
Implicit Culture-based Personal Agents for

Knowledge Management

Enrico Blanzieri, Paolo Giorgini, Fausto Giunchiglia and Claudio Zanoni

Department of Information and Communication Technology
University of Trento - Italy

via Sommarive 14, 38050 Povo Trento
{enrico.blanzieri,paolo.giorgini,fausto.giunchiglia,claudio.zanoni}@dit.unitn.it

Abstract. We present an implementation of a multi-agent system that
aims at solving the problem of tacit knowledge transfer by means of ex-
periences sharing. In particular, we consider experiences of use of pieces
of information. Each agent incorporates a system for implicit culture
support (SICS) whose goal is to realize the acceptance of the suggested
information. The SICS permits a transparent (implicit) sharing of the
information about the use, e.g., requesting and accepting pieces of infor-
mation.

1 Introduction

In Knowledge Management, knowledge is categorized as being either codified
(explicit) or tacit (implicit). Knowledge is said being explicit when it is possible
to describe and share it among people through documents and/or information
bases. Knowledge is said being implicit when it is embodied in the capabilities
and the abilities of the members of a group of people. Experience can be seen
as a way for accessing and sharing this kind of knowledge. In [10], knowledge
creation processes have been characterized in terms of tacit and explicit knowl-
edge transformation processes, in which, instead of considering new knowledge
as something that is added to the previous one, they conceive it as something
that transforms it. Supporting by means of software systems the transfer of
tacit knowledge among people in an organization represents a challenge whose
difficulties are mainly in the need of explicitly representing tacit knowledge.
In [2], we have introduced the notion of Implicit Culture that can be infor-

mally defined (see Appendix A for a formal definition) as the relation existing
between a set and a group of agents such that the elements of the set behave ac-
cording to the culture of the group. Systems for Implicit Culture Support (SICS
in the following) have the goal of establishing an Implicit Culture phenomenon
that is defined as a pair composed by a set and a group in Implicit Culture
relation.
The use of the Implicit Culture notion allows us to model and design systems

for knowledge tranfer between groups of agents. The architecture of the SICS
realizes these requirements. In particular, it is possible to apply the implicit

culture framework whenever it is important to guarantee knowledge transfer
between groups of agents without interfering explicitly with them. Supporting
Implicit Culture is effective in solving the problem of improving the performances
of agents acting in an environment where more-skilled agents are active, by
means of an implicit transfer of knowledge between the group and the set of
agents. Implicit Culture can be applied successfully in the context of knowledge
management. The idea is to build systems able to capture implicit knowledge,
but instead of sharing it among people, change the environment in order to
make new people behave in accordance with this knowledge. As a first step in
this direction we have showed how information retrieval problem can be posed in
the implicit culture framework and how the framework generalizes collaborative
filtering [4]. In this framework, supporting an Implicit Culture phenomenon leads
to a solution of the problem of transfer tacit knowledge without the need to
explicitly representing the knowledge itself.

Some assumptions underlie the concepts of Implicit Culture, Implicit Culture
Phenomenon and SICS. We assume that the agents perform situated actions and
perceive and act in an environment composed of objects and other agents. Before
executing an action, an agent faces a scene formed by a part of the environment
and it executes an action in that given situation. After a situated action has
been executed, the agent faces a new scene. At a given time the new scene
depends on the environment and on the situated executed actions. The action
that an agent execute depends on the agent’s state and, in general, it is not
deterministically predictable with the information available externally. Rather,
we assume that it can be characterized in terms of probability and expectations.
Another assumption is that the expected situated actions of the agents can be
described by a cultural constraint theory. Given a group of agents we suppose
that there exists a theory about their expected situated actions. Such a theory
can capture knowledge and skills of the agents about the environment and so it
can be considered a cultural constraint of the group. Agents and objects, (i.e.,
the environment), are specified for each application.

The goal of a SICS is to establish an implicit culture phenomenon that guar-
antees the transfer of knowledge between the groups of agents. The general
architecture we have proposed in [2] (Figure 1) allows to establish an implicit
culture phenomenon by following two basic steps: (i) defining a cultural con-
straint theory Σ for a group G and (ii) proposing to a group G′ a set of scenes
such that the expected situated actions of the set of agents G′ satisfies Σ. Both
steps are realized by using the information about the situated executed actions
of G and G′. An implementation of a SICS has been presented and showed to be
effective in [3] and [4]. Given a SICS the kind of knowledge that it is possible to
share depends only on the technical limitations in a specific application. Firstly,
limitations emerge from the observable situated executed actions. Further lim-
itations are related to the specific theories that it is possible to define on the
expected situated actions. Finally, limitations are posed by the kind of cultural
constraint theories that are satisfiable by means of scene proposing.

In this paper, we propose a multi-agent system for knowledge management
where each agent incorporating the SICS contributes to propagate the informa-
tion about the actions of the user to other agents. As presented in [2], the SICS
can be seen as a generalization of a memory-based collaborative filtering. The
system adopts a distributed approach to knowledge management opposed to a
centralized one as pointed out in [5].
The paper is organized as follows. Section 2 and Section 3 present the multi-

agent architecture and the implementation of the SICS, respectively. Section
4 describes related work and Section 4 draws conclusions a future directions.
Finally, in order to facilitate the reading, Appendix A recalls the formal definition
of Implicit Culture presented in [3].

Fig. 1. The basic architecture for Systems for Implicit Culture Support consists of
the following three basic components: observer that stores in a data base (DB) the
situated executed actions of the agents of G and G′ in order to make them available
for the other components;inductive module that, using the situated executed actions of
G in DB and the domain theory Σ0, induces a cultural constraint theory Σ; composer
that, using the cultural constraint theory Σ and the executed situated action of G and
G′, manipulates the scenes faced by the agents of G′ in such way that their expected
situated actions are in fact cultural actions with respect to G. As a result, the agents
of G′ execute (on average) cultural actions w.r.t. G, and thus the SICS produces an
Implicit Culture phenomenon.

2 A Multi-agent System based on Implicit Culture

In this section we present the multi-agent system based on the Implicit Culture
we have developed for Knowledge Management applications. The system has
been built using JADE (Java Agent Development Framework) [1], a software
development framework for developing multi-agent systems conforming to the
FIPA standards [8]. Basically, the system is a collection of personal agents that
interact one another in order to satisfies the requests of their users. Each agent
uses locally the SICS to suggest both its user and the other agents. Applying
the SICS locally, each personal agent is able to provide suggestions from its
perspective, namely on the base of the information it has collected observing the
behavior of its user and those of the agents with which it has interacted with. In
our system we have extended the FIPA protocols in order to allows the agents to
exchange each other feedback about how the users use the information suggested
by their personal agents.

Using the system, a user asks her personal agent about a keyword and the
agent starts to search for documents, links, and references to other users, related
to the keyword. The personal agent tries to suggest the user using the SICS and
the observations done in the past on the user’s behavior and on the behavior of
the users whose personal agents it interacted with. Alternatively, the personal
agent can submit the request to other agents which will treat the request as it
were done by their users. In this case, however, the suggestions can include also
other agents to contact. The selection of the agents to send the request is done
applying locally the SICS again.

Figure 2 presents the general architecture of each single personal agent im-
plemented with JADE. The architecture of a JADE agent consists of four main
components: Behaviors, Scheduler, Inbox , and Resources. In our implementation
we have:

– Behaviors, that an agent is able to adopt in response to different internal
and external events. All tasks are implemented as behavior objects; we have
a specific behavior for the SICS. A request from the user or from another
agent actives the SICS behavior.

– Scheduler, that determines which behavior is the current focus of the agent
and consequently it selects an action to perform.

– Inbox , a queue of incoming messages (ACL). It contains the messages coming
from the user as well as those from other agents.

– Resources, consisting of beliefs and capabilities. The agent’s beliefs are the
information available to the agent and the capabilities are particular func-
tionalities used in the behaviors. In our implementation the three main com-
ponents of the SICS (observer, composer and inductive module) are three
different capabilities and the observations and the cultural constraint theory
are stored as beliefs. Additionally, each personal agent has beliefs about a
local schema useful to organize the information available. This schema is not
mandatory.

Σ

Σ

internal/external

EVENT

b
eh

av
io

u
r

1

b
eh

av
io

u
r

2 behaviour
active agent

(i.e. agent intention)

event detection

b
eh

av
io

u
r

n

scheduler

of behaviours

inbox
private

ACL messages

agent

CAPABILITIES

Composer

BELIEFS

Executed situated
actions of G

Theory

agent resources

Executed

Cultural Actions
Finder

Scenes Producer

kernel

Pool

New scene

ob
s

filter

qu
eu

e

Executed situated
action of G’

qu
eu

e

situated action of G

Fig. 2. Internal architecture of a JADE agent implementing a SICS

The capability (the composer) and the beliefs (situated executed actions and
cultural constraint theory) related to the SICS and reported in Figure 2, will
be presented in details in the next section. Here we concentrate on the other
beliefs and behaviors. Each personal agent has among its beliefs a local schema
in order to organize information available to its user. Basically, the schema is
a tree where the nodes are labeled with strings that the user uses to describe
her own areas of interest, and the leaves are links. A link can be a reference to
a document stored locally in the user system or it can be an Internet address
or a reference to a person (e.g., a phone number, an email address or just the
name of the person). The schema is a conceptual representation of how the user
organize locally its information, and it does not say anything about how this
representation matches with those of the other users. The schema is represented
in XML (see Figure 3 for an example).

Figure 4 shows the algorithm used by personal agent when it receives a
request of information from its user or from some other agent. The global variable
result contains both links and names of the agents of the platform. If the
message is a query the SICS behavior is activated and it modifies result; if no
agents appear in result the DF agent is added to it in order to propagate the
query in any case; if the sender of the query is the user the link contained in
result are sent back and a query is sent to all the agents contained in result.

<?xml version="1.0"?>
<tree name="USER">

<node name="travels">
<node name="train timetable">

<node>
<name>www.fs-on-line.it< /name>
<type>http< /type>

< /node>
<node>

<name>info@trenitalia.it< /name>
<type>mailto< /type>

< /node>
< /node>

< /node>
< /tree>

Fig. 3. An example of local schema expressed in XML

If the message is a reply from an agent the complete result (links and agents)
is sent, whereas an incomplete result (links only) is sent in the case the reply
comes from the user.

The agents interact one another using the FIPA-Iterated-Contract-Net Pro-
tocol, that starts with a call for proposal to perform a given action. In particular,
we use the call for proposal for checking the availability of an agent to perform
a search action. Differently, the user interacts with its personal agent using the
the FIPA-Query Protocol. Additionally, we have introduced a third protocol for
the propagation of the user feedback about the suggestions provided to him.
In particular, the protocol guarantees that the user informs the personal agent
about the acceptance of the refusing of a suggestion, and that the personal agent
informs about this the other agents it asked. In practice, the sending of an inform
whose content is “accept” is triggered by an action of the user, e.g., following a
link, maintaining it implicit.

An example of interaction. Let consider the case in which a user searches in-
formation about “train timetable” and asks his personal agent. Let suppose that
the SICS suggests an Internet address (www.fs-on-line.it), an e-mail address
(info@trenitalia.it) and another agent, agent-1. The personal agents informs the
user about the addresses www.fs-on-line.it and info@trenitalia.it and send a re-
quest to agent-1. Supposing that agent-1 replies with another internet address
www.trenitalia.it and another agent, agent-2, then the personal agent will send
a request to agent-2. When agent-2 replies with th email address www.bahn.de,
the personal agent informs the user with the results it has collected (namely,
“www.trenitalia.it”+“www.bahn.de”). Finally, if the user executes an action con-
sidered of acceptance for example of “info@trenitalia.com” an inform with that

global result
for all message in INBOX do
if (message.type == ’query’) then

result := nil
SICS-behavior(query.sender,query.content,
result.links,result.agents)
if (result.agents == nil) then
add(DF,result.agents)

end if

if (query.sender == user) then
inform(self,user,result.links)
for all result.agent do
request(self,result.agent,query.content)

end for

end if

else if (message.type == ’reply’) then
if (reply.sender == user) then

inform(self,user,result.links)
else inform(self,message.sender,result)
end if

end if

end if

end for

Fig. 4. The algorithm used by the personal agent for processing the messages

content is sent. The personal-agent informs agent-2 because it has suggested such
an address, and agent-1 because it has suggested agent-2. Figure 5 presents the
sequence of messages exchanged by the agents. The main advantage of using
our system instead of systems like Google and Altavista is that the results are
filtered on the base of users’ past actions. In the example, agent-2 suggests the
link www.bahn.de because its user accepted it in the past or because he/she put
it on the local schema. In this particular example the link www.bahn.de does
not appear among the first ten results of Google and it is the tenth of Altavista
(probably because the pages of the site are almost completely in German). In this
way the behavior of a particular user, namely considering www.bahn.de relevant
to the search “train timetable”, is transferred to other users. The observations
of the acceptance of the suggestion of the site www.bahn.de permits to suggest
it as relevant even if it relevance does not emerge completly from the the usual
search engines.

The example shows how the variant of the FIPA communication protocol
permits to the agents to propagate the feedback of the user. In this way each
personal agent has access locally to information about the use of the information

1. request(user,personal-agent,‘‘train timetable’’)

2. inform(personal-agent,user,‘‘www.fs-on-line.it’’+‘‘info@trenitalia.it’’)

3. request(personal-agent,agent-1,‘‘train timetable’’)

4. inform(agent-1,personal-agent,‘‘www.trenitalia.it’’+‘‘agent-2’’)

5. request(personal-agent,agent-2,‘‘train timetable’’)

6. inform(agent-2,personal-agent,‘‘www.bahn.de’’)

7. inform(personal-agent,user,‘‘www.trenitalia.it’’+‘‘www.bahn.de’’)

8. inform(user,personal-agent,‘‘accept(www.bahn.de)’’)

9. inform(personal-agent,agent-1‘‘accept(www.bahn.de)’’)

10. inform(personal-agent,agent-2,‘‘accept(www.bahn.de)’’)

Fig. 5. An interaction example

done by the requester. The availability of the information permits to the agent to
observe a wider number of actions permitting the transfer of knowledge between
the users. Indeed, if the personal agent would limit its observations only to the
actions performed by its user, the effect achieved by the user would be a simple
personalization. With the communication protocol we have adopted, each SICS
can observe also actions done by the users of the personal agents it has been
put in contact to. It is worth to note that this is transparent to the user. As a
summary, the personal agent act on behalf of the user in a complex way. It uses
the observations of the behavior of its user to provide a better service to the
user herself (personalization) and to the other users (collaboration). Moreover,
with the same goal, it integrates locally the observations of the user with the
observations of the other users and contribute to propagate the observations of
its own user in order to give feedback to the other agents. In other terms the
user delegates to the personal agent the capacity of sharing information about
the use of information.

3 The implementation of the SICS behaviors and

capability

The SICS we have implemented and inserted in the agents as behavior and capa-
bility of JADE, is a particular case of the general one. Observations are treated
as beliefs that are updated depending on the type of messages. Moreover, we
do not consider any kind of theory induction over the observations, the cultural
constraint theory is completely specified and the inductive module is omitted
(i.e., in Figure 1, Σ ≡ Σ0). The cultural constraint theory is expressed by a set
of rules of the form:

A1 ∧ · · · ∧An → C1 ∧ · · · ∧ Cm

in which A1 ∧ · · · ∧ An is referred to as the antecedent and C1 ∧ · · · ∧ Cm as
the consequent. The idea is to express that “if in the past the antecedent has
happened, then there exists in the future some scenes in which the consequent

filter

Executed situated
actions of G

Executed situated
actions of G’

qu
eu

e
qu

eu
e

ob
s.

Σ

New scene

POOL

kernel

Cultural Actions
Finder

Scenes
Producer

Fig. 6. The composer architecture

will happen”. Hence the consequents has to be interpreted as situated expecta-
tions. Antecedent and consequent are conjunctions of atoms, namely two types
of predicates: observations on an agent and conditions on times. For instance,
request(x, y, k, t1) is a predicate of the first type that says that the agent x
requests to agent y informatin relevanto to the keyword k at the time t1; while
less(t1, t2) is an example of the second type and it simply states that t1 < t2.

In our application the cultural constraint theory is fixed a priori and very
simple. Indeed, we want each personal agent PA to recommend links or agents
that satisfy the request, namely that the expected situated action of the user
(and consequently of her personal agents in the system) is to accept the recom-
mendation of the agent PA. The following rule is used to express the cultural
theory:

request(x, PA, k, t1) ∧ inform(PA, x, y, t2) ∧ less(t1, t2) →
accept(x, y, k, t3) ∧ less(t2, t3)

(1)

which states that if x (user or agent) asks the PA information relevant to the
keyword k, and the PA replies informing x that y (link or agent) are relevant,
then x will accept from y information as relevant to the keyword k. In other
terms, the theory specifies that the agents should accept the information they are
offered. Each agent has the goal of having the group of agents and users behaving
consistently with the theory. This goal is achieved by using the composer of the
SICS architecture.

The goal of the composer is to propose a set of scenes to agents of G′ such
that the expected situated actions of these agents satisfy the cultural constraint

loop

get the last executed situated action α
for all rule r of Σ do
for all atom a of ant(r) do
if match(a,α) then
if find-set(ant,past-actions) then
r′=join(past-actions,r)
return cons(r′)

end if

end if

end for

end for

return false
end loop

Fig. 7. The algorithm for the CAF submodule

theory Σ for the group G. In our implementation, the composer consists of two
main submodules (Figure 6)1:

– the Cultural Actions Finder (CAF), that takes as inputs the theory Σ and
the executed situated actions of G′, and produces as output the cultural
actions w.r.t. G (namely, the actions that satisfy Σ).

– the Scenes Producer (SP), that takes one of the cultural actions produced
by the CAF and, using the executed situated actions of G, produces scenes
such the expected situated action is the cultural action.

Cultural Actions Finder

The CAF matches the executed situated actions of G′ with the antecedents of
the rules of Σ. If it finds an action that satisfies the antecedent of a rule, then it
takes the consequent of the rule as a cultural action. Figure 3 presents the algo-
rithm for the CAF. For each rule r (ant→cons), the functionmatch(a,α) verifies
whether the atom a of ant=ant(r) matches with the executed situated action α;
then the function find-set(ant,past-actions) finds a set past-actions of past
executed situated actions that matches with the set of atoms of ant; and finally,
the function join(past-actions,r) joins the variables of r with the situated ex-
ecuted actions in past-actions. The function cons(r′) returns the consequent
of r′.

Scenes Producer

Given a cultural action α for the agent x ∈ G′ that performed actions on the set
of scenes S(x), the algorithm used in the scenes producer consists of three steps:

1 An additional component of the composer is the Pool, which manages the cultural
actions given as input from the satisfaction submodule. It stores, updates, and re-
trieves the cultural actions, and solves possible conflicts among them.

1. find a set of agents Q ⊆ G∪G′ that performed actions similar to α and the
sets of scenes S(y) with y ∈ Q and in which they performed actions;

2. select a set of agents Q′ ⊆ Q similar to x;
3. Estimate (using Q′) the expected similarity between the expected actions of

x in the scenes of the set S =
⋃
y∈Q S(y) and the cultural action α. Return

the scene that maximizes the expected similarity and propose it to x.

Figure 3 shows the simple algorithm used in step 1. An agent y is added to
the set Q if the similarity sim(βy, α) between at least one of its situated executed
actions βy and α is greater than the minimum similarity threshold Tmin. The
scenes s in which the βy actions have been executed are added to S(y), that is
the set of scenes in which y has performed actions similar to α.

for all y ∈ G′

for all situated executed actions βy of y
if sim(βy, α)> Tmin then {
if y 6∈ Q then y → Q
s → S(y)

}

Fig. 8. The algorithm for step 1

Step 2 selects in Q the k nearest neighbors to x with respect to the agent
similarity defined as follows:

wx,y =
1

|S(x) ∩ S(y)|

∑

σ∈S(x)∩S(y)

1

|Ax(σ)||Ay(σ)|

∑

βx∈Ax(σ)

∑

βy∈Ay(σ)

sim(βx, βy)

(2)

where S(x) ∩ S(y) is the set of scenes in which both x and y have executed
at least an action. Ax(σ) and Ay(σ) are the set of actions that x and y have
respectively performed in the scene σ. Eq. 2 could be replaced by a domain-
dependent agent similarity function if needed.
Step 3 selects the scenes in which the cultural action is the expected situated

action. To do this, firstly we estimate for any scene σ ∈ S =
⋃
y∈Q S(y) the

similarity value between the expected action of x and the cultural action, and
then we select the scene with the maximum value. The function to be maximized
is the expected value E(sim(βx, α)|σ), where βx is the action performed by the
agent x, α is the cultural action, and σ ∈ S is the scene in which βx is situated.
The following estimate is used:

Ê (sim(βx, α)|σ) =

∑
u∈Q′ E (sim(βu, α)|σ) ∗ wx,u∑

u∈Q′ wx,u
(3)

that is we calculate the weighted average of the similarity of the expected actions
for the neighbor of the scene, the weight wx,u is the similarity between the agent
x and the agent u, whereas E (sim(βu, α)|σ) with u ∈ Q′ in Eq. 3 is estimate as
follows:

Ê (sim(βu, α)|σ) =
1

|Au(σ)|

∑

βu∈Au(σ)

sim(βu, α) (4)

that is the average of sim(βu, α) over the set of actions Au(σ) performed by u
in σ.
The algorithms described above, as well as the multi-agent system presented

in the previous section, is fully implemented in Java using XML for expressing
the cultural constraint theory.

4 Related Work

Different areas of research produced related work. The main areas we con-
sider here are Agent-Mediated Knowledge Management (AMKM), Distributed
Knowledge Management (DKM) and Computer Supported Collaborative Work
(CSCW).
In AMKM area, Yu and Singh [12] have recently proposed an agent-based

referral system. Their system, called MARS, suggests to the user the experts
she might contact in order to satisfy her knowledge needs. Each user has a
personal agent that interacting by means of a mail server with other personal
agents supports the user’s social network. As in our system, in MARS agents are
provided with learning capabilities. However, our system differs from MARS in
the system architecture as well as from the theoretical point of view. Architec-
turally, MARS agents learn explicit models of their neighbors and acquaintances,
whereas our approach is memory-based and there is no explicit classification of
the other agents; our system adopts FIPA standards and JADE platform and
it is web-based and not mail-based. Theoretically, the presence of a shared on-
tology between the agents make MARS only partially distributed, because the
ontology has to be fixed for all the agents. Moreover, we emphasize the implicit
support of knowledge by managing documents, links and reference to people in
a uniform way by inserting the implicit transfer of knowledge among the goals
of the personal agents.
A purely distributed approach to knowledge management is being consis-

tently addressed in the EDAMOK project [6, 7]. The system-development part
of the project adopts a peer-to-peer architecture with an explicit notion of con-
text. Based on the published material it is possible to sketch some differences.
Architecturally, our agent-based approach relies on different architecture and
technology and insert a learning functionalities in order to discover and propa-
gate information about the other entities (agents or peers) in the system. The-
oretically, their approach tends to solve a posteriori the problem of matching
between the local perspectives (contexts) whereas our system tends to support
the formation of compatible local perspectives.

In the area of CSCW, the management of tacit knowledge is receiving in-
creasing attention [9]. Tacit knowledge is hard to be transmitted and shared
in computer supported environment. Ribak et al [11] wrote:”By replacing face-
to-face communication with telephone, e-mail, and instant messaging, we have
also forfeited overhearing hallway conversations and the constant subconscious
awareness of the state of our team and works environments”. They ReachOut
system allows for easy and partial-persistent question/answering conversational
exchanges between groups of human peers. The effect is community building and
awareness of the others. Tacit knowledge can be shared during the exchanges as
it happens in face-to-face interactions. The main difference of our approach is
that we aim to share tacit knowledge implicitly, namely without the need to
communicate and be aware of the other users. The two approaches are comple-
mentary and could both gain from an integration.

5 Conclusions and future work

We have presented a fully-implemented multi-agent system that exploits the
architecture of the Systems for Implicit Culture Support in order to solve the
problem of the tacit knowledge transfer in a knowledge management context.
We have argued that the tacit knowledge transfer requires the sharing of expe-
riences and that the main difficulty relies in the need of explicitly representing
the tacit knowledge. Our approach aims to by-pass the problem of the explicit
representation.
The system incorporates a SICS in each agent. The SICS is used in order

to provide information to the user and also to the other users by means of a
communication protocol between the agents. The SICS observes the local actions
of its own user and, by means of a variant of the FIPA communication protocols,
also the actions of the other users. The multi-agent architecture permits the
exchange of information about the users actions, improving so the range of the
actions that each local SICS can observe. The overall effect is an implicit transfer
of information about the use of the suggested items. In other terms, the system
supports the sharing of the experience of the use of some pieces of information.
The proposed system represents a viable way of supporting the transfer of

tacit knowledge between individuals in an organization. Each personal agent
contributes locally to a realization of an implicit culture phenomenon. It is im-
portant to note that the local perspective of each agent permits the existence
of different practices, given the fact that not all the agents will converge to the
same set of observations and consequently to the same suggestions.
The agents’ capabilities implemented in our system can be used in different

scenarios. For example, instead of information searching, it is possible to apply
our approach to a case-based reasoning scenario, where the goal is to find similar
solutions for similar problems reusing solved cases. Each agent can suggest to the
other agents the most proper case for a given problem. Some agents can wrap a
case-base and implement different similarity functions that can be available in
the platform by means of the Directory Facilitator.

The advantages of our approach include:

– each agent helps the user to deal with implicit knowledge, learn and interact
with the other users;

– the system maintains knowledge implicit, namely implicit knowledge and
behaviors are captured and explicitly represented by the system without
need to explicit them to the user;

– the system supports the user in the learning activity. Each personal agent
has learning capabilities with respect to the user’s preferences;

– the system supports interaction and collaboration. Each personal agent ex-
changes information about how information have been used;

– the system is conceptually distributed. The distribution permits the emer-
gence of local perspectives and learning capabilities permit to harmonize
them without need of explicit capabilties for solving conflicts.

– the system can help to defend the investment on knowledge. An agent sur-
vives also in the case the user left the organization and it can be used as
long as it proves to be competent.

Provided that our system is not alternative to other systems but it can be
seen as an additional web-based service, it has few disadvantages:

– the users need to be willing to share information about how they use shared
or public documents (note that we do not require documents sharing);

– the system does not observe all the possible search behaviors of the user,
but only the ones performed by means of the system (namely, preserving
privacy);

– technically, it requires a rather demanding message interactions between the
agents. This can cause an overload in case of an high number of agents.

We are currently applying our system to a real situation, in particular we
are working to a version of our system to support knowledge management in
a business intelligence company and in the Law Department of University of
Trento. In particular, we are includign wrappers agents that access external
resources (e.g., search engines) in order to feed the system with links that the
users can accept or not triggering the observations of the SICS modules.

References

1. F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with
jade. In Seventh International Workshop on Agent Theories, Architectures, and
Languages (ATAL-2000), Boston, MA, 2000.

2. E. Blanzieri and P. Giorgini. From collaborative filtering to implicit culture. In
Proceedings of the Workshop on Agents and Recommender Systems, Barcellona,
2000.

3. Enrico Blanzieri, Paolo Giorgini, Paolo Massa, and Sabrina Recla. Implicit Culture
for Multi-agent Interaction Support. In Carlo Batini, Fausto Giunchiglia, Paolo
Giorgini, and Massimo Mecella, editors, Cooperative Information Systems, 9th In-
ternational Conference - CoopIS 2001, volume 2172 of Lecture Notes in Computer
Science (LNCS). Springer-Verlag, 2001.

4. Enrico Blanzieri, Paolo Giorgini, Paolo Massa, and Sabrina Recla. Information
Access in Implicit Culture Framework. In Proceedings of the Tenth ACM Inter-
national Conference on Information and Knowledge Management (CIKM 2001),
Atlanta, Georgia, November 2001.

5. M. Bonifacio, P. Bouquet, and A. Manzardo. A Distributed Intelligence Paradigm
for Knowledge Management. In AAAI’2000 Spring Symposium on Bringing Knowl-
edge to Business Processes, Stanford University, Palo Alto (California, USA), 20-22
Marzo 2000.

6. Matteo Bonifacio, Paolo Bouquet, and Paolo Traverso. Enabling Distributed
Knowledge Management. Managerial and Technological Implications. Infor-
matik/Informatique, III(1), 2002. Special Issue on Knowledge Management, S.
Lueg (ed.).

7. EDAMOK. Enabling Distributed and Autonomous Knowledge Management.
http://edamok.itc.it.

8. FIPA. Foundation for intelligent physical agents. http://www.fipa.org.
9. Michal Jacovi, Amnon Ribak, and Andree Woodcock. Managing tacit knowledge:

a report on the european cscw workshop, 2001.
10. I. Nonaka and H. Takeuchi. The knowledge Creating Company. Oxford University

Press, New York, 1995.
11. Amnon Ribak, Michal Jacovi, and Vladimir Soroka. ”Ask before you search“ Peer

Support and Community building with Reachout. In CSCW2002, 2002.
12. Bin Yu and Munindar P. Singh. An Agent-Based Approach to Knowledge Man-

agement. In Proceedings of Eleventh International Conference on Information and
Knowledge Management (CIKM02), SAIC Headquarters, McLean, Virginia, USA,
November 2002.

APPENDIX A: Formal Definition of Implicit Culture

We consider agents and objects as primitive concepts to which we refer with
strings of type agent name and object name, respectively. We define the set
of agents P as a set of agent name strings, the set of objects O as a set of
object name strings and the environment E as a subset of the union of the set
of agents and the set of objects, i.e., E ⊆ P ∪ O.
Let action name be a type of strings, E be a subset of the environment

(E ⊆ E) and s an action name.

Definition 1 (action). An action α is the pair 〈s,E〉, where E is the argument

of α (E = arg(α)).

Let A be a set of actions, A ⊆ A and B ⊆ E .

Definition 2 (scene). A scene σ is the pair 〈B,A〉 where, for any α ∈ A,
arg(α) ⊆ B; α is said to be possible in σ. The scene space SE,A is the set of all
scenes.

Let T be a numerable and totally ordered set with the minimum t0; t ∈ T is
said to be a discrete time. Let a ∈ P, α an action and σ a scene.

Definition 3 (situation). A situation at the discrete time t is the triple 〈a, σ, t〉.
We say that a faces the scene σ at time t.

Definition 4 (execution). An execution at time t is a triple 〈a, α, t〉. We say
that a performs α at time t.

Definition 5 (situated executed action). An action α is a situated executed
action if there exists a situation 〈a, σ, t〉, where a performs α at the time t and
α is possible in σ. We say that a performs α in the scene σ at the time t.

When an agent performs an action in a scene, the environment reacts propos-
ing a new scene to the agent. The relationship between the situated executed
action and new scene depends on the characteristics of the environment, and in
particular on the laws that describe its dynamics. We suppose that it is possible
to describe such relationship by an environment-dependent function defined as
follows:

FE : A× SE,A × T → SE,A (5)

Given a situated executed action αt performed by an agent a in the scene σt at
the time t, FE determines the new scene σt+1 (= FE(αt, σt, t)) that will be faced
at the time t+ 1 by the agent a.
While FE is supposed to be a deterministic function, the action that an agent

a performs at time t is a random variable ha,t that assumes values in A.
Let a ∈ P and 〈a, σ, t〉 be a situation.

Definition 6 (expected action). The expected action of the agent a is the
expected value of the variable ha,t, that is E(ha,t).

Definition 7 (expected situated action). The expected situated action of
the agent a is the expected value of the variable ha,t conditioned by the situation
〈a, σ, t〉, that is E(ha,t|〈a, σ, t〉).

Definition 8 (party). A set of agents G ⊆ P is said to be a party.

Let L be a language used to describe the environment (agents and objects),
actions, scenes, situations, situated executed actions and expected situated ac-
tions, and G be a party.

Definition 9 (cultural constraint theory). The Cultural Constraint Theory
for G is a theory expressed in the language L that predicates on the expected
situated actions of the members of G.

Definition 10 (group). A party G is a group if exists a cultural constraint
theory Σ for G.

Definition 11 (cultural action). Given a group G, an action α is a Cultural
Action w.r.t. G if there exists an agent b ∈ G and a situation 〈b, σ, t〉 such that

{E(hb,t|〈b, σ, t〉) = α},Σ 6`⊥

where Σ is a cultural constraint theory for G.

Definition 12 (implicit culture). Implicit Culture is a relation >/ between
two parties G and G′ such that G and G′ are in relation (G>/G′) iff G is a
group and the expected situated actions of G′ are cultural actions w.r.t G.

Definition 13 (implicit culture phenomenon). Implicit Culture Phenomenon
is a pair of parties G′ and G related by the Implicit Culture.

We justify the “implicit” term of implicit culture by the fact that its definition
makes no reference to the internal states of the agents. In particular, there is
no reference to beliefs, desires or intentions and in general to epistemic states
or to any knowledge about the cultural constraint theory itself or even to the
composition of the two groups. In the general case, the agents do not perform
any actions explicitly in order to produce the phenomenon.

