
ST-Tool: A CASE Tool for Security Requirements Engineering∗

Paolo Giorgini
University of Trento
giorgini@dit.unitn.it

Fabio Massacci
University of Trento
massacci@dit.unitn.it

John Mylopoulos
University of Toronto
jm@cs.toronto.edu

Nicola Zannone
University of Trento
zannone@dit.unitn.it

Abstract

Security Requirements Engineering is emerging as a
branch of Software Engineering, spurred by the realization
that security must be dealt with early on during the require-
ments phase. We propose ST-Tool, a CASE tool developed
for modeling and analyzing functional and security require-
ments.

1 Introduction

Software designers have recognized the need to integrate
most non-functional requirements (such as reliability and
performance) into the software development processes, but
security still remains an afterthought. This often means that
security mechanisms have to be fitted into a pre-existing de-
sign which may not be able to accommodate them due to
potential conflicts with functional requirements or usability.

This has spurred a number of researchers to model se-
curity requirements into “standard” software engineering
methodologies. The major limitation of many proposals is
that they treat security in system-oriented terms. In other
words, they are targeted tomodel a computer systemand
the policies and access control mechanisms it supports. In
contrast, to understand the problem of security engineering
we need tomodel the organizationand the relationships be-
tween all involved actors.

This paper presents ST-Tool, a CASE tool for design
and verification of functional and security requirements. It
has been designed to support the Secure Tropos methodol-
ogy [3]. Main goals of the tool are:

• Graphical environment: a visual framework to draw
functional and security requirements;

∗This work has been partially funded by the IST programme of the EU
Commission, through an FET under the IST-2001-37004 WASP project,
by the FIRB programme of MIUR under the RBNE0195K5 ASTRO
project, also by the MOSTRO project funded by the Provincial Author-
ity of Trentino. We thank Alberto Siena for supporting the development of
ST-Tool.

• Formalization: support to translate models into formal
specifications;

• Analysis capability: a front-end to external tools for
formal analysis.

2 Background

Secure Tropos [3] is an agent-oriented software develop-
ment methodology, tailored to describe both the organiza-
tion and the system with respect to functional and security
requirements. Secure Tropos extends the Tropos method-
ology [1] and has the concepts of actor, service (i.e. goal,
task, resource) and social relationships for defining the obli-
gations among actors. A description of these concepts is
provided in [3].

Various activities contribute to the acquisition of a first
requirement model:

Actor modeling, which consists of identifying and analyz-
ing both environment and system’s actors.

Trust modeling, which consists of identifying actors
which trust other actors for services, and actors which
own services.

Delegation modeling,which consists of identifying actors
which delegate to other actors the permission and/or
execution on services.

Once the stakeholders have been identified, along with
their goals and social relations, the analysis proceeds in or-
der to enrich the model with further details. Goal refinement
rests on the analysis of actor goals and is conducted by us-
ing AND/OR decomposition.

Due to lack of space, we have focused on the key mod-
eling aspects of the framework and refer to [3] for the intro-
duction of the formal framework based on Datalog.

3 Overview of ST-Tool

ST-Tool is mainly composed of two parts: ST-Tool ker-
nel and external solvers. ST-Tool kernel has an architecture
comprised of three major parts, each of which is comprised



Graphical−layer
Manager

Data−layer
Manager

Integrity
Checker

FormalTropos

Datalog
Front−end

GUI

Editor

Data Model

Datalog

Formal Languages & Analysis

Solvers

ST−Tool

Figure 1. The Architecture Overview

Figure 2. ST-Tool

of modules. Next, we discuss these modules and their inter-
connections. In Fig. 1, the modules of ST-Tool are shown,
their interrelations are also indicated.

ST-Tool provides a graphical user interface (GUI),
through which all its components are managed. A screen
shot is shown in Fig. 2. The GUI’s key component is
the Editor Module. This allows designers to edit Secure
Tropos models as graphs where nodes are actors and ser-
vices, and arcs are relationships. A second component is the
Graphical-layer Manager (GM) Modulethat aims to man-
age graphical objects. It supports goal refinement by asso-
ciating a goal diagram with each actor. Further, GM permits
to display one or more views of a diagram at the same time
(dependency model, delegation model, trust model).

The Data-layer Manager (DM) Moduleis responsible
for maintaining data corresponding to graphical objects.
Its main task is to manage misalignments between rela-
tionships and their graphical representation. A support for
detecting errors and warnings during the modeling phase
is provided by theIntegrity Checker Module. Integrity
Checker reports errors such as “orphan relations” (i.e. in-
complete relations) and “isolated nodes” (i.e. services not
involved in any relations). Warnings are different from er-
rors since designers may be perfectly happy with a design
that does not satisfy them. Integrity Checker reports warn-
ings when more than one service have the same name.1

1More than one service with the same name are needed to model dele-
gation and trust chains.

After drawing so many nice diagrams, designers may
want to check whether the model satisfies some general de-
sirable properties. The tool allows an automatic transforma-
tion from Secure Tropos graphical models into Datalog and
Formal Tropos [2] specifications. These are performed by
two different modules: theFormal Tropos Moduleand the
Datalog Module. The resulting specifications are displayed
by selecting the corresponding panel. Since the formal se-
mantics of Secure Tropos is based on Datalog, we mainly
focus on Datalog Module. The intuitive descriptions of sys-
tems are often incomplete, and need to be completed for
a correct analysis [3]. TheDatalog Front-end (DF) Mod-
uleprovides support for model completing and checking by
using external Datalog solvers. Essentially, DF permits de-
signers to select properties to be verified and to specify ad-
ditional security policies. Once designers are confident with
the model, the resulting Datalog specification is verified by
Datalog solvers with respect to the properties that designers
want to check. Then, the solver output is parsed by DF in
order to present it in a more user-readable format.

4 Conclusion

We have already used the tool to model a comprehensive
case study on the compliance to the Italian legislation on
Privacy and Data Protection by the University of Trento,
leading to the definition and analysis of an ISO-17799-like
security management scheme [4].

Future work will involve a front-end with T-Tool [2] for
automatically verifying Formal Tropos specification. Fur-
ther, Secure Tropos is still under work, so is ST-Tool,
too. We are also considering to integrate our tools into the
ECLIPSE platform.

References

[1] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini. TROPOS: An Agent-Oriented Software Develop-
ment Methodology.JAAMAS, 8(3):203–236, 2004.

[2] A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopou-
los. Specifying and analyzing early requirements: Some ex-
perimental results. InProc. of RE’03, page 105. IEEE Press,
2003.

[3] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Re-
quirements Engineering meets Trust Management: Model,
Methodology, and Reasoning. InProc. of iTrust’04, LNCS
2995, pages 176–190. Springer-Verlag, 2004.

[4] F. Massacci, M. Prest, and N. Zannone. Using a Se-
curity Requirements Engineering Methodology in Practice:
The compliance with the Italian Data Protection Legislation.
Comp. Standards & Interfaces, 27(5):445–455, 2005. An ex-
tended version is available as Technical report DIT-04-103 at
eprints.biblio.unitn.it .


