mediante
azioni simili.

Per la survivability avviamo verificato se il nostro sistema riesce a
gestire specifici task in un ambiente controllato.

Successivamente abbiamo introdotto il famework Cultura Implicita ed ab-
biamo esposto le nostre motivazione per la sua scelta nell’implementeare
sistemi auto organizzanti. Un sistema reale ¢ stato poi implementato con

il supporto alla cultura implicita: abbiamo presentato gli agenti e come

concorrono alla creazione di fenomeni di cultura implicita.
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Risultati

Il throughput del sistema segue il modello logistic, con improvement rate
~ 0.14 e raggiunge lo steady state di 2.348 destinazioni al minuto in 40
minuti (Figure 6.5).
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Figure 6.5: Throughput del sistema

All’inizio il task completion decresce seguendo un polinomio del secondo
ordine: y = 0.95 — ﬁx? Successivamente comincia a crescere, seguendo
un modello logistic con improvement rate ~ 0.065, e raggiungendo lo steady
state di 0.88 (Figure 6.6).
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Figure 6.6: Task completion
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La disponibilitda rimane stabile per tutta la durata della simulazione. E
la funzione costante y = 0.81 (Figure 6.7).
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Figure 6.7: Disponibilita

La stabilita nei task simili cresce da 0.12 a 0.85, poi rimanne costante,
raggiungendo uno stato di equilibrio. Per questi motivi possiamo dire che
la stabilita allo steady state & ~ 0.85.
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Figure 6.8: Stabilitd in task simili
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Sviluppi futuri

Per il futuro e possibilie migliorare due aspetti: il primo consiste nell’applicare
il metodo per la valutazione dei sistemi auto organizzanti al software e-
sistente per quantificare le loro prestazioni; il secondo ¢ migliorare il simula-
tore di traffico, per permettere a pid automobili di essere attive nello stesso
istante.

Sappiamo che Hermann, Werner e Miihl, stanno classificando un certo
numero di sistemi esistenti con ’obiettivo di compilare un catalogo di sistemi
auto organizzanti. Tuttavia il loro lavoro non focalizza sulle performace dei
sistemi, ma solo sulla loro capacitd di adattamento e sulla struttura finale
raggiunta.

Per migliorare il simulatore suggeriamo di non utilizzare la piattaforma
jade in quanto non garantisce prestazioni accettabili e necessita di troppe
risorse hardware.
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