
Auctions Negotiation for Mobile Rideshare Service
Sameh Abdel-Naby

University of Trento - DIT
ARS-LOGICA IT Labs

Email: sameh@dit.unitn.it

Stefano Fante
University of Trento - DIT

ARS-LOGICA IT Labs
Email: stefano.fante@dit.unitn.it

Paolo Giorgini
University of Trento - DIT

Povo (TN), Italy.
Email: paolo.giorgini@unitn.it

Abstract—Rideshare systems allow a substantial number of
people to mutually benefit from using less cars in a specific region.
This would rationalize energy consumption, save money, and
decrease traffic jams and pollution. However, accessibility issues
have prevented these architectures from being widely spread. In
this paper, we present an agent-based Rideshare system that is
accessible via lightweight devices. We use auction mechanism as a
method of negotiation among autonomous and proactive agents,
by this we aim at accelerating agents’ interactions while resolving
end-user composite tasks.

I. INTRODUCTION

Lightweight devices are increasingly showing their neces-
sity and reliability. Cellular phones and similar devices are part
of the new telecommunications era, which made it possible
to virtually carry your office anywhere you go. Nowadays,
people are using pocket devices that allow them to check their
emails, exchange faxes, surf the internet, edit documents and
do shopping. These services are provided through quite simple,
user-friendly and well-developed interfaces, and are costless
with respect to the value of services users are getting.

Rideshare is another service to be mobilized. The way a
Rideshare system works is related to the availability of empty
seats in a car and, the interest of a user to contribute in
the journey cost in exchange of occupying this seat. The
interactions made constitute reliable means of transportation
for many people in an increasing number of countries, and it
is usually provided exclusively by a third-party website that
uses a web-based technique to match service requests.

In classical agent-based rideshare systems [7], users’ desires
are represented by delegated agents, and a super agent is avail-
able to match the service requests these agents are carrying.
This earlier scenario is applying Multi-Agent System (MAS)
techniques to form a Service Oriented Architecture (SOA).
However, several contributions were made to the literature
of Rideshare systems. These contributions has similar notions
but different implementation approaches, besides, they are not
reachable by holders of lightweight devices.

In this paper, we focus our research on enabling lightweight
devices to smartly handle Rideshare service interactions us-
ing software agents and utilizing advanced communication
capabilities. Although there are some restrictions that are
given by users (e.g. time to achieve) and others given by the
technology (e.g. Bluetooth data exchange rate), we apply an
auction negotiation mechanism to increase the number of goals
achieved and the system usability.

The paper proceeds as follows: Section II outlines our
motivation. Section III explains the Rideshare framework.
Section IV introduces the algorithms used to run the auction
among system agents. In Section V we introduce in details the
implemented system. Section VI concludes the paper.

II. MOTIVATING SCENARIO

There are some repetitive and related situations that occur in
our daily life. Looking at one of them, we found that using a
car to move from a place to another will increase the flexibility
to schedule appointments, reliability and comfort. We also
noticed that, on the long run, pollution and stress caused by
traffic jams will badly affect our life.

If a tool is provided to match peoples’ common interests,
it would increase cooperation and simplify lots of our daily
tasks. It is quite common to see a car owner that has empty
seats and commuting daily between two fixed locations (e.g.,
house and work). It is also common to see commuters of public
transportations taking the same route everyday, or people
trying to move between different remote places in irregular
times. In fact, average car occupancy in the UK in 2004 is
reported to be 1.59 persons/car; 1.2 for commuters and 2.1
for holiday [13]; 38% of people traveling in a car in 2004
were unaccompanied drivers, 25% were drivers traveling with
one or more passengers and 36% were passengers. And in
Germany is even less [14].

For example, Bob and Alice are two potential system users
that are located at the train station, while John is another
potential user that is located at the bus stop nearby. Bob
has arrived to the train station driving his car, but Alice and
John do not have cars. All of them are coming from different
locations and again moving to different ones, but it happens
that John and Alice destinations are located on Bob’s way to
work. Moreover, the cost of taking public transportations to
reach Alice and John destinations could be of need to Bob
in exchange of offering them a ride. Bob is now able to use
his cellular phone to offer a ride to John and Alice that were
both using their smartphone or PDA to seek a ride. Intelligent
software agents are now delegated by users to seek and offer
car rides, then agree on a sharing cost, meeting points and
times. According to the preconfigured level of interactivity,
these agents would take decisions on behalf of users and
communicate the final results.

In a classical agent-based Rideshare system, agents’ behav-
ior, level of interactivity and decision making schemes may



Fig. 1. The Three-layer Model

lead to disagreement and imprecision. On the contrary, an
auction mechanism can aid to resolve complex situations; this
mechanism ensures ultimate benefits gaining for both service
supplier and demander.

III. THE RIDESHARE FRAMEWORK

The architecture we implemented is offering users of
lightweight devices a complete Rideshare service package, it
consists of a several layers that are combined together to form
the general architecture of the running MAS. This architecture
is accessible via Bluetooth-enabled lightweight devices. We
have chosen Bluetooth as a major communication method,
yet users can use SMS, GPRS/UMTS or a Web interface to
interact with the system.

Users of Andiamo can access the system through Bluetooth
access points that are directly connected to the Multi-Agent
platforms. For each access point we have an implemented
Multi-agent system where Personal Agents (PA) of car owners
and ride seekers interact and negotiate potential rides.

As shown in Fig. 1, our framework has three different layers.
1) The agent platform, which is based on JADE framework.
2) The Multi-Agent architecture including the Implicit Cul-

ture (IC) part.
3) The top layer is the handler of user requests and the

interface line, which is the Rideshare service management
method. Further on, we explain them in details.
The MAS Architecture Layer is implemented using JADE
(Java Agent Development framework) [1], which is a FIPA-
compliant [2] framework for MASs development. JADE pro-
vides: (1) an Agent Management System that allow us to create
agent containers in distributed hosts, (2) a Directory Facilitator
(DF) that provides a yellow-pages service, and (3) a Message
Transport System that handles agents communications.

This architecture layer is responsible of receiving and pro-
cessing users’ requests. A one-to-one correspondence between
agents and mobile devices is established throughout this phase.
Each agent is identified by a unique Bluetooth address of the
corresponding mobile device. It is possible for a single device
to have multiple PA that are initiated through diverse access
points. When a user request is received, the platform checks
whether the PA of this specific device exists. If not, a new
PA is created. Each PA communicates and interacts with other

Fig. 2. User-Request Elaboration Process

agents in the system in order to find “partners”, the PA remains
wandering until at least one user request is fulfilled.

1) Interface Agents: Interface Agents (IA) employ certain
techniques to provide assistance to a user dealing with a
particular computer application [6]. In Andiamo, each IA has
its main features, which are: knowledge acquisition, auton-
omy and collaboration. At this phase, IAs are managing the
creation of new service requests. These agents are recognized
by the system as ‘AddNewServiceAgent’ and they receive
from the preceding layer the service request including user
details parameters (Bluetooth address, user information, and
service request details). Later on, they transmit this data to
the corresponding PA and they remain in the system only to
achieve this action and then vanish.

A new agent is created for every service request. The
transmission protocol between a PA and an IA is summarized
in four main steps. 1) The NewService Request that is issued
by the IA and directed to the PA. 2) The acknowledgment
response from the PA. 3) NewUserInfo that is sent again from
the IA to the PA. 4) The final “accept” message from the PA
to the IA.

2) Personal Agent: These agents represent the system users
and the work done on their behalf. The interactions of these
agents include two main parts: (1) the elaboration of users’
requests, and (2) the negotiation among agents. The PA that
elaborates a request for a ride is called Seeker Agent (SA
while a PA that elaborates a ride offer is called Offerer Agent
(OA). The mechanism used for agents’ negotiation will be
explicitly illustrated in Section IV.

3) Agents Interactions: In Fig. 2 we present the interaction
protocol used by agents during the request elaboration phase.
On each platform there is a dedicated agent, called Expert
Agent (EA), which contains the System for Implicit Culture
Support (SICS) [5][8]. The SICS consists of three components,
1) the Observer, which uses a database of observations to
store information about actions performed by users in different
situations, 2) the Inductive Module, which analyzes the stored
observations and applies data mining techniques to find a
theory about the community culture, 3) the Composer, which
exploits the observations and the theory in order to suggest
actions in a given situation. In Andiamo, the use of the IC
framework (Implicit Culture Agent, Fig. 1) is to let the system
suggests the meeting points that are frequently used by other
system users and observed by the system. More details about



Fig. 3. A Typical Rideshare Transmission Protocol

the IC framework are available in [9].
After a PA receives its user’s request (step 1), it sends it

to the EA (step 2). On the EA side, an observer component
of the SICS extracts data from the request and stores it in
the database of user’s observed behaviors (step 3). Composer
component estimates the real value for parameters and if the
input is incomplete or wrong (step 4). For the elaboration pro-
cess, the Composer uses the information about the past user’s
actions, obtained from Observer and analyzed by Inductive
module. Finally, the user’s PA receives back the elaborated
request (step 5), which it processes during the second phase.

SICS needs to gather information about users behavior. To
observe user’s behavior, EA extracts data from the requests it
gets from the PA. Two other additional sources of observation
could be added. The first is the database where the results of
agent negotiations are stored. This storing takes place every
time two PAs agree on sharing a trip and send their proposals
to the database. The EA extracts necessary information (e.g.,
departure, arrival place and meeting points) from the proposals
and stores them in its internal database. The second source
is the user’s feedback repository. When the ride is finished,
the user gives feedback to the other user(s). His evaluation
is stored in the mobile phone/PDA and is sent to the EA as
soon as the user establishes connection with the corresponding
server via his mobile device.

The interaction mechanism used in Andiamo is based on
the following parameters of the trip: Request Type, Passenger
Type. Departure Time, Departure Date, Departure Place, De-
parture Meeting Points. Arrival Place, Arrival Meeting Points.
Offset, User Feedback, minRequested/maxOffered Money (con-
tribution for the ride) and Number of Seats. This applies to
OA as much as to a SA.

In Fig. 3 a typical Rideshare service transmission protocol
is demonstrated. The Multi-Agent platform is located to serve
the interactions between an OA and a SA. A sequence of steps
is taken between both, offerer and seeker, in order to achieve
a successful Rideshare agreement. In addition, the possibility
to apply an automatic or a semi-automatic service mode
implies that the interaction between two agents can be, either
interrupted to prompt an inquiry to the user, or self-decision
making. Following to that, we describe the significance of
negotiation and we consider its automatic service model.

4) Service Publication: Within the JADE DF, every PA
publishes its carried service requests. If these requests are
recognized by the system and that PA is identified, then the
service will be registered. The initial interaction starts when
a SA tries to find a OA with similar destinations, day and
time of departure and with a feedback greater than or equal to
the desired value. Then, the SA will contact every OA found
by the system and consequently, communicates with end-user
the retrieved data. Notably, if the value of the feedback is less
than the requested value, it is possible to contact back the user
asking a permission to decrease the requested feedback value
so an agreement could be reached. The same thing happens
for the time and other similar parameters.

IV. THE AUCTION-BASED NEGOTIATION

Given a set of lightweight devices that are capable of com-
municating a service request with central Service Oriented
Architecture (SOA) via Distributed Access Points (DAPs),
and given that these DAPs and central servers are providing
mobile users with location-based service. Here, lightweight de-
vices are tools to clarify users’ preferences. When user inserts
his offer/request, a particular configuration file is automatically
created on the device side. Subsequently, when a Bluetooth
connection is established with a server, the lightweight device
links with the SOA and the file is transferred.

Eventually, a phase where system verification occurs is
placed. The arrival of a new agent to the server side requires
the running MAS to verify whether this agent is new and to
be bootstrapped or it already exists and it means to update
the behavior of a previously running agent. A group of
autonomous agents that are delegated by several users to
achieve varied tasks in different times is formed at the server
side of the architecture. Given that some of the tasks to be
achieved are complex and require agents coordination, thus a
negotiation scenario that requires agent-to-many is established.

Algorithm 1 is the algorithm used on the OA side to invoke
and manage a specific auctioning situation. From line 1
to line 3, both OA variables, bestValue and numLoop,
are initially set to ‘0’. In line 4, the OA requests the
SA to start the auction by sending the value of the best
offer previously obtained during the pre-offer session. From
line 5 to line 7, the OA waits to receive new offers from
all involved SAs, and a ‘val’ is created as a function to
calculate the currently obtained best-offer-value.

From line 8 to line 10, if the algorithm had its first
round and a ‘val’ is gained, the ‘bestvalue’ in line
1 is now updated with the value of ‘val’ and the number
of loops ‘numLoop’ is incremented. Otherwise, since it
is not the first loop, from line 11 down to line 19,
the OA checks whether the ‘val’ function is increasing in
comparison with the previously obtained best value or not.
If ‘val’ is greater, the value obtained from the concerned
SA is communicated with other SAs and, they are asked to
communicate new offer if applicable, then the algorithm is
restarted, line 14 and line 15. If the ‘val’ is less or
equal to the best value previously obtained, the auction is



Offerer Agent procedure()
1: bestValue = 0;
2: numLoop = 0;
3: auctionIsOpen = true;
4: askSAToStartAuction(bestPreOffer);
5: while (auctionIsOpen) do
6: waitForOffers();
7: val = calculateBestValueOfFunction();
8: if (numLoop == 0) then
9: bestValue = val;
10: numLoop++;
11: else
12: if (val > bestValue) then
13: bestValue = val;
14: requireNewOfferToSeekers(bestValue);
15: numLoop++;
16: else
17: if (val <= bestValue) then
18: quitAuction();
19: informWinners();
20: end while
21: quitAuction();

Algorithm 1 The procedure taken by the Offerer Agents.

suspended and the best-bid SA wins (the ‘bestValue’),
line 17 to line 19. Finally, the algorithm terminates and
the auction scenario is ended, line 20 and 21. Later to that,
we explain the SA behavior in response to OA.

Algorithm 2 is used on the SA side to determine the signif-
icance of its role in the impending auction. In line 1 and
line 2, a variable ‘SABestOffer’ that carries the SA
best offer value is created and set to ‘0’. A variable ‘sent’
is initially set to ‘false’ and it changes to ‘true’ only
after a SA has communicated his offer. From line 3 to
line 6, SA holds its offer transfer until a communication
was received from the OA asking for an auction participation.
The SA puts the results from the evaluation function into the
‘decision’ variable. From line 7 to line 9, if the SA
accepts the call for auction, a self-revision for the holding
parameters is made. This revision refers to the SA insistent
to obtain the auctioned item; therefore, it is made with the
intention to show extra negotiation flexibility. The part from
line 10 and down to line 13 refers to the comparison
made by the SA to put together the newly obtained value and
the existing one. If the new value obtained is greater than
the previous one and greater than the ‘bestOffer’, the
future offered value ‘SABestOffer’ is set to be new one
‘newVal’, and the offer is sent to the concerned OA.
Line 14 to line 16, if the self-revision made by the SA
has yielded a disappointing result and the value gained is
the same as the previous one, this specific SA does not send
the previous value if ‘modificationArePossible’
is ‘true’. The SA continues to review the carried
parameters until ‘modificationArePossible’
becomes ‘false’ or it communicates new best offer. If
‘modificationArePossible’ stays on ‘false’
and parameters are not sent, SA communicates same offer.
However, from line 17 to 19, if SA refuses the auction

Seeker Agent procedure()
1: SABestOffer = 0;
2: sent = false;
3: while(auctionIsOpen) do
4: sent = false;
5: bestOffer = waitForRequest(bestPreOffer);
6: decision = decideIfAcceptOrRefuse();
7: if (decision == accept) then
8: while(modificationsArePossible && !sent) do
9: newVal = reviewParameters();
10: if (newVal>SABestOffer&&newVal>bestOffer) then
11: SABestOffer = newVal;
12: sendOffer(SABestOffer);
13: sent = true;
14: if (!sent && !modificationsArePossible) then
15: sendOffer(SABestOffer);
16: end while
17: else
18: if (decision == refuse) then
19: quitAuction();
20: end while
21: quitAuction();

Algorithm 2 The procedure taken by the Seeker Agents.

call, the algorithm terminates. If the user has an inflexible
behavior, the algorithm passes the first condition on if
(decision == accept) but the successive while
(modificationArePossible && !sent) return
‘false’. The method ‘decideIfAcceptOrRefuse’
return ‘refuse’ if for instance, a SA has a lot of time
before the deadline to achieve the task; therefore, it postpones
auction participation. Finally, the algorithm is terminated and
the auction scenario is ended, line 20 and 21.

Auctioning among agents requires high level of agent-to-
user interactivity and increased level of network resources
consumption; therefore, agents’ intelligence appears when a
repetitive scenario occurs. If system user is configuring the
mobile-based application to repeat the same service request
on daily or weekly basis (e.g., common in mobile news
exchange service or carpooling), the created demanding agent
would participate in system auctions only if needed. Once
an agreement is settled between a specific supplier and a
demander at a certain price, the next time this demander agent
will first look-up the very exact supplier agent, which has
potential agreement than others in early agreement. This is
due to learning agent behavior that maintains an array that
saves last successful agreement details.

V. RIDESHARE SYSTEM LAYER

In this section we describe the general architecture used for
our service delivery. We start from system requirements to the
various sub-components and their interaction. The architecture
is obtained by extending and customizing ToothAgent [3] [4]
Used-Books offering system that is able to communicate with
mobile users through a Bluetooth connection and exchange
useful information corresponding to a student’s interests lo-
cated in a university. Applying the ToothAgent architecture
in our service model makes the centralized servers offer the



Fig. 4. Mobile-to-Service Accessibility Scenario

Rideshare service instead.

A. System Components

• The mobile device communicates the user’s requests
with the servers and receives the results.

• The distributed servers. Each of them contains: 1)
a Multi-Agent platform with PAs each of which is
representing a single user, 2) a database where results
are archived, 3) an interface responsible for establishing
connections with mobile devices and for redirecting the
users’ requests to the corresponding personal agents.

• The central services database, accessible via web.
It contains information about all the servers and their
properties, such as name, location, etc. The DB also stores
the information about users registered to the system.

Fig. 4 illustrates the general architecture of the system and
the interaction among its components. The connection between
the mobile device and the server is established through Blue-
tooth but, as we say in Section II, it can be established also
through SMS or GPRS/UMTS. In particular, a user’s cellular
phone communicates to the server all the requests, and then
receives back the results. The cellular phone may also receive
inquiries about a possible modification in the decisions taken
by system users and re-communicate the reply with server.
Moreover, cellular phone can be used to send the partner
evaluation score, which will be reflected in the future feedback
value for whoever will offer/seek a ride. From the server side,
a contact is made to the central service DB to check the user’s
information (age, feedback, etc). Later on, the server updates
the offerers and seekers reputation value. The central DB is
responsible for storing all the information related to specific
service request and the interactions made by its two PAs.

B. Service Accessibility

Three steps for a user to access the services: (1) to complete
a mobile-based identification form; (2) to run the Bluetooth
application on the mobile device, and (3) to operate a certain
function to activate the required service. The application is
written in Java and uses JSR-82 [11] and JSR-120 [12] which
are the Bluetooth and the Wireless Messaging API for Java.

Fig. 5. Service Accessibility

The application starts a continuous search for Bluetooth-
enabled devices in the neighborhood and whenever it finds
a server, the software on the device establishes a connection
with the server (step 2) and sends the requests related to the
Rideshare services (step 3). The request is then processed by
the server and the results are sent back to the user (step 4 -10).
The mobile device stores the server’s address to keep track of
the contacted servers (see Fig. 4).

Fig. 5 shows the protocol we use for the interaction between
different components. A specific communication module on
the server is responsible for managing the interaction with the
mobile device. This module receives the Bluetooth address
and the password from the mobile device (steps 1 and 3) and
checks in the platform running on the server whether a PA is
assigned to that mobile device (step 4). The module employs
the Bluetooth address and the password to map the mobile
device with a specific PA. If there is no PA previously assigned
to this user, the communication module connects to the central
services database and verifies whether the user is registered to
the system (steps 5–6). In case of a positive response, it creates
a new agent and assigns it to the mobile device user (step 8).
Then, the mobile device sends the configuration file to the
communication module (step 9), which forwards all the user
requests to the appropriate PA (step 10).
The PA then starts interacting with other agents on the
platform trying to satisfy all the user requests (step 12). In
our example a PA receives one or more requests for finding
or asking rides. If the agent reaches an agreement with another
agent about their users requests, it stores the results locally in
the server database (step 13). Later the results could be sent
back to the user (steps 14–18).

C. Pending Results Retrieval

When a connection between a server and a mobile device
is established, the communication module sends to the mobile
device the IP-address of the server (step 2 in Fig. 6). The
mobile device stores the IP addresses of all the visited servers
in an XML file that is used later on to retrieve all pending



Fig. 6. Pending Results Retrieval

results. The format of the results produced by the PA may
contain the request identifier, contacts (e.g. phone number)
of the users interested to share the ride, the departure time,
etc. If the user doesn’t want to use the SMS service, he/she
receives the results immediately in his/her mobile device, but
only if he/she is still within the Bluetooth server range. In
this case, the communication module checks the availability
of the mobile device and sends across the results stored in the
internal server database by the corresponding PA.

Fig. 6 shows the interaction protocol of retrieving pending
results via mobile device. Considering our running example,
a situation in which a user is close to the server of the train
station. After establishing the connection, the mobile device
sends the list of IP-addresses of all the previously visited
servers (e.g. university servers, city center servers, etc.) to the
train station server. The communication module of the server
sends the Bluetooth MAC address of the mobile device to
all listed servers (step 3). In turn, the communication module
of each server extracts from the internal database all the
stored results related to that user and sends them back to the
requester server (steps 4–7). All the results are collected by the
communication module and finally sent to the mobile device
(steps 8–10). If the mobile device is no longer connected
to the server (e.g., the user has left the train station), the
retrieval process will fail and the results will be cancelled.
Yet these results will still be accessible via the original servers.
Therefore, as we already said, a possibility for the server to
communicate with the user through SMSs is achievable.

D. Experiment Facts

We tested the system using Nokia 6630, N73, N70, 6600,
Motorola v3 and Sony-Ericsson P910 mobile phones and
PC/Server equipped with generic Bluetooth adapter. Bluetooth
communications have been implemented using BlueCove [10]
which is an open source implementation of the JSR-82 Blue-
tooth API for Java. We have tested the system on different
scenarios, and in those circumstances we have involved a
number of people (students of the university, workers and
citizen). From these tests, we have obtained significant results
which were stored as reference. We notice the time to obtain an
agreement between two agents is the same for every situation.
In the cases in which there are more seekers than the seats

offered by the offerers, the agents winning the auction are
always the stronger agents (i.e. the agents that offers much
money, that have an higher feedback, etc.). A limitation of
this model, however, is the lack of a monitoring process of
the number of active agents in single MAS.

VI. CONCLUSION

Negotiation among agents that are serving computer based
applications differs from this used for lightweight devices.
We are rapidly approaching the era of lightweight services
and a great focus and an immediate redirection is realized
towards the achievement of cooperative agents in mobile-
based service architectures. In this paper we presented an
implemented application of a Mobile-based Rideshare service
application where Multi-Agent system and Bluetooth and other
wireless communication technologies are combined to support
co-localized communities of users. We discussed the archi-
tecture of the Multi-Agent platform applied for our system,
the specific protocols used and the algorithms that have been
implemented to realize the Agents interaction. We recommend
a verification process of system scalability before real-life use
and a deep test of its performance with a considerably high
number of users and for a long period of time.

ACKNOWLEDGMENT

Partially involved projects are: PAT (UNIQUIQUE SUUM,
MOSTRO, STAMPS), EU-SERENITY and PRIN-MEnSA.

REFERENCES

[1] Fabio Bellifemine and Giovanni Caire and Dominic Greenwood, Devel-
oping Multi-Agent Systems with JADE. Wiley, February 2007.

[2] OBrien, P and Nicol, R, FIPA - Towards a Standard for Software Agents.
In: BT Technology Journal, Vol.16:3, pages 51-59, 1998.

[3] Bryl Volha, Giorgini Paolo, Fante Stefano, Toothagent: a Multi-Agent
System for Virtual Communities Support. In the Proceedings of the eighth
International Bi-Conference Workshop on Agent-Oriented Information
Systems (AOIS-2006), 2006.

[4] Bryl Volha, Giorgini Paolo, Fante Stefano, An Implemented Prototype of
Bluetooth-based Multi-Agent System. In the Proceedings of WOA 2005:
6th AI*IA/TABOO Joint Workshop “From Objects to Agents”, 2005

[5] Alexander Birukov and Enrico Blanzieri and Paolo Giorgini, Implicit: An
Agent-Based Recommendation System for Web Search, In the Proceedings
of the 4th International Conference on Autonomous Agents and Multi-
Agent Systems, 2005.

[6] P. Maes and R. Kozierok, Learning Interface Agent, The Eleventh
National Conference on Artificial Intelligence, Washington D.C., MIT
Press, 1993.

[7] Amit B. Kothari, Genghis - A Multiagent Carpooling System, B.Sc.
Dissertation work, submitted to the University of Bath, May 11, 2004.

[8] E. Blanzieri and P. Giorgini and P.Massa and S. Recla, Information access
in Implicit Culture Framework, In the Proceedings (on line) of the ACM
SIGIR Workshop on Recommender Systems, 2001.

[9] A. Birukou and E. Blanzieri and V. D’Andrea and P. Giorgini and N.
Kokash and A. Modena, IC-Service: A Service-Oriented Approach to the
Development of Recommendation, In the Proceedings of the 22nd Annual
ACM Symposium on Applied Computing ACM Press, 2007.

[10] http://sourceforge.net/projects/bluecove/
[11] http://www.jcp.org/en/jsr/detail?id=82
[12] http://www.jcp.org/en/jsr/detail?id=120
[13] Other factors affecting travel, UK department of transport,

http://www.dft.gov.uk/pgr/statistics/datatablespublications/personal/
mainresults/nts2004/sectionsixotherfactorsaffect5253

[14] Dynamishe Fahrgemeinschaften. eNotions,
http://www.m21-portal.de/Verkehrsbereiche/detail.php?detail=/projekte/
2005 08 16 15 28.php


