
A Constraint-based approach for modeling secure
multiagent systems1

Paolo Giorgini1, Haralambos Mouratidis2

1 DIT, University of Trento, Italy
paolo.giorgini@dit.unitn.it

2 School of Computing and Technology, University of East London, England
h.mouratidis@uel.ac.uk

Abstract. Security plays an important role in the development of multiagent
systems. However, a careful analysis of software development processes shows
that the definition of security requirements is, usually, considered after the de-
sign of the system. This is, mainly, due to the fact that agent oriented software
engineering methodologies have not integrated security concerns throughout
their developing stages. The integration of security concerns during the whole
range of the development stages could help towards the development of more
secure multiagent systems. In this paper2 we introduce a constraint-based ap-
proach that extends the Tropos methodology in order to model security con-
cerns throughout the whole development process. A description of the new
concepts is given along with a security oriented process that integrates these
concepts in Tropos.

1 Introduction

Security plays an important role in the development of multiagent systems and is
considered as one of the main issues to be dealt for agent technology to be widely
used outside the research community. As a result, research on security for Multiagent
systems is an important area within the agent research community. However, the re-
search has been mainly focused on the solution of individual security problems of the
multiagent systems, such as attacks from an agent to another agent, attacks from a
platform to an agent, and attacks from an agent to a platform.

Only very little work has taken place in considering security requirements as an in-
tegral part of the whole software development process. None of the existing agent
oriented methodologies, to our knowledge, have been demonstrated enough evidence
to support claims of adequately integrate security modeling during the whole software
development stages. Only recently, some initial steps have been taken towards this

1 This paper is a revised and extended version of: H. Mouratidis, P. Giorgini, G. Manson. Modelling

Secure Multiagent Systems, In the Proceedings of the 2nd International Joint Conference on Autono-
mous Agents and Multiagent Systems, Melbourne-Australia, ACM Press, July 2003

direction. Liu and Yu have initiated work [12] that provides ways of modeling and
reasoning about non-functional requirements (with emphasis on security). Yu is using
the concept of a soft goal to assess different design alternatives, and how each of these
alternatives would contribute positively or negatively in achieving the soft goal.

Lodderstedt et al present a modeling language, based on UML, called SecureUML
[13]. Their approach is focused on modeling access control policies and how these
(policies) can be integrated into a model-driven software development process. Dif-
ferently than these two approaches that are focused in particular stages of the devel-
opment (Yu’s effort is focused only in the requirements area while Lodderstedt’s work
is focused in the design stage) our approach covers the whole development process. It
is important to consider security using the same concepts and notations during the
whole development process.

In addition, Huget [14] proposes a new methodology, called Nemo and claims that
it tackles security. In his approach, security is not considered as a specific model but it
is included within the other models of the methodology. Nemo is a new methodology
and as such it has not been extensively presented on literature. From our point of view,
the methodology tackles security quite superficial and as the developer states “par-
ticularly, security has to be intertwined more deeply within models” [14]. Thus, more
evidence will be required to satisfy the claim of the developer that the methodology
tackles security.

Because of the lack of a structured approach to consider security issues in the de-
velopment of computer systems, the common approach towards the inclusion of secu-
rity within a system is to identify security requirements after the definition of a system.
This approach has provoked the emergence of computer systems afflicted with secu-
rity vulnerabilities [4]. From the viewpoint of the traditional security paradigm, it
should be possible to eliminate such problems through better integration of security
and systems engineering.

We believe that security concerns should be considered during the whole develop-
ment process of a multiagent system and it should be defined together with the re-
quirements specification. Taking security requirements into account together with the
functional requirements of a Multiagent system throughout the development stages
helps to limit cases of conflict between security and system requirements, by identify-
ing them very early in the system development, and find ways to overcome them. On
the other hand, adding security as an afterthought not only increases the chances of
such a conflict to exist, but it requires huge amount of money and valuable time to
overcome it, once they have been identified (usually a major rebuild of the system is
needed).

In this paper, we introduce extensions to the Tropos methodology to accommodate
security concerns during the software development stages. Section 2 provides an
overview of the Tropos methodology, and Section 3 introduces the secure concepts of
the secure Tropos. In Section 4 we discuss the security oriented process of the secure
Tropos, whereas section 5 concludes the paper.

2 Tropos and Secure Tropos

Tropos [5] is a software development methodology, for building agent-oriented
software systems, that uses concepts such as actors, goals, soft goals, tasks, resources
and intentional dependencies throughout all the phases of the software development
[6]. A key feature of Tropos is that it pays great deal of attention to the early require-
ments analysis that precedes the specification of the perspective requirements, empha-
sizing the need to understand the how and why the intended system would meet the
organisational goals.

Tropos adopts the i* modelling framework [15], which uses the concepts of actors,
goals and social dependencies for defining the obligations of actors (dependees) to
other actors (dependers). This means the multiagent system and its environment are
viewed as a set of actors, who depend on other actors to help them fulfil their goals.

An actor [15] represents an entity that has intentionality and strategic goals within
the multiagent system or within its organisational setting. An actor can be a (social)
agent, a position, or a role. Agents can be physical agents, such as a person, or soft-
ware agents. A role represents an abstract characterisation of the behaviour of a social
actor within some specialised context or domain of endeavour [15]. A position repre-
sents a set of roles, typically played by one agent.

A (hard) goal [15] represents a condition in the world that an actor would like to
achieve. In other words, goals represent actor’s strategic interests. In Tropos, the con-
cept of a hard-goal (simply goal hereafter) is differentiated from the concept of soft-
goal. A soft-goal is used to capture non-functional requirements of the system, and
unlike a (hard) goal, it does not have clear criteria for deciding whether it is satisfied
or not and therefore it is subject to interpretation [15]. For instance, an example of a
soft-goal is “the system should be scalable”.

A task (also called plan) represents, at an abstract level, a way of doing something
[Giu02]. The fulfilment of a task can be a means for satisfying a goal, or for contribut-
ing towards the satisficing of a soft-goal. In Tropos different (alternative) tasks, that
actors might employ to achieve their goals, are modelled. Therefore developers can
reason about the different ways that actors can achieve their goals and decide for the
best possible way.

A resource [6, 10] presents a physical or informational entity that one of the actors
requires. The main concern when dealing with resources is whether the resource is
available and who is responsible for its delivery.

A dependency [15] between two actors represents that one actor depends on the
other to attain some goal, execute a task, or deliver a resource. The depending actor is
called the depender and the actor who is depended upon is called the dependee.
The type of the dependency describes the nature of an agreement (called dependum)
between dependee and depender. Goal dependencies represent delegation of responsi-
bility for fulfilling a goal. Soft-goal dependencies are similar to goal dependencies,
but their fulfillment cannot be defined precisely whereas task dependencies are used in
situations where the dependee is required to perform a given activity. Resource de-
pendencies require the dependee to provide a resource to the depender. By depending
on the dependee for the dependum, the depender is able to achieve goals that it is
otherwise unable to achieve on their own, or not as easily or not as well [15]. On the

other hand, the depender becomes vulnerable, since if the dependee fails to deliver the
dependum, the depender is affected in their aim to achieve their goals.

A capability [6, 10] represents the ability of an actor of defining, choosing and exe-
cuting a task for the fulfillment of a goal, given certain world conditions and in pres-
ence of a specific event.

Figure 1 Error! Reference source not found.depicts a graphical representation of
the above-mentioned concepts as used in the Tropos methodology.

Fig. 1. The concepts in Tropos

Tropos supports four development stages, namely early and late requirements, ar-
chitectural design, and detailed design. Early and late requirements analysis repre-
sents the initial phases in the Tropos methodology and the final goal is to provide a set
of functional and non-functional requirements for the system-to-be. Both phases, early
and late, share the same conceptual and methodological approach. This means, that
most of the techniques used during the early requirements analysis are used for the late
as well. The main difference is that during the early requirements analysis, the devel-
oper models the main stakeholders of the system and their dependencies, while in the
late requirements analysis the developer models the system itself by introducing it as
another actor and model its dependencies with the other actors of the organisation.
The architectural design stage defines the system’s global architecture in terms of
actors interconnected through data and control flows (represented as dependencies). In
addition, during this stage the actors of the system are mapped into a set of software
agents, each characterized by its specific capabilities. During the detailed design
stage, the developer specifies, in detail, the agents’ goals, beliefs, and capabilities as
well as the communication between the agents. For this reason, Tropos employs a set
of AUML diagrams [7].

Tropos was not conceived with security in mind and as a result it fails to adequately
capture security requirements [8, 9]. The process of integrating security and functional
requirements throughout the whole range of the development stages is quite ad hoc,
and in addition, the concept of soft goal that Tropos uses to capture security require-
ments fails to adequately capture some constraints that security requirements often
represent [8, 9].

Therefore, we have extended the Tropos methodology to enable developers to ade-
quately capture security requirements. The next section describes our extensions.

3 Secure Concepts in Secure Tropos

Extra concepts were introduced to the methodology to enable it to model security
requirements during the software development process. These are:

Security Diagram [9], which represents the connection between security features,

threats, protection objectives, and security mechanisms that help towards the satisfac-
tion of the objectives. Security features [9] represent security related features that the
system-to-be must have. Protection objectives [9] represent a set of principles that
contribute towards the achievement of the security features. Threats [9] on the other
hand represent circumstances that have the potential to cause loss or problems that can
put in danger the security features of the system, while security mechanisms [9] iden-
tify possible protection mechanisms of achieving protection objectives. The main
purpose of the security reference diagram is to allow flexibility during the develop-
ment stages of a multiagent system and also to save time and effort. Many systems
under development are similar to systems already in existence. Therefore the security
reference diagram can be used as a reference point that can be modified or extended
according to specific needs of particular systems.

The analysis done during the construction of the security reference diagram can be
used later in the development process to identify security constraints that must be
introduced to the system-to-be (by taking into account the security needs of the sys-
tem) and also by identifying possible means (security mechanisms) that contribute
towards the satisfaction of the security constraints that are introduced to the system.

The notation of the security reference diagram can be adapted to reflect the nota-
tion of the methodology that the diagram is integrated. This is very useful since it
allows developers to work with well-known concepts and allows them to use the same
concepts throughout the development process. In this work, concepts from the Tropos
methodology such as soft-goals, goals and tasks are used to model security features,
protection objectives and security mechanisms respectively

Security Constraint [9], which represents, generally speaking, constraints that are
related to the security of the system. A security constraint is defined as a restriction
related to security issues, such as privacy, integrity and availability, which can influ-
ence the analysis and design of a multiagent system under development by restricting
some alternative design solutions, by conflicting with some of the requirements of the
system, or by refining some of the system’s objectives [9].

Since, security constraints can influence the security of the system either positively
or negatively, we further define positive and negative security constraints respec-
tively. An example of a positive security constraint could be Allow Access Only to
Personal Information, while a negative security constraint could be Send Information
Plain Text (not encrypted). A graphical representation of a security constraint can be
found in figure 3.

Secure Entities [9], which represent any secure goals/tasks/ resources of the sys-
tem. A secure goal represents the strategic interests of an actor with respect to secu-
rity. Secure goals are mainly introduced in order to achieve possible security con-
straints that are imposed to an actor or exist in the system. However, a secure goal
does not particularly define how the security constraints can be achieved, since alter-
natives can be considered. The precise definition of how the secure goal can be
achieved is given by a secure task. A secure task is defined as a task that represents
a particular way for satisfying a secure goal. A secure resource can be defined as
an informational entity that is related to the security of the multiagent system. Secure
resources can be divided into two main categories. Those that display some security
characteristics, imposed by other entities, such as security constraints, secure goals,
secure tasks and secure dependencies.

In addition, the graphical representation of the Tropos entities has been extended to
enable it to model the secure entities. Secure entities are indicated by the presence of
an S within brackets before the description of the entity as shown in figure 2.

Fig. 2. Secure Entities

Secure Dependencies [9], represent that a dependency between two actors in-
volves the introduction of a security constraint that must be satisfied either by the
depender, the dependee or both for the dependency to be valid. Secure dependencies
are categorized into depender secure dependency, in which the depender introduces
security constraints for the dependency and the dependee must satisfy the security
constraints for the dependency to be valid, dependee Secure Dependency, in which the
dependee introduces security constraints and the depender must satisfy them, and
double Secure Dependency, in which both the depender and the dependee introduce
security constraints for the dependency that both must satisfy for the dependency to be
valid. A graphical representation of the different types of secure dependencies is
shown in figure 3.

Secure Capabilities, which represent capabilities that the actors (agents) of the
system must have in order to help towards the satisfaction of the security requirements
of the system.

Fig. 3. Secure Dependencies

4 Modeling Security with Secure Tropos

The security-oriented process of secure Tropos is mainly divided into four sub-
activities; (1) The identification of security requirements of a multiagent system; (2)
the selection amongst alternative architectural styles for the system-to-be according to
the identified security requirements; (3) the development of a design that satisfies the
security requirements of the system; (4) and the attack testing of the multiagent system
under development.

To make the process easier to understand, we use a case study from the health and
social care sector, the electronic Single Assessment Process (eSAP) system [9], an
agent based health and social are information system.

The process of identifying the security requirements of the system is basically one
of analysing the security needs of the stakeholders and the system in terms of security
constraints imposed to the system and the stakeholders, and identify secure goals and
entities that guarantee the satisfaction of the security constraints.

The first step in the security process consists of the construction of the security ref-
erence diagram [9]. For instance, the security reference diagram of the eSAP system is
shown in figure 4.

As shown in the figure, the main security features for the electronic single assess-
ment process system are privacy, integrity and availability. Health and social care
professionals are worried that using such a system introduces risks for the privacy of
personal health and social care information. Therefore privacy of health and social
care information, such as the health and social care plans used in the electronic single
assessment process, is the number one security concern in such a system. According to
the Good Medical Practice, patients have a right to expect that you will not pass on
any personal information, which you learn in the course of your professional duties
unless they agree.

Fig. 4. eSAP security reference diagram

Other important concerns are integrity and availability. Integrity assures that infor-
mation is not corrupted and availability ensures the information is always available to
authorised health and social care professionals. If assessment information is corrupted
or it is not available the care provided to the patients by the health and social care
professionals will not be efficient or accurate. Therefore, it is necessary to find ways
to help towards the privacy, the integrity and the availability of personal health and
social care information.

When the security reference diagram is complete, the analysis of the actors of the
multiagent system takes place and security constraints are imposed to the actors of the
system. In addition, security constraints are imposed to the system-to-be, with the aid
of the security reference diagram as shown in figure 5.

- Social
Engineering

 Password
Sniffing

 Eavesdrop-
ping

 Cryptographic
Attack

 Care Plan
Changing

Viruses

 Denial of
Service
Attack

Physical
Attack

Fig. 5. Analysis of the eSAP actor

When the security requirements of the system-to-be and the involved actors have
been identified, the next step in the process consists of identifying an architectural
style for the system that will satisfy the security requirements.

For this reason, we have developed an analysis technique to enable developers to
select among alternative architectural styles using as criteria the non-functional re-
quirements of the multiagent system under development. The technique is based on an
independent probabilistic model, which uses the measure of satisfiability proposed by
Giorgini et al. [16]. Satisfiability represents the probability that a non-functional re-
quirement will be satisfied. Therefore, the analysis involves the identification of spe-
cific non-functional requirements and the evaluation of different architectural styles
against these requirements.

The evaluation results in contribution relationships from the different architectural
styles to the probability of satisfying the non-functional requirements of the system.
To express the contribution of each style to the satisfiability of each non-functional
requirement of the system, a weight is assigned. Weights take a value between 0 and
1. For example, 0.1 means the probability that the architectural style will satisfy the
non-functional requirement is very low (the style is not suitable for satisfying the re-
quirement). On the other hand, a weight of 0.9 means the probability that the architec-
tural style will satisfy the non-functional requirement is very high (the style is suitable
for satisfying the requirement).

The weights of the contribution links are assigned after reviewing different studies,
evaluations, and comparisons involving the architectural styles under evaluation.
When the contribution weights for each architectural style to the different non-
functional requirements of the system have been assigned, the best-suited architectural
style is decided. This decision involves the categorization of the non-functional re-

quirements according to the importance to the system and the identification of the
architectural style that best satisfies the most important non-functional requirement
using a propagation algorithm, such as the one presented by Giorgini et al. [16].

In this example, we consider two architectural styles, a hierarchical style –
client/server - and a mobile code style -mobile agents. As shown in figure 6, each of
the two styles satisfies differently each of the non-functional requirements of the sys-
tem. For instance, the mobile agents style allows more scalable applications (weight
0.8), because of the dynamic deployment of the mobile code.

Fig. 6. client-Server versus Mobile Agents

As concluded from the analysis presented in figure 6 (and elaborated more in [9]),
the client/server style satisfies more the privacy requirements of the system than the
mobile agents style. This is mainly because mobility is involved in the mobile agents
style. Therefore, although protection of a server from mobile agents, or generally
mobile code, is an evolution of security mechanisms applied in other architectural
styles, such as client/server; the mechanisms focused on the protection of the mobile
agents from the server cannot, so far, prevent malicious behaviour from occurring but
may be able to detect it. Consider for example, the Check Information Flow secure
task of the eSAP. The information flow property is more easily damaged by employ-
ing mobile agents (weight 0.4) since possible platforms that a mobile agent could visit
might expose sensitive information from the agent. In the case of the client/server
style (weight 0.8) sensitive information is stored in the server and existing well-proven
security measures could be taken to satisfy the information flow attribute.

The third activity of the security process involves the development of a design that
satisfies the security requirements of the system. For this, a pattern language consist-
ing of security patterns for multiagent systems is proposed and this language is inte-
grated within the development process of the Tropos methodology. Security patterns
document proven solutions to security related problems in such a way that are appli-
cable by non-security specialists. Therefore, the application of security patterns in the
development of multiagent systems can provide effective answers to the above-
mentioned questions, since non-security specialists can rely on expert knowledge and

apply well-proven solutions to solve security problems in a structured and systematic
way. The use of security patterns enables non-security specialists to identify patterns
for transforming the security requirements of their system into design, and also be
aware of the consequences that each of the applied security patterns introduce to their
system. Additionally, because security patterns capture well-proven solutions, it is
more likely that the application of security patterns will satisfy the security require-
ments of the system.

Therefore, we have developed a security pattern language [9] and we have inte-
grated it within our security-oriented process. Figure 7 describes the relationship of
the patterns of the language as well as their relationship with existing patterns. Each
box indicates a pattern, where a solid-line box indicates a security pattern that belongs
to the language developed by this research and a dashed-line box indicates a related
existing pattern. White triangles depict generalisations/ specialisation and solid lines
associations of type uses/ requires.

Fig. 7. The security pattern language

The AGENCY GUARD is the starting point of applying the patterns of the lan-
guage and it is a variant of the Embassy and the Proxy patterns. It uses the AGENT
AUTHENTICATOR pattern to ensure the identity of the agents, the SANDBOX
pattern in order to restrict the actions of agents, and the ACCESS CONTROLER
pattern to restrict access to the system resources.

On the other hand, the SANDBOX pattern can implement the Checkpoint pattern,
and the AGENT AUTHENTICATOR pattern can use the Session pattern to store
credentials of the agent. Moreover, the AGENT AUTHENTICATOR employs the
Cryptographic Key Generation and the Cryptographic Key Exchange patterns for
further cryptographic actions.

To understand how the patterns of the language can be applied during the devel-
opment of a system, from the internal analysis of the eSAP system we have concluded
that Information Flow, Authentication and Access Control checks must be per-
formed in order for the eSAP system to satisfy the secure goal Ensure System Pri-
vacy. In the case of the Information Flow secure task, the eSAP should be able to
control how information flows within the system, and between the system and other
actors. For example, the system should be able to control who requires access to the
system and, by considering the security policy, to grant or deny access to the system.
With respect to the Authentication checks, the system should be able to authenticate
any agents that send a request to access information of the system, and in the case of

the Access Control, the system should be able to control access to its resources. To
meet these goals, The AGENCY GUARD pattern can be used to grant/deny access to
the system according to the security policy, the AGENT AUTHENTICATOR pattern
can be used to provide authentication checks and the ACCESS CONTROLER pat-
tern to perform access control checks as shown in figure 8. The use of these patterns
not only satisfies the fulfillment of the secure goals of the system but also guarantees
the validity of the solution.

Fig. 8. Using the pattern language

The last activity of the security process in secure Tropos involves the testing of the
developed solution against potential security attacks. For this reason, we have devel-
oped a process that is based on security attack scenarios.

A Security Attack Scenario (SAS) is defined as an attack situation describing the
agents of a multiagent system and their secure capabilities as well as possible attack-
ers and their goals, and it identifies how the secure capabilities of the system prevent
(if they prevent) the satisfaction of the attackers’ goals [9].
A security attack scenario involves possible attacks to a multiagent system, a possible
attacker, the resources that are attacked, and the agents of the system related to the
attack. An attacker is depicted as an agent who aims to break the security of the sys-
tem. The attacker intentions are modelled as goals and tasks and their analysis follows
the same reasoning techniques that the Tropos methodology employs for goal and task
analysis. Attacks are depicted as dash-lined links, called attack links, which contain an
“attacks” tag, starting from one of the attacker’s goals and ending at the attacked re-
source.
The process is divided into three main stages [9]: creation of the scenario, valida-
tion of the scenario, and testing and redefinition of the system according to the
scenario. During the creation of a scenario, Tropos goal diagram notation is used for
analysing the intentions of an attacker in terms of goals and tasks, identify a set of
attacks according to the attacker’s goals, and also identify the agents of the system that
posses capabilities to prevent the identified attacks.

When the scenarios have been created, they must be validated. Therefore, during
the scenario validation process software inspections are used. The inspection of the
scenarios involves the identification of any possible violations of the Tropos syntax
and of any possible inconsistencies between the scenarios and the models of the previ-
ous stages. Such an inspection involves the use of validation checklists. Such a check
list has been proposed for instance in [9].

When the scenarios have been validated, the next step aims to identify test cases
and test, using those test cases, the security of the system against any potential attacks.
Each test case is derived from a possible attack depicted in the security attack scenar-
ios. The test cases are applied and a decision is formed to whether the system can
prevent the identified attacks or not. The decision whether an attack can be prevented
(and in what degree) or not lies on the developer. However as an indication of the
decision it must be taken into consideration that at least one secure capability must
help an attack, in order for the developer to decide the attack can be prevented. At-
tacks that cannot be prevented are notated as solid attack links, as opposed to attacks
that the system can prevent and which are notated as dashed attack links.

For each attack that it has been decided it cannot be prevented, extra capabilities
must be assigned to the system to help towards the prevention of that attack. In gen-
eral, the assignment of extra secure capabilities is not a unique process and depends
on the perception of the developer regarding the attack dangers. However, a good
approach could be to analyse the capabilities of the attacker used to perform the attack
and assign the system with capabilities that can revoke the attacker’s capabilities.

For instance, let us consider an interception attack scenario in which a possible at-
tacker wishes to attack the privacy of the system, in other words to obtain information
such as assessment information or a care plan. As identified in the analysis of the
security reference diagram, social engineering, password sniffing and eavesdrop-
ping are the main threats to the privacy of the system. Therefore, the attacker’s main
goal can be decomposed to Read Data and Get Access to the System sub-goals as
shown figure 9. The first sub-goal involves the attacker trying to read the data that it is
transmitted to and from the eSAP system, whereas the second sub-goal involves the
attacker trying to break into the system and gain access to it.

Fig. 9. An example of a security attack scenario

To accomplish the first sub-goal the Attacker should try to read the data transferred
between the Social Worker and the eSAP system’s actors such as the Assessment
Evaluator and the Authenticator. To accomplish the second sub-goal, the Attacker
might use password sniffing or social engineering. In the first case, the Attacker
scans all the resources that flow in the network looking for passwords whereas in the
case of social engineering, the Attacker tries to deceive the Social Worker in order
to obtain valuable information, such as their authorisation details that will allow
them to gain access to the system.

Therefore, for the presented attack scenario, the reaction of the system should be
tested against three test cases, read data, password sniffing and social
engineering. Due to lack of space we only present the read data test case as shown
below.

Test Case 1: read data

Precondition: The Social Worker actor tries to obtain an assessment evaluation. The

Attacker tries to read the transmitted data.

System expected security reaction: The system should prevent Attacker from

(S)Change
Cryptographic
algorithm

 (S)
Ask for Consent

reading any important information.

Discussion: The Attacker will try to read the data from any resource transmitted

between the external agents and the eSAP system. However, curerntly the system and

its external agents have capabilities to encrypt and decrypt data. As a result all the

important data is transmitted across the network encrypted and therefore it is difficult

for the Attacker to read it. However, the Attacker might try to obtain (or sometimes

even guess) the encryption key.

Test Case Result: The system is protected against read data attacks. However, a

recommendation would be for the system to have capabilities to change the

cryptographic algorithm often.

5 Conclusions

This paper presents results from our work to extend Tropos methodology to enable
it to consider security requirements throughout its development stages. During the
process of extending Tropos some very useful observations were obtained. First of all,
the concept of constraints is a natural extension of the Tropos methodology and it
allows for a systematic approach towards the modelling of security requirements. This
is because, although functional and security requirements are defined alongside, a
clear distinction is provided. Secondly, the security diagram allows identifying desired
security requirements very early in the development stages, and helps to propagate
them until the implementation stage, introducing a security-oriented paradigm to the
software process. In addition, the iterative nature of the methodology, allows the re-
definition of security requirements in different levels therefore providing a better
integration with system functionality.

However, this in an ongoing research and more work is required to achieve our
aim, which is to provide a well guided process of integrating security and functional
requirements throughout the software development process of agent-based systems,
using the same concepts and notations throughout the process. Currently we are work-
ing on refining the identified concepts, notations, and the process, and we are integrat-
ing our extensions to the Formal Tropos [6] specification language. This will enable
us to formally evaluate our extensions, since Formal Tropos is amenable to formal
analysis.

References

[1] N. R. Jennings, M. Wooldridge, “Agent-Oriented Software Engineering” in Handbook of
Agent Technology (ed. J. Bradshaw) AAAI/MIT Press 2001

[2] C. Iglesias, M. Garijo, J. Gonzales, “A survey of agent-oriented methodologies”, Intelli-
gent Agents IV, A. S. Rao, J. P. Muller, M. P. Singh (eds), Lecture Notes in Computer
Science, Springer-Verlag, 1999

[3] M. Wooldridge, N. R. Jennings, D. Kinny, “ The GAIA Methodology for Agent-Oriented
Analysis and Design”, Journal of Autonomous Agents and Multi-Agent Systems 3, (3) pp.
285-312, 2000

[4] W. Stallings, “Cryptography and Network Security: Principles and Practice”, Second
Edition, Prentice-Hall 1999.

[5] J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-Driven Development Methodol-
ogy,” In Proc. of the 13th Int. Conf. On Advanced Information Systems Engineering
(CAiSE’01), Interlaken, Switzerland, June 2001.

[6] A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, J. Mylopoulos. A Knowledge Level
Software Engineering Methodology for Agent Oriented Programming. in Proc. of the
Fifth International Conference on Autonomous Agents, Montreal, Canada, 28 May - 1
June 2001.

[7] B. Bauer, J. Müller, J. Odell, “Agent UML: A Formalism for Specifying Multiagent Inter-
action”. In Agent-Oriented Software Engineering, Paolo Ciancarini and Michael
Wooldridge (eds), Springer, Berlin, pp. 91-103, 2001.

[8] H. Mouratidis, P. Giorgini, G. Manson, I. Philp, “A Natural Extension of Tropos Method-
ology for Modelling Security”, In the Proceedings of the Agent Oriented Methodologies
Workshop (OOPSLA 2002), Seattle-USA, November 2002

[9] H. Mouratidis, “A Security Oriented Approach in the Development of Multiagent Sys-
tems: Applied to the Management of the Health and Social Care Needs of Older People in
England”, PhD thesis, University of Sheffield, England, 2004

[10] P. Bresciani, A. Perini, P. Giorgini, G. Giunchiglia, J. Mylopoulos, “Modelling early
requirements in Tropos: a transformation based approach”, Agent Oriented Software En-
gineering II, M. Wooldridge, G. Wei� (eds), Lecture Notes in Computer Science,
Springer-Verlag 2222, 2002

[11] H. Mouratidis, i. Philp, G. Manson, “Analysis and Design of eSAP: An Integrated Health
and Social Care Information System”, in the Proceedings of the 7th International Sympo-
sium on Health Information Managements Research (ISHIMR2002), Sheffield, June 2002

[12] L. Liu, E. Yu, J. Mylopoulos, “Analysing Security Requirements as Relationships Among
Strategic Actors”, in the Proceedings of 2nd Symposium on Requirements Engineering for
Information Security, North Carolina - USA, November 2002.

[13] T. Lodderstedt, D. Basin, J. Doser, “SecureUML: A UML-Based Modelling Lan-
guage for Model-Driven Security”, in the Proceedings of the 5th International Con-
ference on the Unified Modeling Language, 2002.

[14] M.P. Huget, “Nemo: An Agent-Oriented Software Engineering Methodology”, in
the Proceedings of the Agent Oriented Methodologies Workshop (OOPSLA
2002), Seattle – USA, November 2002.

[15] E. Yu, “Modelling Strategic Relationships for Process Reengineering”, PhD the-
sis, Department of Computer Science, University of Toronto, Canada, 1995

[16] P. Giorgini, J. Mylopoulos, E Nicchiarelli, R, Sebastiani, “Reasoning with Goal
Models”, in the Proceedings of the 21st International Conference on Conceptual
Modeling (ER2002), Tampere, Finland, October 2002.

