
Using Risk Analysis to Evaluate Design Alternatives

Yudistira Asnar, Volha Bryl, Paolo Giorgini

Department of Information and Communication Technology
University of Trento, Italy

{yudis.asnar,volha.bryl,paolo.giorgini}@dit.unitn.it

Abstract. Recently, multi-agent systems have proved to be a suitable approach
to the development of real-life information systems. In particular, they are used in
the domain of safety critical systems where availability and reliability are crucial.
For these systems, the ability to mitigate risk (e.g., failures, exceptional events)
is very important. In this paper, we propose to incorporate risk concerns into
the process of a multi-agent system design and describe the process of exploring
and evaluating design alternatives based on risk-related metrics. We illustrate the
proposed approach using an Air Traffic Management case study.

1 Introduction

Multi-Agent Systems (MAS) have recently proved to be a suitable approach for the
development of real-life information systems. The characteristics they exhibit (e.g., au-
tonomy and ability to coordinate their activities), are indeed useful for safety critical
and responsive systems [1]. This is because their subsystems can work independently
and respond to events (e.g., failure, exceptional situation, unexpected traffic, etc.) as
quick and correct as possible. For instance, a disaster management involves several
stakeholders that work autonomously, cooperatively and responsively in unpredictable
environments. In this scenario, agents can be used, for example, to assist stakeholders
in managing traffic during the rescue period and then reduce the probability of chaotic
situations [2].

In a safety critical system, human lives heavily depend on the availability and re-
liability of the system [3]. For this reason, countermeasures are introduced to mitigate
as much as possible the effects of occurring failures. For instance, OASIS Air Traffic
Management system [4], which exploits autonomous and responsive agents, is used to
manage airspace and schedule air traffic flow. In this case, a designer ensures that agents
perform their tasks properly and do not endanger the aircrafts. OASIS implements mon-
itor components/agents that compare the prediction of aircraft locations (i.e., the results
of predictor agents) and the actual aircraft position. In case of a significant discrep-
ancy, the monitor agent notifies the scheduler agent to re-schedule the landing time of
related aircraft. The introduction of a monitor agent corresponds to a countermeasure
to prevent the risk of a collision. However, since designers can not have a complete
knowledge about future events/situations, they are not able to elicit all the necessary
countermeasures.

A different approach is adopted in the Autonomous Nano Technology Swarm
(ANTS) project [1], where three different types of agents (ruler, messenger and worker)

cooperate one another in order to explore asteroids. An important feature of ANTS is
that, since agents can be damaged or even destroyed by the asteroid, rulers have the
ability to re-organize the remaining messenger and worker agents. Basically, this run-
time re-organization corresponds to a countermeasure that is adopted to compensate the
loss of damaged agents. This introduces at design-time the problem of enabling agents
with automatic adaptation capabilities [5] to deal with the effect of failures occurring at
run-time.

In [6, 7], we have proposed an approach to support the design of secure and co-
operative systems. The main idea was to use planning techniques to find and evaluate
possible design alternatives. The objective of this paper is to extend the approach to
MAS design and introducing a suitable risk-based metric for evaluating alternatives.
We introduce a process based on the following steps:

– system actors, their goals and capabilities, goal decompositions, and possible de-
pendency relationships among actors are identified;

– the above information are passed as input to a planner that search for a possible
plan able to satisfy all actors’ goals;

– the plan is evaluated w.r.t. risk, that is it is checked whether the risk associated to
goals is under a predefined threshold;

– if the evaluation reveals that changes are still necessary, the problem is refined, a
new plan is generated and then evaluated.

In safety critical systems, it is important to have a responsible for any decision
taken. This requires that the human designer being part of the decisional process and,
particularly, being the responsible of the approval of the final solution. Our framework is
meant to be a Computer-Aided Software Engineering (CASE) tool that helps a designer
in defining and evaluating each design alternative with respect to the associate risk level.
The approach can also be used to assist the designer in performing the runtime design
of a MAS.

The paper is structured as follows. We start by introducing a case study which then
will be used to illustrate our approach. The approach itself is detailed in Section 3,
where we explain how the problem of selecting a suitable MAS design can be framed
as a planning one, and then in Section 4, where the process of the risk-based evaluation
of the obtained alternative design is explained. The application of our approach to the
case study is presented in Section 5, which is followed by a short overview of the related
work and some conclusive remarks in Sections 6 and 7, respectively.

2 Case Study

In this paper, we use the Air Traffic Management (ATM) case study that is used in
the SERENITY Project1 to validate security and dependability patterns. An ATM is
categorized as a safety-critical system because it is closely related to the safety of human
lives. Therefore, an ATM system is required to be available and reliable all the time of
its operation. However, having a 100% available and reliable system is hardly possible,

1 http://www.serenity-project.org

Fig. 1. Airspace Division between ACC-1 and ACC-2

because there are many events that can obstruct the system which can not be known in
advance (i.e., during the system development phase). For example, in a specific sector,
aircraft traffic can exceed the safety threshold which was not anticipated during the
design of the ATM. These events can compromise the availability and reliability of
sub-components of the ATM system (e.g., radar processor, CWP2).

An Air traffic Control Center (ACC) is a body authorized to provide air traffic con-
trol (ATC) services in certain airspace. These services comprise controlling aircraft,
managing airspace, managing flight data of controlled aircraft, and providing informa-
tion about the situation of the air. Suppose there are two adjacent ACCs, namely ACC-1
and ACC-2 (Fig. 1), where the airspace of ACC-1 is surrounded by the airspace of ACC-
2. The airspace is organized into several adjacent volumes, called sectors. For instance,
the airspace of ACC-1 is divided into sectors (Sec 1-1 and Sec 2-1), and ACC-2 has its
airspace divided into 4 sectors (Sec 1-2, 2-2, 3-2, and 4-2). Each sector is operated by
a team, consisting of a controller (e.g., Sec 1-1 has C1-1 as a controller), and a planner
(e.g., P1-1 is a planner for Sec 1-1). For the sake of communication, several adjacent
sectors in an ACC are supervised by a supervisor (e.g., SU1-1 supervises Sec 1-1 and
2-1 and SU1-2 supervises Sec 1-2 and 2-2). In this scenario, the supervisor role is as-
signed to a human agent, while software agents cover the role of controller and planner.
To simplify, we simple call actor, both human agent and software agent. The supervisor
also acts as a designer and so, responsibly, approve/decline the new plans. The scenario
starts from the normal operation of ATM in which SU1-1 delegates the control of sector
1-1 to team 1 formed by controller C1-1 and planner P1-1.

2 Controller Working Position (CWP) is a set of resources allocated to support a controller to
perform his/her tasks

C1-1 and P1-1 work together providing ATC services to the aircraft in sector 1-1.
C1-1 controls aircraft to guarantee the safe vertical and horizontal separation of each
aircraft, while P1-1 manages the flight data of the controlled aircraft and the airspace of
sector 1-1.

One day during summer holidays, a flight bulletin reports that there will be an in-
crease of the en-route traffic in sector 1-1. According to the analysis made by P1-1, this
goes beyond the capacity of a single controller (C1-1). Thus, SU1-1 needs to re-design
his sectors in a way that the en-route traffic can be handled safely. He can

– divide the airspace into smaller sectors s.t. each controller covers a smaller area and
consequently, the number of sectors that are supervised by SU1-1 is increased; or

– delegate a part of the airspace to the adjacent supervisor (it could be from the same
or different ACC).

Each alternative introduces different requirements. For instance, when dividing the
airspace, SU1-1 needs to ensure the availability of a controlling team (G14, G21 in
Table 1) and the availability of a set of CWP (G15, G22 in Table 1). Conversely,
if SU1-1 decides to delegate a part of his airspace to another supervisor, then SU1-1
needs to define delegation schema (G10 in Table 1) and to have sufficient level of
“trust” towards the target supervisor and his team to manage the delegated airspace.
Moreover, SU1-1 needs to be sure that the target supervisor has sufficient infrastructure
(e.g., radar, radio communication coverage) to provide ATC services in the delegated
airspace.

The details of the ATM case study are presented in Section 5, including organiza-
tional setting and capabilities of each actor. In the following sections, we explain how
to encode the case study as a planning problem, and then how to evaluate and refine the
candidate plan so to maintain the level of risk below a predefined threshold.

3 Planning Domain

Generating design alternatives can be framed as a planning problem: generating a de-
sign alternative means constructing a plan that satisfies the system’s goals. The basic
idea behind the planning approach is to automatically determine the course of actions
(i.e. a plan) needed to achieve a certain goal, where an action is a transition rule from
one state of the system to another [8, 9]. Actions are described in terms of preconditions
and effects: if a precondition is true in the current state of the system, then the action is
performed. As a consequence of an action, the system will be in a new state where the
effect of the action is true.

Thus, to define the planning problem, we need to formalize

– the initial and the desired states of the system;
– the actions of the planning domain;
– the planning domain axioms.

In order to represent the initial state of the system (i.e. actor and goal properties, and
social relations among actors), first order logic is used with conjunctions of predicates
and their negations, specifying the states of the system. To describe our domain we use
the following predicates.

– For the goal properties:
• satisfied(G – goal), which becomes true when the goal G is fulfilled. The

predicate is used to define the goal of the planning problem (i.e., to specify,
which goals should be satisfied in the final state of the system);

• and/or subgoaln(G, G1, G2, ..., Gn – goal) represents the predefined way
of goal refinement, namely, it states that G can be and/or-decomposed into n
and/or-subgoals;

• type(G – goal, GT – goal type) is used to typify goals;
• criticality h/m/l(G – goal) represents the criticality of the goal, one of high,

medium, or low. The criticality level implies the minimum needed level of
trust between the actors when the goal is delegated. For instance, if the criti-
cality of the goal G is high, then it could be delegated from the actor A1 to the
actor A2 only if A1 can depend on A2 for the type of goals which G belongs to
with the high level of trust.

– For the actor properties:
• wants(A – actor, G – goal) represents the initial actor’s desires;
• can satisfy(A – actor, G – goal) and can satisfy gt(A – actor, GT –

goal type) are used to represent the capabilities of an actor to satisfy a goal,
or a specific type of goal, respectively.

– For the actor dependencies:
• can depend on gt h/m/l(A1, A2 – actor, GT – goal type) means that actor

A1 can delegate the fulfillment of the goal of type GT to actor A2, and the trust
level of the dependency between these actors for this specific goal type is high,
medium, or low, respectively.

A plan, constructed to fulfill the goals, can contain the following actions, defined in
terms of preconditions and effects, expressed with the help of the above predicates.

– Goal satisfaction. An actor satisfies a goal if it is among its desires (either initially,
or after the delegation from another actor), and it has the capability to satisfy it.

– Goal decomposition. A goal could be decomposed either into the and-subgoals,
meaning that all of them should be satisfied to satisfy the initial goal, or into the
or-subgoals, which represent alternative ways of achieving the goal.

– Goal delegation. An actor might not have enough capabilities to achieve its goals
by itself and therefore, it has to delegate the responsibility of their satisfaction to
other actors. As was mentioned before, the delegation can only take place if the
level of trust between the actors is not lower than the criticality level required for
the goal to be delegated.

– Goal relaxation. If there is no way to find a dependency relation which satisfies the
required level of trust, then the goal criticality might be relaxed (i.e., lowered). This
can be a risky action, as in many cases it is not safe to lower the level of criticality.
Therefore, to minimize the risk, as soon as the delegation has been performed, the
goal criticality is restored to the original value.

To complete the planning domain, we use axioms which hold in every state of the
system and are used to complete the description of the current state. For example, to

propagate goal properties through goal refinement, the following axiom is used: a goal
is satisfied if all its and-subgoals or at least one of the or-subgoals are satisfied.

We have chosen LPG-td [10], a fully automated system for solving planning prob-
lems, for implementing our planning domain. LPG-td supports the PDDL (Planning
Domain Definition Language) 2.2 specification, which was used to formalize system
states, actions and axioms described above. The details on how and why this planner
has been chosen have been addressed in [6]. We also refer the reader to [6] and [7] for
the details on how the actions and axioms of the planning domain were implemented in
PDDL 2.2.

4 Evaluation Process

After a design alternative, called a candidate plan, is generated by the planner, it should
also be evaluated and modified based on a number of criteria, and finally approved by
a designer. By modifying the candidate plan we mean refining the problem definition
by identifying the actions that should be avoided to get the less risky design alternative.
The refinement of the problem definition is followed by replanning.

Previously, we proposed a way of evaluating a candidate plan, which is based on
the load distribution concerns [7]. It is assumed that the actors want to keep the number
and complexity of actions they are involved in, below the predefined thresholds. In this
work, we propose another form of evaluation, namely adopting a risk evaluation metric.
The goal of the iterative planning-and-evaluation procedure is to select a plan among
the available alternatives that has an acceptable level of risk. In this framework, we
consider two types of risk. The first type is the risk about the satisfaction of a goal, called
satisfaction risk (sat-risk). Sat-risk represents the risk of a goal being denied/failed
when an actor attempts to fulfill it. The value of this risk is represented in terms of the
following predicates: FD (Fully Denied), PD (Partially Denied), and ND (Not Denied).
These predicates are taken from [11], and represent the high, medium, and low level of
sat-risk, respectively. The second type of risk is related to the risk of goal delegation.
It is based on the requirement that the level of trust between two actors should match
the criticality of the delegated goal. For instance, if a link between two agents is highly
trusted, than it can be used for delegating goals of any criticality level, but if the level of
trust of a delegation link is medium then only goals with low and medium criticality
can be delegated through this link, and the risk is introduced when the criticality of a
goal should be lowered before it could be delegated.

The process of selecting a suitable design alternative is illustrated in Algorithm 1,
which should be run twice. In the first execution, the algorithm constructs a plan without
any relaxation actions (i.e., relax=false). If there is no solution then the second execu-
tion is preformed allowing relaxation actions. Some steps in the algorithm are fully
automated (e.g., run planner line 3), while some still need a human involvement (e.g.,
adding the allowed actions to the whitelist in line 7). The algorithm is iterative and com-
prises the following phases: planning, evaluation, and, finally, plan refinement. There
are two evaluation steps in the algorithm: STEP-1 evaluates the risks of goal satisfac-
tions (line 4), and STEP-2 evaluates relaxation actions (line 6). The first execution does
only STEP-1, and if the second execution is necessary, both STEP-1 and STEP-2 are

Algorithm 1 Planning and Evaluation Process
Require: domain {domain description in PDDL}

problem {goal and initial state of the problem in PDDL}
whitelist {a list of allowed action}
relax{allow/not relaxation}

1: boolean finish←false
2: while not finish do
3: plan ←run planner(domain, problem, relax)
4: if not evaluate sat(plan) then
5: refine sat(plan, problem)
6: else if relax and not evaluate act(plan) then
7: refine act(plan, problem, whitelist)
8: else
9: finish ←true

10: end if
11: end while
12: return plan

executed. Each evaluation step is followed by a refinement action (line 5 or 7), which
aims at changing the planner input s.t. during the next iteration it will produce the better
(i.e. less risky) candidate plan. In the following we give details on the two evaluation
steps of the algorithm.

STEP 1: Goal Satisfaction Evaluation

After a candidate plan is elicited (line 3), it should be evaluated and refined, s.t. it meets
the requirements imposed on it (i.e., the level of risk associated with the plan is below
the predefined threshold). The aim of the first evaluation step (line 4 of the Algorithm)
is to assure that sat-risk values of the candidate plan, i.e. the likelihood of each system
goal being denied/failed, are at most equal to the accepted ones, specified by a designer.

By examining the candidate plan, the goal model of each top goal can be con-
structed, as the one in Fig. 3. A goal model shows how a top goal is refined into atomic
tangible leaf goals, i.e. for each leaf goal there is an actor that can fulfill it. Starting from
the sat-risk values of leaf goals, the risk values are propagated up to the top goals with
the help of so called forward reasoning. Forward reasoning is an automatic reasoning
technique introduced in [11], which takes a set of sat-risk of leaf goals as an input.
Notice that sat-risk value depends on which actor satisfies the leaf goal according to
the candidate plan. The algorithm propagates the qualitative values assigned to the leaf
goals along the goal tree up to the top goal, and thus the corresponding value for the top
goal is calculated.

If sat-risk of one top goal is higher than the specified threshold, then the refinement
process needs to be performed. The refinement (line 5) identifies those assignments of
the leaf goals to actors that should be avoided in order to have the sat-risk values of the
top goals within the specified thresholds. The refinement process starts by generating
a possible set of assignment (i.e., sat-risk values of the leaf goals) that results in the
top goals having the sat-risks below the specified thresholds. This set of assignments

is called a reference model. Basically, the reference model is a set of maximum sat-
risk values of leaf goals that results in the top goals, which sat-risks do not violate the
thresholds. If the sat-risk values of leaf goals in the goal model are below the maximum
specified in the reference model, then the sat-risk of the top goals are acceptable. The
reference model can be obtained automatically using backward reasoning [12], which
aims at constructing the assignments of leaf goals to actors s.t. the specified sat-risk
value for the top goals are achieved. According to [12], a goal model is encoded as a
satisfiability (SAT) problem, and a SAT solver is used to find the possible assignments
that satisfy the SAT formula.

By comparing the sat-risk values of leaf goals in the goal model with the corre-
sponding values in the reference model, the riskier goal satisfaction actions are detected
(i.e., the leaf goal in the goal model that has higher sat-risk than the corresponding
value in the reference model). For instance, in Fig. 3 the risk-sat of goal capable
managing airspace(G19) that is satisfied by actor P1-1 is FD (Fully Denied), while
according to the reference model, the value of G19 should be at most PD (partially
denied). Therefore, the problem definition needs to be refined s.t. P1-1 does not satisfy
G19 . However, we can not refine the problem by simply specifying G19 must not be
satisfied by P1-1, because in Fig. 3 the goal model states that the satisfaction of G19

by P1-1 is too risky. Ideally, we specify “the path of actions” from the top goal that lead
to the goal G19 being satisfied by P1-1. To simplify the refinement process, we only
consider one action involving G19 , performed just before P1-1 satisfies it. In case of
Fig. 2(b), such an action (called previous related action) is and decompose G3 into
G18 and G19 , which is performed by P1-1. Thus, the refinement predicate that should
be introduced in the problem definition is the following.

¬(satisfy(P1−1, G19) ∧ and decompose2(P1−1, G3, G18, G19))

After the problem definition is refined, the planner is run again to elicit a new candidate
plan using the refined problem definition. All the above described steps can be done
automatically, without any interference a designer.

STEP 2: Action Evaluation

The second evaluation step (line 6 of the Algorithm) is performed to guarantee that the
relaxation actions in a candidate plan are acceptable/not risky. In our framework, we
assume that relaxing the criticality of a goal from high to medium, or from medium to
low, can be performed safely only by the owner of a goal. We say that goal G is owned
by A if G was initially wanted by A (i.e., in the initial state A wants G to be satisfied). In
this case all the subgoals of G are also said to be owned by A. We use the term further
relaxation to refer to the situation when the relaxation is done by another actor (i.e.,
not the owner). Further relaxation is assumed to be a risky action, but sometimes it is
impossible to find a plan without it. This action could be allowed by the interference of
a designer adding it to the whitelist.

For instance, in the ATM case study SU1-1 intends to increase his airspace
capacity in response to the traffic increase by delegating his airspace (G11)
to SU1-2. As the fulfillment of G11 is critical (the criticality level is high),

SU1-1 needs to have high trust level towards SU1-2 for delegating G11 (i.e.,
can depend on gt h(SU1−1, SU1−2, G11) should be true). Later, SU1-2 refines G11

into the subgoals control the aircraft(G2) and manage the airspace(G3). For sat-
isfying these goals, SU1-2 needs to depend on the controller C1-2 for G2 , and on the
planner P1-2 for G3 , because they are the ones that have the capabilities to satisfy the
corresponding goals. Let us assume the trust level of the dependency of SU1-2 towards
C1-2 for G2 is medium. Thus, SU1-2 needs to further relax the criticality of G2 s.t.
it can be delegated to C1-2.

Basically, the evaluation aims to guarantee that there is no relaxation action taken by
an actor which is not the owner of the goal. Otherwise, the designer needs to explicitly
allow the actor to do this action (i.e., add it to the whitelist). Notice that relaxation
actions are introduced only in the second run of algorithm. During the refinement phase
(line 7) the problem definition is changed to meet this requirement, which is followed
by replanning.

5 Experimental Results

In this section, we illustrate the application of our approach to the ATM case study.
The following subsections detail the case study formalization, and the planning-and-
evaluation process, performed in accordance with Algorithm 1. The aim of the process
is to elicit an appropriate plan for SU1-1’s sector, taking into account the constraints and
the risk of each alternative. The scenario starts with the intention of SU1-1 to increase
the capacity of airspace (G6) as a response to the air traffic increase in sector 1-
1. SU1-1 faces a problem that C1-1 is not available to control (G14) more traffic.
Therefore, SU1-1 needs to modify sector 1-1 without involving C1-1 s.t. the increase
of air traffic can be handled.

5.1 Case Study Formalization

The following inputs should be provided for Algorithm 1:

– A formalized problem definition, which contains all the properties of the actors of
the ATM system, and their goals. The complete list of properties can be found in
Table 2.

– Goals of the planning problem (e.g., satisfy G6 without involving C1-1 in satisfy-
ing G14).

– A list of authorized further relaxation actions (whitelist).
– Risk values of goal satisfaction actions. Table 1 shows all sat-risk values of the

satisfaction actions.
– Accepted risk values (e.g., risk value of G6 is at most PD).

In Table 1, the goal criticality values are presented in column Crit. Goal criticality
(high, medium, or low) denotes a minimum level of trust between two actors that is
needed if one actor decides to delegate the goal to another actor. For instance, goal
manage airspace(G3) is categorized as a highly critical goal, and goal analyze air

PPPPPGoal
Actor

C1-1 C2-1 P1-1 P2-1 SU1-1 C1-2 P1-2 SU1-2
Id. Description Crit.

G1 Manage Aircraft within ACC
G2 Control Aircraft H
G3 Manage Airspace H
G4 Manage Flight Data M PD
G5 Maintain Air Traffic Flow in Peak-Time
G6 Increase Airspace Capacity
G7 Analyze Air Traffic L
G8 Re-sectorize within ACC
G9 Delegate Part of Sector
G10 Define Schema Delegation M ND PD
G11 Delegate Airspace H
G12 Have Controlling Resources
G13 Have Capability to Control the Aircraft ND PD PD
G14 Avail to Control FD ND
G15 Have Control Working Position for Controller H ND PD
G16 Have Authorization for FD Modification M ND ND
G17 Have Capability to Manage FD ND PD
G18 Have Resources for Planning M ND
G19 Have Capability to Manage Airspace FD PD PD
G20 Have Capability to Analyze Air Traffic PD
G21 Avail to Plan ND ND ND
G22 Have Control Working Position for Planner H ND ND

Table 1. Goals Criticality and Satisfaction Risk (Criticality = H: High, M: Medium, L: Low and
sat-risk = Full Denied, Partial Denied, and Not Denied)

traffic(G8)has low criticality. Thus, these goals require different level of trust for being
delegated to another actor.

Moreover, Table 1 shows the risk levels of satisfying a goal when an actor tries to
achieve it. Note that, the sat-risk level of a goal depends on which actor satisfies the
goal. sat-risk takes one of the tree values: FD (Fully Denied), PD (Partially Denied),
or ND (Not Denied). For instance, the table states G19 can be satisfied either by actor
P1-1, P2-1, or P1-2, and each actor has different level of risk (sat-risk) – full, partial,
and partial, respectively. The empty cells in Table 1 imply the actor does not have
capabilities to fulfill the corresponding goal.

Table 2 shows properties of actors and their goals in ATM case study. Namely, it
represents actor capabilities (can satisfy), possible ways of goal refinements (decom-
pose), and possible dependencies among actors (can depend on) together with the
level of trust for each dependency. For instance, actor SU1-1 can satisfy goals G15 ,
G18 , and G22 , and the actor has knowledge to decompose G1 , G5 , G6 , G8 ,
and G9 . And SU1-1 has high level of trust to delegate G2 to C1-1 or C2-2. The same
intuition is applied for the other cells.

5.2 Planning and Evaluation Process

STEP 0: Planning. After specifying the inputs, the planner is executed to elicit a can-
didate plan to fulfill the predefined goals, which is shown in Fig. 2(a). These goals state
that the plan should satisfy G6 , and the solution should not involve C1-1 to satisfy G14

because C1-1 is already overloaded controlling the current traffic. Moreover, the plan-

Actor can satisfy decompose can depend on
type top-goal sub-goals level dependum dependee

SU1-1 G15 And G1 G2, G3 H G2 C1-1, C2-1
G18 And G5 G6, G7 H G3 P1-1, P2-1
G22 Or G6 G8, G9 H G4 P1-1, P2-1

And G8 G2, G3, G4 M G7 P1-1
And G9 G10, G11 M G10 P1-1

L G10 SU1-2
H G11 SU1-2

P1-1, P2-1 G17 And G3 G18, G19 H G22 SU1-1
G19 And G4 G16, G17, G18
G21 And G7 G18, G20

P1-1 G10 L G16 C1-1
G20

P1-2 L G16 C2-1
C1-1, C2-1 G13 And G2 G4, G12, G13 H G15 SU1-1

G14 And G12 G14, G15
G16

C1-1 M G4 P1-1
C2-1 M G4 P2-1

M G4 P1-1
SU1-2 G10 And G11 G2, G3 M G2 C1-2

G15 M G3 P1-2
G22

P1-2 G19 And G3 G19, G21, G22 M G22 SU1-2
G21

C1-2 G4 And G2 G4, G13, G15 M G15 SU1-2
G13

Table 2. List of Actors and Goal Properties for the ATM Case Study. (Level of trust: H: High, M:
Medium, L: Low)

ner should not involve the other ACC (i.e., SU1-2) by avoiding the delegation of G11

to SU1-2 even it is possible in Table 2. Before adopting the candidate plan (Fig. 2(b)),
two evaluation steps explained in previous section should be performed to ensure the
risk of the candidate plan is acceptable.

STEP 1: Goal Satisfaction Evaluation assesses the satisfaction risk of a candidate
plan. The goal model of goal G6 (in Fig. 3) is constructed on the basis of the candidate
plan (in Fig. 2(b)). The goal model shows which actors are responsible for satisfying the
leaf goals. For instance, G19 must be satisfied by P1-1 and, moreover, in this scenario,
G9 is left unsatisfied because the other or-subgoal, G8 , was selected to satisfy G6 .

In this scenario, we assume that the acceptable sat-risk value for G6 is PD. To
calculate the sat-risk value of goal G6 , forward reasoning is performed (i.e., the sat-
risk values of leaf goals in Table 1 are propagated up to the top goal). This reasoning
mechanism is a part of the functionality of the GR-Tool3, a supporting tool for goal
analysis. By means of the forward reasoning, we obtain that the sat-risk of G6 is FD,
which is higher than the acceptable risk (i.e., PD). Thus, the refinement is needed to
adjust the problem definition, so that a less risky plan is constructed during the next
replanning. The refinement starts with the elicitation of a reference model using back-
ward reasoning. The reference model specifies that all leaf goals must have at most PD
sat-risk value in order the sat-risk of top goal G6 not to be higher than PD.

3 http://sesa.dit.unitn.it/goaleditor

(satisfied G6)
(not(satisfy C1-1 G14))
(not(delegate SU1-1 SU1-2 G11))

(a) Goal of Problem Definition

0: (OR DECOMPOSES2 SU1-1 G6 G8 G9)
1: (AND DECOMPOSES3 SU1-1 G8 G2 G3 G4)
2: (DELEGATES SU1-1 C2-1 G2)
3: (AND DECOMPOSES3 C2-1 G2 G4 G12 G13)
4: (SATISFIES C2-1 G13)
5: (AND DECOMPOSES2 C2-1 G12 G14 G15)
6: (SATISFIES C2-1 G14)
7: (DELEGATES C2-1 SU1-1 G15)
8: (SATISFIES SU1-1 G15)
9: (DELEGATES C2-1 P2-1 G4)
10: (DELEGATES SU1-1 P2-1 G4)
11: (AND DECOMPOSES3 P2-1 G4 G16 G17 G18)
12: (SATISFIES P2-1 G17)
13: (DELEGATES P2-1 SU1-1 G18)
14: (SATISFIES SU1-1 G18)
15: (RELAX2L P2-1 G16)
16: (DELEGATES P2-1 C2-1 G16)
17: (SATISFIES C2-1 G16)
18: (DELEGATES SU1-1 P1-1 G3)
19: (AND DECOMPOSES2 P1-1 G3 G18 G19)
20: (SATISFIES P1-1 G19)

(b) The Candidate Plan after STEP 0

Fig. 2. Plan for Increasing Air Space Capacity

By comparing the sat-risks of leaf goals in the goal model with the reference model,
G19 (satisfied by P1-1) is detected to be a risky goal; its sat-risk (in Table 1) is FD
which is higher than the one in the reference model. Therefore, the problem definition is
refined to avoid P1-1 satisfying G19 . As G19 is a subgoal of G3 , the decomposition
action is also negated, as the previous related action, according to the procedure ex-
plained in the previous section. Thus, the problem definition is refined, and the goal of
the planning problem is now of the form shown in Fig. 4(a). Afterwards, the planner is
run to elicit a new candidate plan. Basically, the new candidate plan is almost the same
with the previous plan (Fig. 2(b)), the only difference is in lines 18-20 (see Fig. 4(b)).
Later, this candidate plan is evaluated by going through the next step to ensure all the
actions (especially, further relaxations) are acceptable in terms of risks.

STEP 2: Action Evaluation filters the malicious relaxation actions. The scenario
starts from the goal G6 which is wanted by SU1-1. As all the other goals of the
candidate plan are the result of the refinement of G6 , the owner of all of them is again
SU1-1. Thus, relaxing the criticality of any goals that is performed by any actors except
SU1-1 is seen as a risky action.

For instance, P2-1 relaxes the criticality of G16 (line 15 in Fig. 2(b)) to low instead
of medium. By default this action is a risky one and should be avoided, unless the
designer states explicitly that this action is not risky by adding it to the whitelist. Once
it is considered unacceptable, the goal of the planning problem should be extended with
the negation of the relaxation action (i.e., (not (relax2l P2-1 G1))).

Moreover, the designer can also introduce rules to avoid certain actions. For in-
stance, the designer may prevent C2-1 from delegating G4 to P2-1 (line 9 in

Fig. 3. The Goal Model of Candidate Plan in Fig. 2(b)

(satisfied G6)
(not (satisfy C1-1 G14))
(not (delegate SU1-1 SU1-2 G11))
(not (and (satisfy P1-1 G19)(and decompose2 P1-1 G3 G18 G19)))

(a) Problem Definition Refinement after STEP 1
............
18: (DELEGATES SU1-1 P2-1 G3)
19: (AND DECOMPOSES2 P2-1 G3 G18 G19)
20: (SATISFIES P2-1 G19)

(b) Final Plan for Satisfying G6

Fig. 4. Final Problem Definition and Plan for increase the airspace capacity(G6)

Fig. 2(b)) by adding a new predicate to the goal of the planning problem (namely,
(not (delegate C2-1 P2-1 G4))). For the sake of simplicity all the possible relaxation
actions in the candidate plan are put to the whitelist, so we do not refine the problem
definition any further.

Thus, the last candidate plan to redesign SU1-1’s sector is approved s.t. the traffic
increase can be handled. Moreover, the plan is guaranteed to have risk values less/equal
than the predefined thresholds (i.e., sat-risk of G6 is less or equal than PD).

6 Related Work

Several approaches have been proposed in literature to use risk analysis in the design of
a software system. CORAS [13] has been developed as a framework for risk analysis of
security critical systems. Basically, CORAS consists of context identification, risk iden-
tification, risk analysis, risk evaluation, and risk treatment. CORAS can be integrated

with other risk modeling frameworks, such as Failure Mode, Effects, and Criticality
Analysis (FMECA) [14], Fault Tree Analysis (FTA) [15], Hazard and Operability (HA-
ZOP) [16]. This methodology has been tested with security systems, especially in the
E-Commerce and Telemedicine area. In reliability engineering community, Defect De-
tection and Prevention (DDP) [17] has been proposed to assess the impact of risk and
related mitigation to the system. The DDP framework deals with three types of data:
Objective, Risk, and Mitigation. The objective is defined as the goal the system has to
achieve. The risk is defined as the thing that, once it occurs, leads to the failure of the
objective. Finally, the mitigation is a course of actions that can be applied to reduce the
risk. With the help of DDP the designer can assess how the introduction of a mitigation
impacts to the objectives. In this approach, a designer must construct the system design
before assessing the risk. Our approach, on the other hand, is aimed to automate both
the design and its evaluation.

The field of AI planning has been intensively developing during the last decades,
and has found a number of interesting applications (e.g., robotics, process planning,
autonomous agents, etc.). There are two basic approaches to the solution of planning
problems [8]. One is graph-based planning algorithms in which a compact structure,
called Planning Graph, is constructed and analyzed. In the other approach the planning
problem is transformed into a SAT problem and a SAT solver is used. There exist sev-
eral ways to represent the elements of a classical planning problem (i.e. the initial state
of the world, the system goal, or the desired state of the world, and the possible actions
system actors can perform). The most widely used, and to a certain extent standard
representation is PDDL (Planning Domain Definition Language), the problem specifi-
cation language proposed in [18]. Current PDDL version, PDDL 2.2 [19] used during
the last International Planning Competition [20], supports many useful features (e.g.,
derived predicates and timed initial literals).

A few works can be found which relate planning techniques with information sys-
tem design. In [21] a program called ASAP (Automated Specifier And Planner) is de-
scribed, which automates a part of the domain-specific software specification process.
ASAP assists the designer in selecting methods for achieving user goals, discovering
plans that result in undesirable outcomes, and finding methods for preventing such out-
comes. The disadvantage of the approach is that the designer still performs a lot of
work manually while determining the combination of goals and prohibited situations
appropriate for the given application, defining possible start-up conditions and provid-
ing many other domain-specific expert knowledge. Some works present a planning ap-
plication to assist an expert in designing control programs in the field of Automated
Manufacturing [22]. The system they have built integrates POCL (Partial Order Causal
Link), hierarchical and conditional planning techniques [22, 9]. The authors consider
standard planning approaches to be not appropriate with no ready-to-use tools for the
real world, while in our paper the opposite point of view is advocated, and the off-the-
shelf planner is used.

7 Conclusion

In this paper, we have proposed an approach to incorporate risk analysis into the process
of MASs design. The approach is based on the use of planning to explore the space of
alternative designs and risk-based evaluation metrics to evaluate the resulting solutions.
We argue that the approach is particularly suitable for the design of critical and respon-
sive systems, such as air traffic management, health-care systems, disaster management
(e.g., post-disaster urban planning), traffic management, etc.

The proposed framework is meant to support a designer in generating, exploring,
and evaluating design alternatives either during the initial, classical design, or during
runtime redesign of a MAS. We consider runtime redesign of high importance for mod-
ern information systems, which operates in continuously changing environment and
then require highly adaptable characteristics. Among the limitations of our approach,
we would like to mention that it only supports a centralized viewpoint (i.e., the design-
ers viewpoint), while the different actors of a system may have different priorities and
criticalities. We consider this issue being an interesting direction for future work.

8 Acknowledgments

We would like to thank to Gabriel Kuper, Sameh Abdel-Naby, Hamza Hydri Syed, and
anonymous reviewers for all the useful comments. This work has been partially funded
by EU Commission, through the SENSORIA and SERENITY projects, by the FIRB
program of MIUR under the ASTRO project, and also by the Provincial Authority of
Trentino, through the MOSTRO project.

References

1. Truszkowski, W., Rash, J., Rouff, C., Hinchey, M.: Asteroid exploration with autonomic
systems. In: Engineering of Computer-Based Systems, 2004. Proceedings. 11th IEEE Inter-
national Conference and Workshop on the. (May 2004) 484–489

2. Matsui, H., Izumi, K., Noda, I.: Soft-restriction approach for traffic management under
disaster rescue situations. In: ATDM’06: 1st Workshop on Agent Technology for Disaster
Management. (2006)

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Trans. Dependable Sec. Comput. 1(1) (2004)
11–33

4. Ljungberg, M., Lucas, A.: The OASIS Air-Traffic Management System. In: PRICAI’92: In
Proceedings of the Second Pacific Rim International Conference on Artificial Intelligence.
(1992)

5. Truszkowski, W., Hinchey, M., Rash, J., Rouff, C.: Autonomous and autonomic systems:
a paradigm for future space exploration missions. Systems, Man and Cybernetics, Part C,
IEEE Transactions on 36(3) (2006) 279–291

6. Bryl, V., Massacci, F., Mylopoulos, J., Zannone, N.: Designing security requirements models
through planning. In: CAiSE’06, Springer (2006) 33–47

7. Bryl, V., Giorgini, P., Mylopoulos, J.: Designing cooperative IS: Exploring and evaluating
alternatives. In: CoopIS’06. (2006) 533–550

8. Weld, D.S.: Recent Advances in AI Planning. AI Magazine 20(2) (1999) 93–123
9. Peer, J.: Web Service Composition as AI Planning – a Survey. Technical report, University

of St. Gallen (2005)
10. LPG Homepage: LPG-td Planner. http://zeus.ing.unibs.it/lpg/
11. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal Reasoning Techniques

for Goal Models. Journal of Data Semantics (October 2003)
12. Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and Minimum-Cost Satisfiability for

Goal Models. In: CAISE ’04: In Proceedings International Conference on Advanced Infor-
mation Systems Engineering. Volume 3084., Springer (June 2004) 20–33

13. Fredriksen, R., Kristiansen, M., Gran, B.A., Stolen, K., Opperud, T.A., Dimitrakos, T.: The
CORAS framework for a model-based risk management process. In: Safecomp ’02: In Pro-
ceedings Computer Safety, Reliability and Security. Volume LNCS 2434., Springer (2002)
94–105

14. DoD: Military Standard, Procedures for Performing a Failure Mode, Effects, and Critical
Analysis (MIL-STD-1692A). U.S. Department of Defense (1980)

15. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. U.S Nuclear Regu-
latory Commission (1981)

16. USCG: Risk Based Decision Making Guidelines. http://www.uscg.mil/hq/g-m/risk/e-
guidelines/RBDMGuide.htm (November 2005)

17. Feather, M.S.: Towards a Unified Approach to the Representation of, and Reasoning with,
Probabilistic Risk Information about Software and its System Interface. In: 15th IEEE Inter-
national Symposium on Software Reliability Engineering, IEEE Computer Society (Novem-
ber 2004) 391–402

18. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.,
Wilkins, D.: PDDL – The Planning Domain Definition Language. In: Proceedings of the
Fourth International Conference on Artificial Intelligence Planning Systems. (1998)

19. Edelkamp, S., Hoffmann, J.: PDDL2.2: The language for the classical part of the 4th inter-
national planning competition. Technical Report 195, University of Freiburg (2004)

20. IPC-4 Homepage: International Planning Competition 2004. http://ls5-www.cs.uni-
dortmund.de/ edelkamp/ipc-4/

21. Anderson, J.S., Fickas, S.: A proposed perspective shift: viewing specification design as a
planning problem. In: IWSSD ’89: 5th Int. workshop on Software specification and design.
(1989) 177–184

22. Castillo, L., Fdez-Olivares, J., Gonzlez, A.: Integrating hierarchical and conditional planning
techniques into a software design process for automated manufacturing. In: ICAPS 2003,
Workshop on Planning under Uncertainty and Incomplete Information. (2003) 28–39

