
Design Patterns for Multiagent Systems to

Elevate Pocket Device Applications.

Sameh Abdel-Naby1 Paolo Giorgini1 and Michael Weiss2

1 University of Trento - DIT, 38100 Trento, Italy.
2 Carleton University. Ottawa, Ontario, K1S 5B6, Canada.

Abstract. The study of Design Patterns are helping software engineers
to overcome repetitive problems encounter while producing particular
application or outlining specific architecture. Agents and its consistent
research on multi-agent systems are increasingly playing an important
role in the development of mobile applications. The implementations we
focus on are related to the use of agent techniques to provide holders
of pocket devices with social and location-based services. In this paper,
we highlight the importance of applying design patterns concepts and
theories in the development of advanced mobile service applications. We
further relate our ideas to the deployment of localized rideshare system
that relies on the cellular phones of interested students to facilitate their
daily commutes.

1 Introduction

Software designers worldwide are reaching their objectives with less attention
paid to frequent and repetitive actions made by them or by others elsewhere.
Limitations on advanced technology and resources have made the process of
designing a pocket-device service application containing several recurring alter-
natives. Design patterns [6] are helping scholars to rapidly reach their desires
and accurately obtain finer results through the use of previously tested methods.
In addition, using pattern descriptions - that are outlined by particular design

scheme - has made it easy for software engineers to understand the relations
between specific application components and functions.

Its autonomous and proactive behavior has made several of the efforts made
in the literature of Agents [7, 19], as well as Multi-agent Systems (MAS) [8],
integrate to a series of modern, innovative and promising implementations and
technologies. Scholars, for example [10, 9], have attempted to resolve, describe
and summarize some of the habitual mistakes that developers of MAS perform.
This has made the subject of agent patterns one of the few branches coming out
of the little design patterns research tree, but yet it is rapidly advancing to meet
adaptive and intelligent system requirements.

Holders of pocket devices are seeking the right mobile application that per-
forms a set of independent and delegative tasks to meet daily life necessities.
Literature of Multi-agent Systems (MAS) is witnessing the success made in deliv-
ering advanced mobile services to users of pocket devices, for example Kore [12],



mySAM [13] and also MoPiDiG [20]. These applications use Agent-Oriented soft-
ware engineering methodologies to build sophisticated Goal and Service-Oriented
Architectures assisting the so called swifting users.

Agents programming techniques are enabling users of pocket devices to ful-
fill specific requirements that are hardly realized through alternatives [11]. The
impact Agent-Oriented methodologies [14] left on addressing new mobile service
applications requirements, such as security, context-awareness, and social-ability,
made developers consider applying MAS in nowadays every mobile service imple-
mentations. A number of frameworks specialized in MAS, such as JADE [15] and
JACK [16], have recently included an extra feature to enable the development
of agent-based mobile applications.

In this paper, we highlight the importance of applying design patterns to the
development of multi-agent systems that serve pocket devices. This will leave
a great impact on enabling fast, accurate and standard future integrations and
implementations. The patterns-oriented approach we secondly recommend in
implementing agent-based service architecture will avoid wise developers from
repeating several of their daily tasks that are required to produce sophisticated
applications. It will also lead novice developers to rapidly adapt to any imple-
mentation environment.

The rest of this paper is structured as follows: Section 2 outlines our mo-
tivation. Section 3 explains the foreseen roadmap. Section 4 introduces the in-
tegration between Agent-based mobile services application and design patterns.
Section 5 involves a localized rideshare system that helps students to commute
from and to their university.

2 Motivation

Making vastly desired services interactive and available for mobile and computer
users has been always a challenge. Many ongoing research efforts are trying to
realize the optimal method to make mobile service oriented architectures more
reliable and efficient. For example, a widely used technology like the mobile
java client offers a standard operational model for traditional cellular phones,
which has facilitated the integration between computer-based and mobile-based
application development.

Agent-based systems and mobile-based applications are two promising and
integrating approaches that influence Mobile-Oriented Architectures. Besides,
objects-identification related technologies (e.g., wireless sensors) are helping the
development of smart ambient systems that can interact with humans to improve
several of their daily tasks. The merit goes to Multi-agent Systems in forming
efficient, intelligent and delegative virtual communities [17]. These virtual com-
munities are reasonably interactive, and they provide data that can be further
used to deliver a specific service to particular user in a certain situation.

Developing a mobile application is both, demanding and challenging task
for software designers. Design patterns theories are contributing to the devel-
opment of significant tools that allow implementation practices and solutions



Fig. 1. The Relationships between Patterns, Mobile Services and Agents.

to be standardized and, it assist the interaction among separate system design
concerns. Patterns can be seen as a directorial repository, a method to record
the gained design knowledge and enable its re-use in the later development pro-
cesses. Therefore, patterns are adopted to improve structural design practices.
Patterns application has been carried on its precision to finally reach a specific
field problem, in a new field like Mobile Services, appropriate patterns should
be fulfilling the needs of mobile-application design.

The above discussion indicates the possible integration between three compo-
nents, 1) mobile service application design architectures that are used to model
the abstraction of delivering services to mobile-users, 2) multi-agent systems
design architectures, and 3) design patterns, taking advantage of its ability to
allow parts or the overall object-oriented programs to be reprocessed in a newly
developed application (See Figure 1).

3 Roadmap Representation

3.1 Classification of Mobile Services

Architectures that are serving portable devices must have special characteris-
tics in order to meet the end-users expectations. These characteristics facilitate
the integration between computer-like applications and the operating systems
of portable devices. Although it is not yet standardized yet it is strongly real-
ized that modern mobile operating systems (e.g., Symbian-based mobile phones)
allow mobiles to be customized to fit in users preferences.

What remains unconsidered is the standardization of several and recurring
mobile-based service application components and, shaping them as plugins or
separate agents that are able to interact, coordinate and finally integrate to
deliver particular service.

We classify the service categories commonly used in designing modern, com-
plex and rich pocket device application. We assume that these services are made



of combined software entities or, separate autonomous agents, each of which
is in charge of achieving sub-tasks that finally help achieve the overall architec-
tural goals, depending on what it was designed for (e.g., a communication agent,
coordination agent or a negotiation agent).

These classifications are foreseen according to the feedbacks we absorbed
from literature of frequently used pocket applications (e.g., applications that
facilitate the delivery of information to tourists using mobile communications).
Each of the main service classes is concerned about specific problem domain, and
consequently, it invokes a range of sub-classes related to the abstract interest but
in different solution modules.

– Communication Class: This class would be responsible for the exchange
of data an application would try to do with other software entities to fulfill
users’ demands. Another function for the same class could be to ensure that
a connection is established. Also the optimization of involved resources by
applying a range of predefined methods. The last function of this class can
be concerned with reconnecting the application with any of the collaborated
actors, since some mobile applications need to launch certain offline tasks
before achieving some goals.

– Expression Class: Depending on the type and content weight of the pro-
vided service and the running back-end architecture, each of the offered
services requires certain data arrangement. Therefore, the main function of
this class can control the way in which data is organized in the client-side
of the architecture. Another function can be added that arranges the means
of interaction between different mobile users and the displayed data. Also, a
function can be added to control the displayed data in terms of whether it
requires detailed or slight particular dataset execution.

– Implementation Class: Due to limitations on resources and because of the
communication speed between end-users and operating servers, not all of the
call methods of specific pocket device service is made on the client side device.
The implementation class can be responsible for the organization of service
tasks executed on the client side of the application (Pocket Device). The
second function of this class handles the server side of the application that
executes tasks involving special resources. The final function of this class is
to monitor the utilized resources and fittingly organize the overloaded tasks.

– Combination Class: Real-life scenarios and observations may lead us to
combine two or more services that would further enable mobile users to suf-
ficiently achieve very complex tasks. For example, the combination between
maps and restaurant directories would make a mobile user able to select a
good restaurant and identify its location at the same time. The combina-
tion class is responsible for managing: 1) The server-side aspect that makes
this class able to retrieve the required data from other linked distributed
servers, 2) The application-side aspect, responsible for merging the retrieved
data and make it accessible by single user interface, and 3) the client-side
aspect that guides the pre-installed mobile application through the structure
of collaborating servers.



3.2 Agents Service Communications

The construction of the above service classes are foreseen to be independent from
the specific Agents layer they are interrelating with. However, they cannot be
used without being installed in a proper agent’s platform. This usually happen
because they have no original means of communication and must be cross-layered
with multi-agents architectures that apply a set of pre-defined communication
protocols.

An example for possible integration can be with any FIPA [22] compliant
framework, which uses an Agent Communication Language (ACL) to coordi-
nate among agents. This communication language is located two layers below
the mobile service application layer and on the same level as Agent Manage-
ment and Agent Message Transport. It can also be extended to include Service
Management modules.

Functions that can be performed by Agents to represent service classes and
their sub-classes are as follows:

– The search function is used to properly retrieve a particular service class
from a range of service categories previously defined by mobile-based service
application developer. This function also helps the agent to recognize the
service that best fit into its predefined characteristics and, it facilitates the
adaptation process of a service class and the autonomous agent that together
form what is called a Service Agent.

– The analysis function - After the agent finds its desired service class, it
returns to the Agent Management architecture with a detailed description.
Thus a simple analysis will be made by comparing the requirements and
conditions drawn by the service with the characteristics given to an agent.

– The agent returns to the Agent Management layer, only if they are fitting,
certain analysis results. Consequently, saving these results will be the third
function an agent has to consider and, another sub-function is the waiting
condition an agent should carry out in order to give the possibility for the
overall architecture to complete its pending operations.

– The integration function collects the separate software entities and integrates
/ examines them for overall compatibility. The final Multi-agent system is
now consisting of separate agents that are shaped as general architecture
plug-ins. The loop of functions can be repetitive once plug-ins matching
process produces any object failure. In order to prevent the system from
replicating similar functions and producing another object failure, imple-
menting an Intelligent Expert Agent mechanism is suggested.

Furthermore, the service classification modules and functions must apply and
utilize some system interaction rules to ensure performance and optimum service
delivery, these rules can be as follow:

1. The first rule is to partition the desired service class to as many subclasses
as possible and, to represent each of them with a detailed description that
reflects their exact role in the general system. That is recommended because



Fig. 2. Applied Design Patterns Catalog Views.

the fewer the tasks a service application is about to carry out, the easier it
is to locate a proper service agent to fit in, and the clearer it will be the
service expression.

2. The second rule is to link the service class to an abstract hierarchy that
is found in the Directory Services part of the architecture, which will help
the agent locate the appropriate classifications. The hierarchal approach is
commonly used in Service Oriented Architectures (SOA) design, because it
is easy to refer to as a set of services with a general title.

3. The third rule is to attach a particular service class that simulates the data
flow among different parts of a specific mobile-based service application and,
examine the most suitable delivery method of service contents. This takes
place once the function of integrating the selected agents and examining the
general coordination of the multi-agent system components is completed.

These earlier phases must include a detailed specification of the supporting tech-
nologies, which will further simplify the application of efficient design patterns.
The experience obtained at each time a service class and an agent integrate will
be used for further implementations.

3.3 Applied Design Patterns Catalog

The iterative engineering approach for multi-agent systems, proposed by Lind
[23], has presented a new way to model and capture MAS related aspects. Lind
has also presented a pattern catalog structure that we adapt in order to enable
and enhance the development of agent-based service application. Modifications
and interconnections were made to seven views of those presented in the catalog
structure to fit in our framework (See Figure 2):

Interaction. This view presents the concept of a system that consists of mul-
tiple independent entities, which coordinate with themselves in order to achieve
their individual as well as their joint goals [23]. In this view, we emphasize the
need for the developer to report the methods and techniques used to interact



with the system during the design process, as well as the type of interactions
made between all of the system components. Further on, these interaction expe-
riences will be recognized in further development scenarios and arise whenever
similar situations occur.

In designing a mobile-based application, certain restrictions are applied, such
as limited memory and processing resources and, a unique interaction schema
is required and expected to be seen. Multi-agent systems that are implemented
to represent a specific environment is quite complex and may apply several un-
common interactions beside those traditional ones.

Role. According to [23], the Role view determines the functional aggregation

of the basic problem-solving capabilities according to the physical constraints of

the target system. In designing an Agent-based mobile service application, each
agent is represented to solve a particular problem and accordingly, the goal
of each agent is to take the predefined path to resolve a problem. In certain
scenarios, more than one agent may cooperate to resolve a more complex task,
whereby each of the involved agents is sub-tasked to address a specific goal. This
makes the role of the agent depends on the coordination protocol used to achieve
the overall mobile service delivery.

Architecture (system, agent, agent management). The Architecture

view is a projection of the target system onto the fundamental structural at-

tributes with respect to the system design, [23]. Repeatedly, several system inte-
grations are made to a specific multi-agent system until predefined, or simulta-
neously defined, goals are achieved. These integrations are usually taking place
between an existing Agent-based mobile service application and other running
multi-agent systems, databases or web portals, and this is considered to enhance
the quality of service provided to the end-user. In this view we outline the need to
capture the full process of system integrations and, the importance of sketching
the general architecture, including lightweight and heavyweight devices interre-
lations and roles, and make it re-usable in applying these particular types of
operations on long run implementations.

Society. This view defines the structured collection of entities that pursue
common goals, [23]. In a multi-agent system, separate software entities are form-
ing virtual communities (VC) [17], and communication between these communi-
ties are not limited to single structure but, also to cross-networks architectures.
Software entities of each VC are usually sharing the same interests and goals and,
they collaborate to obtain certain results. In particular, if we apply the mobile
service applications design approaches, emphasizing the condition of inserting
a monitoring tool to observe the agents behavior in creating their own virtual
communities, it will definitely increase system performance. This monitoring tool
will also lead to a better prediction of society structure before implementing any
of its parts and, it will prevent the system from reaching uncontrollable state.

System. This view deals with systems aspects that affect several of the other
views or even the system as a whole [23]. In a pocket device service application,
the System view handles the mobile user interface that relates to the interaction
between the service application and the user. Covering all users’ data-entry and



Fig. 3. General Framework Composition Phase.

portable device output functions, this view records the users’ reactions in a
certain situation and analyzes it to develop a better and simple service module
in case a similar problem occurs.

Task. In this view, a task hierarchy is generated that is then used to de-
termine the basic problem solving capabilities of operating entities in a running
system [23]. We adopt this view as it is but we suggest a link between this view
and the Role view. This link will enable the outputs, coming from the process of
granting roles to agents in a mobile-based service, to be the inputs for creating
a hierarchy for each agent capability.

Environment. Systems are analyzed from the developer’s perspective as
well as system users’ perspectives. In designing an agent-based mobile service
application, the developer’s focus is on the way a service is implemented, tested
and delivered, while for diverse systems, the focus is different. Available re-
sources and processing algorithms control the efficiency of the overall developed
architecture, regardless of how sophisticated and maintained are the systems.

3.4 General Framework Composition

In figure 3, we show the composition phase of the proposed roadmap compo-
nents involves the above-mentioned four mobile service classifications and the
three delegated tasks of each. In addition to its designated functions, a Service
Agent will operate to be compatible with its specific service class, and a set of
rules will be applied to ensure the proper match. To improve developers’ design
techniques, we also suggest involving Agent-oriented methodologies throughout
the application of design patters Views that monitor experiences obtained while
designing a certain service application.



Fig. 4. Diverse communication methods establish reliable mobile service interactions.

4 Application Example

Lightweight devices are increasingly showing their necessity and reliability. Cel-
lular phones and similar devices are part of the new telecommunications era,
which made it possible to virtually carry your office anywhere you go. Nowadays,
people are using pocket devices that allow them to check their emails, exchange
faxes, surf the internet, edit documents and, do shopping. These services are
provided through quite simple, user-friendly and well-developed interfaces, and
costless with respect to the value of services users are getting.

4.1 Andiamo Rideshare Service

In figure 4, we address the motivating scenario driving our research towards the
introduction of design patterns in Multi-agent Systems (MAS). We assume that
three different users are interested in using the same service architecture in man-
aging their desires to obtain a certain item. This service is limited to the demand
and supply of a specific product among system users only (e.g., available care
seats in a carpooling system or a used book in a trade environment). These users
are using their lightweight devices to communicate with the service architecture
and, each is adapted to use its device-based application. One of the users may
be the giver of this product and the others are the requesters.

Each of the involved lightweight devices is configured to utilize a specific
communication method to access the service, a cell phone my send service re-
quests using SMSs, a notebook may access the service through a dedicated web
interface or a Bluetooth/Wi-Fi access point. The service of interest in this ex-
ample is the Andiamo rideshare system [13,21], which keeps track of available
rides in the cars of participating users, and the interests of users to contribute



to the travel cost in exchange for sharing a ride. Such an interaction is usually
provided by a third-party website which match service requests to offers.

Andiamo [26, 18] allows users to share car rides using their cell phones.
This system helps reduce energy consumption, save money, and decrease among
system users. The users use their lightweight devices to communicate with the
service architecture. One user is the seller of the specific needs (e.g., destination)
and preferences (e.g., sex of other user, price). When the agent joins the system,
a matchmaking process takes place. An agent that carries specific information
looks for another agent that may add required details to complete a task. In
complex scenarios multiple agents need to cooperate to solve the task.

The matchmaking process involves two types of agents, buyer agents (BA)
that act on behalf of service seekers, and seller agents (SA) that act on behalf
of service providers. Each type of agent holds information related to its role in
the system. A BA keeps data that helps SA increase his profit, and the data a
SA keeps helps a BA achieve the overall objectives of the system. If, at the end
of the matchmaking phase, a BA has found an suitable SA, both agents try to
maximize their returns through a negotiation process.

As we explored this and similar application scenarios, we could observe that
the same solutions recur regardless of the type of service that needs to be deliv-
ered. Examples of recurring solutions include the interaction of system compo-
nents, the means of communication, and addressing security requirements.

4.2 Interaction of System Components

In general, the more software agents interact and coordinate, the more users
cooperate. A negotiation model or protocol among all of the involved agents
is commonly applied, so they can understand each other, discuss their desires
and eventually achieve their objectives. Different negotiation protocols have been
proposed by scholars, these protocols are mostly inspired by sociological, political
and psychological studies about human negotiation in real-life situations such
as Auctions, Peace agreements and Bidding theories. These protocols aim at
facilitating the agents’ mission within a systems acting in particular predefined
environment, which can make it easy to standardize using design patters.

Different circumstances accompany different MAS environments, and de-
pending on the situation a specific negotiation protocol is chosen and applied on
all system agents (for example, [21]). Time, data transfer rate, general bandwidth
constrains, bridge connection stability and security might not form great obsta-
cles in computer based MAS implementations, as much as it may cause failure for
mobile-based MAS application. All of the advanced negotiation protocols used
in the development of agent-based mobile service applications are coming from
computer/server environments or, databases and matchmaking applications.

In this paper, we claim that we should standardize on a particular agent
negotiation protocol dedicated to all agent-based implementations of services
delivered to lightweight devices through different communication methods (e.g.,
Bluetooth, or Wi-Fi). This negotiation protocol should rapidly achieve complex



tasks, because of the dynamicity of the environment and the nature of connec-
tivity used. Therefore, when design patterns are applied to such a repetitive
negotiation scenario, linking between different agents in different environments,
regardless the service exchanged, will be smoothly implemented.

In the Negotiating Agents pattern [2], agents make their intentions explicit.
For example, they exchange constraints on what the other agents are allowed to
do. The solution involves an initiator who starts a negotiation round by declaring
its intention to its peers, which are all the other agents who must be consulted
before the initiator can go ahead with its action as intended. The peers take on
the role of critics in the negotiation. Two roles (initiator and critic) are defined
by this pattern that agents taking part in a negotiation can play.

A set of negotiation patterns for agents is described in [4]: Trusted Facilitator,
Total Disclosure, and Incremental Disclosure. Each pattern deals with the prob-
lem that the agent need to align their courses of action. In the first pattern they
use a trusted third party to facilitate, in the two other patterns a decentralized
approach is taken. The solutions in those patterns differ in how the preferences
of the agents are disclosed. In the Andiamo system, a decentralized negotiation
protocol is most suitable. Using Incremental Disclosure provides buyer and seller
agents with most control over the outcome of the negotiations.

4.3 Means of Communication

Multiple technologies are used to connect a wide range of mobile users in various
places. Users of advanced mobile devices have the option to communicate with a
location-based service using Bluetooth, Wi-Fi or internet, and with a remote ser-
vice via SMS or email. No matter what service is to be delivered and the nature of
the content exchanged, very similar connectivity modules are used to provide any
of the involved MASs with a reliable means of communication. MAS developers
and software designers, particularly those targeting mobile devices applications,
are wasting time and effort by reimplementing the same functionality.

In [18], when we tried to enable our potential mobile users to communicate
with the centralized MAS through Bluetooth, we had to modify, develop and
integrate various parts of the desired system. And in [26], when we decided to
add the capability to receive SMSs from end-users and transform them to service
requests, our design was similar to that for enabling Bluetooth.

Therefore, the steps performed to enable specific MAS to establish a Blue-
tooth connection with a mobile device application, the procedure taken to com-
municate services requests through SMSs, and the way a MAS switches between
those communication options could all become a standard plugin to be added as
needed.

4.4 Providing Security

The importance of integrating design patterns and agent-oriented methodologies
to provide better solutions for the development of secure agent-based systems



Fig. 5. Pattern-oriented approach to implement secure pocket service application..

has been identified in [3]. Agent-based mobile device applications are required
to meet security criteria that exceeds those of desktop computers.

While implementing different pocket devices service applications we encoun-
tered frequent security requirements observations. We tried to capture an ab-
stract view of these concerns and identify its parties. Therefore, in figure 5,
we further apply the design patterns roadmap we proposed to these security
concerns and, we try to show the usefulness these patterns would give if similar
approaches were used to demonstrate negotiation and means of communications.

As shown in figure 5, in a service architecture using an agent framework to
deliver and exchange contents between users of mobile devices, the major interac-
tions are made among three different parties: Personal Agent (PA) representing
the needs and preferences of a specific user; System Agents (SA) standing in for
the PAs of other users with similar interests; and a Central Multi-agent System
(MAS) responsible for service request matchmaking, content delivery, execution
and enforcing security policies.

From PA stance, when it comes to security [28], three different functions are
to be addressed: 1) the function separates between the public and private data
each PA keeps (e.g., desired service price and bargaining limits). 2) Granting and
preventing other system agents from accessing certain information that are of
importance to the desired service to be found and, with the most proper method
(e.g., the best rideshare offer with lowest price ever). 3) Granting and preventing
the central MAS from collecting particular data about this specific PA and so
its creator, the same for system interactivity modes and connectivity methods,
which can be adjusted by users (e.g., high-level system interactions or complete
system delegation depending whether the user at work or at home).

From System Agents (SAs) stance, similar to PA, three different functions are
the subject of security concerns in any pocket-devices interactions environment.
The two functions of granting and denying access to other PAs and the central
MAS are similar to those of individual PA. The new attribute comes along with



the negotiation function, where protocols, strategies and models of cooperation
are set and configured to control the interactions made among different software
agents, and to ensure the construction of reliable service architecture.

From the central MAS stance, there are two functions that manage the poli-
cies previously defined by, mostly, architecture developers to control the overall
and resources policies, the main algorithms used to provide the service and, the
maximum or minimum amount of resources to be involved in each loop. Another
function is related to the exceptions and threads this MAS is willing to perform
in order to facilitate an uncommon operation (e.g., avoid user registration in
peak-times).

Four patterns for secure agent systems comprising have been documented in
[3]: Agency Guard, Agent Authenticator, Sandbox, and Access Controller. The
Agency Guard protects an agency from malicious agents gaining access through
multiple access points. Agent Authenticator requires that each agent, after they
have entered the system is authenticated. If the agent cannot be authenticated it
will be executed in a Sandbox. Access Controller restricts access to the agency’s
resources, as defined by the security policies of the agency.

5 Related Work

An approach to Agent-based service composition and its application to mobile
business process was presented by scholars [24].They described an architecture
model for multi-agent systems that was developed in the European project LEAP
(Lightweight Extensible Agent Platform). Its main feature is a set of generic ser-

vices that are implemented independently of the agents and can be installed into

the agents by the application developer in a flexible way. These generic services
are responsible of the reusability of the common software entities and they handle
most of the agent-related concerns (protocol, conversation, language, ontology,
and errors), while allowing the developer to concentrate on the application logic.

Another Agent System Development Method based on agent patterns was
presented by other research group [25], and their method enabled developers to

design process into two architectural levels and applying the appropriate agent

patterns, and they added to the same method a higher level designs that are
independent of specific agent platform so it can be reused.

6 Conclusions

The paper proposes a roadmap for using design patterns to develop Agent-based
mobile service application. In this schema, we recommend a classification of mo-
bile application services using multi-agent system development techniques. We
integrated these techniques with a suggested modified version of Lind’s patterns
catalog, which we believe to further enable developers of pocket devices service
applications to further drag and drop certain system plug-ins to enable complex



functions to be easily integrated. We finally use an example of a Rideshare / car-
pooling application that we developed at the University of Trento to show the
usefulness of our roadmap and how it can be contributing to existing literature.

Acknowledgment

We thank the ICT laboratory of ARS LOGICA for the unabated cooperation and
support given to innovative and creative ideas. We also acknowledge the partial
involvements and support of these projects: EU-SERENITY, PRIN-MEnSA,
PAT-MOSTRO, PAT-STAMPS, and PAT-UNIQUIQUE SUUM.

References

1. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad P. and Stal, M. Pattern
Oriented Software Architecture: A System of Patterns, Wiley, 1996.

2. Deugo., D., Weiss, M., and Kendall, E., Reusable Patterns for Agent Coordination,
in: Omicini, A., Coordination of Internet Agents, Springer, 2001.

3. Mouratidis, H., Weiss, M., and Giorgini, P., Modelling Secure Systems Using an
Agent-Oriented Approach and Security Patterns, International Journal on Software
Engineering and Knowledge Engineering, 16(3), 471-498, 2006.

4. Weiss, M., and Esfandiari, B., Patterns for Negotiating Actors, European Conference
on Pattern Languages of Programs (EuroPLoP), 2005.

5. Zhao, L., Mehandjiev, N., and Macaulay, L., Agent Roles and Patterns for Support-
ing Dynamic Behavior of Web Service Applications, AAMAS Workshop on Web
Services and Agent-Based Engineering (WSABE), 2004.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional; 1st edition (Jan-
uary 15, 1995).

7. Stan Franklin and Art Graesser. Is it an Agent, or just a Program?: A Taxonomy
for Autonomous Agents. In the Proceedings of the Third International Workshop
on Agent Theories, Architectures, and Languages, Springer-Verlag, 1996.

8. M. Wooldridge. An Introduction to Multiagent Systems. John Wiley and Sons, 2002.
9. Elizabeth A. Kendall, Chirag V. Pathak, P.V. Murali Krishna, and C.B. Suresh.

The Layered Agent Pattern Language. In Proceedings of the PLoP’97, 1997.
10. M. J.Wooldridge and N. R. Jennings. Pitfalls of agent-oriented development. In

Proceedings of the Agents-98, pages 385-391, 1998.
11. C. Carabelea and O. Boissier. Multi-agent platforms on smart devices: Dream or

reality? In Proceedings of the Smart Objects Conference, France, 2003.
12. M. Bombara, D. Cali, and C. Santoro. Kore: A multi-agent system to assist museum

visitors. In Proceedings of the Workshop on Objects and Agents, Pp.175-178, 2003.
13. O. Bucur, P. Beaune, and O. Boissier. Representing context in an agent architecture

for context-based decision making. In Proceedings of CRR’05, Paris, France, 2005.
14. Federico Bergenti, Marie-Pierre Gleizes and Franco Zambonelli. Methodologies and

Software Engineering for Agent Systems: The Agent-Oriented Software Engineering
Handbook. Springer; 1 edition (June 30, 2004).

15. Fabio Luigi Bellifemine, Giovanni Caire and Dominic Greenwood. Developing
Multi-Agent Systems with JADE. Wiley (April 20, 2007).



16. Michael Winikoff. JACKTM Intelligent Agents: An Industrial Strength Platform.
Chapter 7 in Multi-Agent Programming, edited by Rafael H. Bordini, Mehdi Das-
tani, Jrgen Dix, and Amal El Fallah Seghrouchni, Springer 2005, p175-193.

17. A. Rakotonirainy, S. W. Loke, and A. Zaslavsky. Multi-agent support for open mo-
bile virtual communities. In Proceedings of the International Conference on Articial
Intelligence (IC-AI 2000) (Vol I), Las Vegas, Nevada, USA, pages 127-133, 2000.

18. Bryl, Volha and Giorgini, Paolo and Fante, Stefano. An Implemented Prototype
of Bluetooth-Based Multi-Agent System. Proc. of WOA05, Camerino, Nov 2005.

19. H.S. Nwana. Software Agents: An Overview. Knowledge Engineering Review, 1996.
20. Seitz, C. and Berger, M. and Bauer, B. MoPiDiG. In: Proceedings of the First

International Workshop on Mobile Peer-to-Peer Computing. (2004), Florida, USA.
21. C. Carabelea and M. Berger. Agent negotiation in ad-hoc networks. In Proceed-

ings of the Ambient Intelligence Workshop at AAMAS’05 Conference, Utrecht, The
Netherlands, pages 5 - 16, 2005.

22. The Foundation for Intelligent Physical Agents (FIPA), http://www.fipa.org, 2003.
23. Lind, J. Iterative Software Engineering for Multiagent Systems - The MASSIVE

Method, volume 1994 of Lecture Notes in Computer Science. Springer, May 2001.
24. Berger, M. Bouzid, M. Buckland, M. Lee, H. Lhuillier, N. Olpp, D. Picault, J.

Shepherdson, J. An Approach to Agent-Based Service Composition and Its Ap-
plication to Mobile Business Processes Siemens AG, Muenchen, Germany; Mobile
Computing, IEEE Transactions, Volume: 2, Issue: 3, 197- 206, July-Sept. 2003.

25. Y. Tahara, A. Ohsuga, S. Honiden. Agent System Development Method Based
on Agent Patterns Proceedings of The Fourth International Symposium on Au-
tonomous Decentralized Systems. 1999.

26. Abdel-Naby, S. Fante, S. and Giorgini, P. Auctions Negotiation for Mobile
Rideshare Service. In the Proceeding of the IEEE Second International Conference
on Pervasive Computing and Applications (ICPCA07), July 2007, Birmingham, UK.

27. H. Mouratidis, P. Giorgini, and M. Weiss Integrating Patterns and Agent-Oriented
Methodologies to Provide Better Solutions for the Development of Secure Agent
Systems. In Proceedings of the Workshop on Expressiveness of Pattern Languages
2003, at ChiliPLoP 2003, March 11-14, 2003 Carefree, Arizona.

28. Jansen, W., Karygiannis, T. (1999), Mobile Agent Security, National Institute of
Standards and Technology, Special Publication 800-19


