
Detecting Conflicts of Interest∗

Paolo Giorgini, Fabio Massacci, John Mylopoulos, Nicola Zannone
University of Trento

name.surname@dit.unitn.it

Abstract

System vulnerabilities are often caused by the presence
of conflicts within the organization where the system-to-be
will eventually operate. In particular, conflicts of inter-
est are very harmful since actors can exploit their posi-
tions/roles relative to the system for gaining personal ad-
vantage. Capturing and resolving such conflicts is a neces-
sary condition for developing secure information systems.

In this paper, we show how conflicts of interest can be
formally detected during requirements analysis. This al-
lows system designers to investigate the causes for which
conflicts may occur in an organization. Thereby, they can
better understand the organizational structure and so pro-
vide appropriate countermeasures to resolve or at least mit-
igate them.

1 Introduction

Security has become a critical issue for software system
development and many methodologies that incorporate se-
curity in the software engineering process exist [2, 9, 10,
13]. Most proposals deal with security in system-oriented
terms: they focus on protection aspects through security ser-
vices and related protection mechanisms.

Yet, security is often compromised by exploiting loop-
holes in a social-technical system as a whole, i.e., vulner-
abilities in the combination of security mechanisms with
other mechanisms or the human procedures integrating
those mechanisms, rather than breaking security mecha-
nisms.

A major source of system vulnerabilities is the presence
of conflicts among requirements. This issue has spurred a
number of researchers to classify conflicts and propose so-
lutions to mitigate them [4, 6, 7, 11, 13].

∗We thank Tobias Mahler for useful discussions on legal as-
pects of conflicts of interest. This work was partly supported
by the projects RBNE0195K5 FIRB-ASTRO, 016004 IST-FP6-FET-
IP-SENSORIA, 27587 IST-FP6-IP-SERENITY, 2003-S116-00018 PAT-
MOSTRO, 1710SR-B/P PAT-STAMPS.

In this setting, conflicts of interest are critical in the
development of secure systems since “trusted” actors of-
ten abuse their position to gain personal advantages. For
example, in the early nineties John Rusnak gained nearly
$500.000 in bonuses for fake bank profits by exploiting his
trader position at Allied Irish Bank to cover the loss of ap-
proximately $700 millions in currency transactions [5, 8].

Unfortunately, current solutions for conflicts of inter-
est are unsatisfactory for two reasons: firstly, proposed
taxonomies of conflicts [7, 11, 13] are based on mecha-
nisms for preventing them, instead of understanding why
and when they occur; secondly, these solutions hardly make
any reference to the legal theory on which they are based
(see e.g. [12] for the Italian legal basis). Thus, their def-
initions are intuitively presented, but not justified. For ex-
ample, van Lamsweerde et al. [13] define conflicts of inter-
est as divergences between goals, Moffett et al. [6] as the
overlap of the subjects of two authority policies, and Nyan-
chama et al. [7] as privilege-privilege conflicts and role-role
conflicts in role-based access control.

Our objective is to support system designers in the de-
tection of conflicts of interest during requirements analysis.
This will aid system designers to adopt appropriate coun-
termeasures to resolve or at least mitigate them. In our
previous work [3], we introduced Secure Tropos, a formal
framework for modeling and analyzing both functional and
security requirements of the organizational environment of
a system, as well as the system itself. Using this framework,
we have dealt with conflicts among authorizations and obli-
gations [3]. In this paper, we (1) investigate the sources of
conflicts of interest at a requirements level grounding our
notions on legal theory, and (2) sketch a clear-cut formal-
ization that allows for automatic detection of conflicts.

In the next section we provide a description of the Se-
cure Tropos methodology. Then, we extract the principles
underlying conflicts of interest from legislation, and show
how they can be captured through Secure Tropos models
(§3). We present an axiomatization for detecting conflicts
in a logic framework (§4). Next, we discuss technical is-
sues (§5). Finally, we present related work and conclude
with a summary of our contribution (§6).

2 Secure Tropos

Secure Tropos [3] uses the concepts of actor, goal, task,
resource and social relationships for defining needs, entitle-
ments and capabilities of actors, namely objectives, owner-
ship, and provisioning. Objectives are goals intended to be
attained, tasks intended to be performed, and resources re-
quested by an actor. As an abbreviation, in the sequel we
will simply refer to any of the above as obtaining a service.
Ownership refers to the authority of an actor concerning the
access and disposition of a service. Provisioning represents
the capability of supplying a service.

Furthermore, Secure Tropos supports the notion of trust,
and delegation to transfer entitlements and responsibilities
from an actor to another. Delegation marks a formal pas-
sage of authority or responsibility in the domain matched
by the issuance of an act called “power of attorney” with
which the actor receiving the power of attorney (the delega-
tee) is “attorney in fact” for the actor giving the power (the
delegator) [12, art. 176].

Trust is a relation between two actors, representing the
expectation of one actor (the trustor) about the capabilities
and behavior of the other (the trustee). Essentially, trust
is the mental counterpart of delegation. Therefore, trust is
normally necessary for delegation. However, there may be
delegation without trust. As in [3], we introduce monitoring
as surrogate of trust. The idea is that an actor (the monitor)
is appointed by the delegator to monitor whether the delega-
tee will not misuse services and fulfill assigned obligations.

We have recognized the distinction between relations in-
volving permission and execution (obligations) to be essen-
tial for modeling functional and security requirements at the
same time [3]. Thus, we have distinguished delegation of
permission from delegation of execution, and trust of per-
mission from trust of execution [3]. Similarly, monitoring
can be distinguished into permission and execution ones [3].

3 Conflicts of Interest

An interest is both a right to property or for the use of
property and a desire of something done. Therefore, an in-
terest concerns both permission and execution aspects.

A law dictionary1 definition of conflict of interest is:

“a situation in which a person has a duty to more
than one person or organization, but cannot do
justice to the actual or potentially adverse inter-
ests of both parties. This includes when an in-
dividual’s personal interests or concerns are in-
consistent with the best for a customer, or when a
public official’s personal interests are contrary to
his/her loyalty to public business.”

1http://dictionary.law.com

provide
IT services
at low cost

make
profit

provide
IT services at
premium price

IT
Broker

use external
IT services
at low cost

use
lean staff

acquire
IT services
at low cost

AND

CIO

AND

De

−

−

Figure 1. Attorney-in-fact conflicts

In other words, a conflict of interest is a situation where
an actor, such as a public official or a delegatee, has compet-
ing professional and/or personal interests that make it diffi-
cult to achieve his duties fairly.

Different forms of conflict of interest are often discussed
along with access control models [7, 11]. In this setting,
conflicts of interest are identified with conflicts of duties,
i.e., failures of separation of duty constraints. However, this
approach requires a priori knowledge of conflicts. On the
contrary, our focus is on organizational requirements, and
hence, on relations among actors. We classify conflicts of
interest as follows:

• Attorney-in-fact conflict, where some (possibly per-
sonal) interests of the delegatee interfere with the in-
terests of the delegator;

• Role conflict, where an agent is assigned a role whose
interests collide with those of the agent;

• Self-monitoring conflict, where an actor is responsible
for monitoring his own behavior.

While some conflicts can be captured by other method-
ologies (e.g. [7, 11, 13]), the attorney-in-fact conflict can-
not. Due to space limitations, in the remainder of the paper
we deal only with attorney-in-fact conflicts.

Tropos supports contribution analysis which allows de-
signers to point out goals that can contribute positively or
negatively to the fulfillment of a goal. We extend such an
analysis in order to support the detection of conflicts of in-
terest.

Consider the example in Figure 1. It presents a scenario
which is common in IT procurements contracts of public
institutions. The Chief Information Officer (CIO) is ap-
pointed by the company to provide IT services at low
cost. In order to achieve this goal, he should use lean
staff (in accordance to the Italian financial law) and use
external IT services at low cost. The IT Broker has the
objective to make profit that he achieves by acquiring IT
services at low cost and providing IT services at pre-
mium price. The last goal negatively contributes to goal
use external IT services at low cost aimed by the CIO
(and vice versa). The CIO delegates the execution (a link

labeled De in Fig. 1) of using external IT services at low
cost to the IT Broker.

In this scenario, the IT Broker takes charge to achieve
use external IT services at low cost. Clearly, this sit-
uation may lead to misdoing and, consequently, a possible
harmful situation for the CIO. Actually, if the IT Broker
achieves goal provide IT services at premium price, he
cannot achieve the goal delegated by the CIO. On the con-
trary, if the IT Broker achieves the goal delegated by the
CIO, he may penalize the agency where he works. Thereby,
this situation represents a conflict of interest.

Unfortunately, Tropos alone cannot capture all cases be-
cause Tropos contribution analysis deals only with execu-
tion and so we need to extend it for dealing also with per-
mission. If the fulfillment of a goal contributes or implies
the fulfillment of another goal, this intuitively implies that
implicit permission can be given. Moreover, Tropos con-
ducts contribution analysis from the perspective of single
actors. We must extend the analysis over the model repre-
senting the entire system and its environment for identifying
conflicting interests among different actors.

Then, we have all necessary machinery to capture for-
mally the notion of attorney-in-fact conflicts.

Definition 1 An attorney-in-fact conflict occurs when

1. an actor (possibly directly) delegates the execution of
a service whose fulfillment is denied by some objective
of the delegatee;

2. an actor (possibly directly) delegates the permission
on a service whose access is denied by some entitle-
ment of the delegatee;

3. an actor (possibly directly) delegates the execution of
a service that denies the fulfillment of some objective
of the delegatee;

4. an actor (possibly directly) delegates the permission
on a service that denies the access to some entitlement
of the delegatee;

5. an actor (possibly directly) delegates the permission
on a service that allows the delegatee to access an-
other service for which the delegatee is not trusted by
the legitimate owner.

4 Automated Reasoning Support

Positive/negative contribution relations need to be spec-
ified manually in the requirements model. In simple exam-
ples (e.g., Fig. 1), such links are immediately visible, but
in more complex scenarios that task might be difficult and
error-prone. Therefore, as done in [3], we implement the
semantics underlying Secure Tropos in the DLV system,2

a Datalog solver. Datalog is a language of facts and rules.

2http://www.dbai.tuwien.ac.at/proj/dlv/

The collection of facts represents a Secure Tropos model.
Table 1 extends the predicates presented in [3] introducing
the ones used to detect attorney-in-fact conflicts.

The graphical models of the system-to-be and its envi-
ronment are insufficient for formal analysis [3]. Datalog
supports the use of rules to complement the graphical nota-
tion. In addition to the rules presented in [3], we need rules
for propagating entitlements and the fulfillment of services
across contribution links. To this end, we use standard rules
in contribution analysis.

Rules whose head is empty, are called constraints. In
Datalog, constraints are used to specify conditions which
must not be true in any model. In our setting, violations
of constraints correspond to the presence of a conflict of
interest in the system. Table 2 formalizes Definition 1.

Accordingly, the requirements analysis is composed of
the following conceptual phases:

1. model the system;
2. complete the extensional description of the system;
3. verify the comprehensive description of the system.

In the modeling phase the designer draws the extensional re-
quirements models where every node and edge correspond
to a fact in the formal framework. Then, the reasoning sys-
tem completes the extensional description of the system us-
ing rules and verifies its consistency using constraints. If
any inconsistency is detected by the reasoning system, the
designer needs to revise the requirements model in order to
avoid or at least mitigate detected conflicts and repeats the
formal analysis step.

5 Technical Issues

Unfortunately, contributions analysis alone is not suf-
ficient to detect conflicts of interest. Actually, posi-
tive/negative contributions do not generate inconsistencies
at functional/permission level as all explicit direct and in-
direct requirements are fulfilled. Therefore, we need to in-
troduce explicitly the ability to model conflicts of interest.
This requires to consider the relationships among actors and
the roles an agent plays together with conflicting interests.

Our framework warns the designer on (all and only) the
situations that may be harmful for some actor of the sys-
tem. However, solutions for solving such conflicts depend
on several factors such as cost, compliance with legislation
and awkwardness of the conflict itself. Based on these fac-
tors, the designer can decide to adopt either no countermea-
sure, solutions for mitigating the conflicts or even modify
the overall organizational structure of the system in order
to eliminate the source of conflicts. Such a decision can be
computer-aided through the use of ontologies, reference ar-
chitectures and patterns supporting socio-technical system
modeling.

pos contribution(Service : s1, Service : s2) s1 positively contributes for delivering s2 or having permission on s2.
neg contribution(Service : s1, Service : s2) s1 negatively contributes for delivering s2 or having permission on s2.
owns(Actor : a, Service : s) a is the legitimate owner of s.
has implicit per(Actor : a, Service : s) a is implicitly authorized to access s. Implicit authorizations include both authorizations

granted by the owner of the service and authorizations derived using contribution analysis.
aims(Actor : a, Service : s) a requests s or another actor has delegated him its execution.
delegateChain(perm, Actor : a, Actor : b, Service : s) a delegates (possibly directly) the permission on s to b.
delegateChain(exec, Actor : a, Actor : b, Service : s) a delegates (possibly directly) the execution of s to b.
trustChain(perm, Actor : a, Actor : b, Service : s) a trusts (possibly directly) that b will not misuse s.

Table 1. Predicates

A1 ← delegateChain(exec, A, B, S1) ∧ neg contribution(S2, S1) ∧ aims(B, S2)
A2 ← delegateChain(perm, A, B, S1) ∧ neg contribution(S2, S1) ∧ has implicit per(B, S2)
A3 ← delegateChain(exec, A, B, S1) ∧ neg contribution(S1, S2) ∧ aims(B, S2)
A4 ← delegateChain(perm, A, B, S1) ∧ neg contribution(S1, S2) ∧ has implicit per(B, S2)
A5 ← delegateChain(perm, A, B, S1)∧pos contribution(S1, S2)∧owns(C, S2)∧not trustChain(perm, C, B, S2)

Table 2. Detecting Attorney-in-fact conflicts

6 Related Work and Conclusions

Conflicts of interest are often discussed in the context
of role-based access control (RBAC) models. Several pro-
posals attempt to integrate such models into Software Engi-
neering by using or enhancing UML constructs [2, 9, 10].
In [2, 10], authors propose conceptual models for RBAC in
UML where constraints are represented as classes. Ray et
al. [9] integrate RBAC in UML as patterns using diagram
templates, and represent separation of duty constraints in
OCL. These approaches use specific domain constraints that
will be checked statically or dynamically. However, they
do not analyze organizational requirements to understand
why such constraints should be introduced and the effects
of their introduction, so major constraints could be omitted
or minor constraints could affect system functionalities.

Other proposals provide mechanisms for the detection of
conflicts. In [4, 6], authors propose to detect conflicts by an-
alyzing overlaps in policies. Bandera et al. [1] use the Event
Calculus to support this approach. They define constraints
representing specific domain conflicts, and query the model
for event sequences that prove the violation of such con-
straints. Another approach is proposed by van Lamsweerde
et al. [13]. They argue that many requirements inconsis-
tencies originate from conflicting goals and provide mecha-
nisms for managing conflicts at a goal level. Our approach
extends that work in that we consider both entitlements and
objectives rather than only objectives.

This paper sketches the extension of the Secure Tropos
formal framework in order to deal with conflicts of interest
during requirements analysis. This framework with all new
features presented in this paper is supported by the ST-Tool
[3], a CASE tool for Secure Tropos. In particular, the tool
is able to generate, from graphical models, Datalog specifi-
cations that are automatically verified by the DLV system.
We leave details to the full paper.

References

[1] A. K. Bandara, E. Lupu, and A. Russo. Using Event Calcu-
lus to Formalise Policy Specification and Analysis. In Proc.
of POLICY’03, pages 26–39. IEEE Press, 2003.

[2] D. Basin, J. Doser, and T. Lodderstedt. Model Driven Secu-
rity: from UML Models to Access Control Infrastructures.
TOSEM, 15(1):39–91, 2006.

[3] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone.
Modeling Security Requirements Through Ownership, Per-
mission and Delegation. In Proc. of RE’05, pages 167–176.
IEEE Press, 2005.

[4] E. C. Lupu and M. Sloman. Conflicts in Policy-Based Dis-
tributed Systems Management. TSE, 25(6):852–869, 1999.

[5] F. Massacci and N. Zannone. Detecting Conflicts between
Functional and Security Requirements with Secure Tropos:
John Rusnak and the Allied Irish Bank. Technical Report
DIT-06-002, University of Trento, 2006.

[6] J. D. Moffett and M. S. Sloman. Policy Conflict Analysis
in Distributed System Management. J. of Organisational
Comp., 4(1):1–22, 1994.

[7] M. Nyanchama and S. Osborn. The role graph model and
conflict of interest. TISSEC, 2(1):3–33, 1999.

[8] Promontory Financial Group, Wachtell, Lipton, Rosen, and
Katz. Report to the Board and Directors of Allied Irish Bank
P.L.C., Allfirst Financial Inc., and Allfirst Bank Concerning
Currency Trading Losses, March 12, 2003.

[9] I. Ray, N. Li, R. France, and D.-K. Kim. Using UML to
visualize role-based access control constraints. In Proc. of
SACMAT’04, pages 115–124. ACM Press, 2004.

[10] M. E. Shin and G.-J. Ahn. UML-Based Representation of
Role-Based Access Control. In Proc. of WETICE’00, pages
195–200. IEEE Press, 2000.

[11] R. Simon and M. E. Zurko. Separation of duty in role-based
environments. In Proc. of CSFW’97, pages 183–194. 1997.

[12] P. Trimarchi. Istituzioni di diritto privato. Giuffrè Editore,
XVI edition, 2005.

[13] A. van Lamsweerde, R. Darimont, and E. Letier. Managing
Conflicts in Goal-Driven Requirements Engineering. TSE,
24(11):908–926, 1998.

