
Information Systems as Social Structures

Ariel Fuxman1 Paolo Giorgini2 Manuel Kolp1 John Mylopoulos1

1 Department of Computer Science - University of Toronto, 10 King’s College Road , M5S 3G4, Toronto, Canada,
{afuxman, mkolp, jm}@cs.toronto.edu

2 Department of Mathematics - University of Trento, 14 via Sommarive, I-3850, Trento, Italy,
pgiorgini@science.unitn.it

Abstract

Organizations are changing at an ever-faster pace, as they
try to keep up with globalization and the information
revolution. Unfortunately, information systems
technologies do not support system evolution well, making
information systems a roadblock to organizational change.
We propose to view information systems as social
structures and define methodologies which develop and
evolve seamlessly an information system within its
operational environment.

To this end, this paper proposes an ontology for
information systems that is inspired by social and
organizational structures. The ontology adopts components
of the i* organizational modeling framework, which is
founded on the notions of actor, goal and social
dependency. Social patterns, drawn from research on
cooperative and distributed architectures, offer a more
macroscopic level of social structure description. Finally,
the proposed ontology includes organizational styles
inspired from organization theory. These are used not only
to model the overall organizational context of an
information system, but also its architecture. Social patterns
and organizational styles are defined in terms of
configurations of i* concepts. The research has been
conducted in the context of the Tropos project.

Keywords
Information systems, software development methodology,
organization modeling, software architectures.

1 Introduction

Information systems have traditionally suffered from an
impedance mismatch. Their operational environment is
understood in terms of actors, responsibilities,
dependencies, social structures, organizational entities,
objectives, tasks and resources, while the information
system itself is usually conceived as a collection of
(software) modules, entities (e.g., objects, agents), data
structures and interfaces. This mismatch is one of the main
factors for the poor quality of information systems, and for
the frequent failure of system development projects.

We are interested in developing an information system
methodology, called Tropos [Cas01], which views
information systems as social structures thereby reducing
the impedance mismatch alluded to earlier. Tropos is
intended as a seamless methodology tailored to describe
both the organizational environment of a system and the
system itself in terms of the same concepts. By social
structures, we mean a collection of social actors, human or
software, which act as agents, positions (e.g., the
department chair), or roles (e.g., the meeting chair) and
have social dependencies among them (e.g., the meeting
chair depends on the meeting participants to show up, while
they depend on the chair to conduct an effective meeting).

The Tropos ontology is described at three levels of
granularity. At the lowest (finest granularity) level, Tropos
adopts concepts offered by the i* organizational modeling
framework [Yu95], such as actor, agent, position, role,
and social dependency. At a second, coarser-grain level
the ontology includes possible social patterns, such as
mediator, broker and embassy. At a third, more
macroscopic level the ontology offers a set of
organizational styles inspired by organization theory and
strategic alliances literature. All three levels are defined in
terms of the i* concepts.

The Tropos methodology spans four phases of software
development:

• Early requirements, concerned with the understanding of
a problem by studying an organizational setting; the output
is an organizational model which includes relevant actors,
their goals and dependencies.

• Late requirements, where the system-to-be is described
within its operational environment, along with relevant
functions and qualities.

• Architectural design, where the system’s global
architecture is defined in terms of subsystems,
interconnected through data, control and dependencies.

• Detailed design, where behavior of each architectural
component is defined in further detail.

For purposes of presentation, we describe first i*, then the
organizational styles and finally the social patterns. The rest

 2

of the paper is organized as follows. Section 2 shows how
Tropos can be used to produce an initial i* organization
model. Section 3 presents the organization-inspired styles,
and their application to the kind of models presented in
Section 2. Section 4 proposes a number of social goal-
based patterns. Finally, Section 5 summarizes the
contributions and points to further work.

2 Initial Organizational Models

Tropos adopts a goal- and actor-oriented ontology for
modeling organizational settings based on i* [Yu95]. It
assumes that an organization involves actors who have
strategic dependencies among each other. A dependency
describes an “agreement” (called dependum) between two
actors: the depender and the dependee. The depender is the
depending actor, and the dependee, the actor who is
depended upon. The type of the dependency describes the
nature of the agreement. Goal dependencies are used to
represent delegation of responsibility for fulfilling a goal;
softgoal dependencies are similar to goal dependencies, but
their fulfillment cannot be defined precisely (for instance,
the appreciation is subjective, or the fulfillment can occur
only to a given extent); task dependencies are used in
situations where the dependee is required to perform a
given activity; and resource dependencies require the
dependee to provide a resource to the depender. As shown
in Figure 1, actors are represented as circles; dependums --
goals, softgoals, tasks and resources -- are respectively
represented as ovals, clouds, hexagons and rectangles; and
dependencies have the form depender → dependum →
dependee.

Buy Media
ItemsCustomer Retailer

Media Media
Supplier

Consult
Catalogue

Customers
Satisfied

Continuous
Supply

Long-Term
Business

Media Items

Quality
Packages

Media
Producer

Figure 1 : i* Model for a Media Retailer

These elements are sufficient for producing a first model of
an organizational environment. For instance, Figure 1
depicts an i* model of a business organization selling
media items (books, newspapers, CDs, etc.). The main
actors are Customer, MediaRetailer, MediaSupplier and
MediaProducer. Customer depends on MediaRetailer to
fulfill her goal: Buy Media Items. Conversely,
MediaRetailer depends on Customer to “satisfy

customers”. Since the dependum SatisfiedCustomers
cannot be defined precisely, it is represented as a softgoal.

The Customer also depends on MediaRetailer to get a
Media Item (resource dependency) and Consult Catalogue
(task dependency). Furthermore, MediaRetailer depends
on MediaSupplier to supply media items in a continuous
way. The items are expected to be of good quality because,
otherwise, the Long-Term Business dependency would not
be fulfilled. Finally, MediaProducer is expected to provide
MediaSupplier with Quality Packages.

We have defined a formal language, called Formal Tropos
[Fux01], that complements i* in several directions. First of
all, it provides a textual notation for i* models and allow us
to describe dynamic constraints among the different
elements of the specification in a first order linear-time
temporal logic. Second, it has a precisely defined semantics
that is amenable to formal analysis. Finally, we have
developed a methodology for the automated analysis and
animation of Formal Tropos specifications [Fux01], based
on model checking techniques [Cla99].

Entity MediaItem
Attribute constant itemType : ItemType, price : Amount,

 InStock : Boolean

Dependency BuyMediaItems
Type goal
Mode achieve
Depender Customer
Dependee MediaRetailer
Attribute constant item : MediaItem
Fulfillment

 condition for depender
∀ media : MediaItem(self.item.type =
media.type → item.price <= media.price)

[the customer expects to get the best price for the type of item]

Dependency ContinuousSupply
Type goal
Mode maintain
Depender MediaRetailer
Dependee MediaSupplier
Attribute constant item : MediaItem
Fulfillment

 condition for depender
∃ buy : BuyItem(JustCreated(buy) → buy.item.inStock)

[the media retailer expects to get items in stock as soon as
someone is interested in buying them]

Figure 2 : Formal Tropos Specifications

As an example, Figure 2 presents the specification in
Formal Tropos for the BuyMediaItems and
ContinuousSupply goal dependencies. Notice that the
Formal Tropos specification provides additional
information that is not present in the i* diagram. For
instance, the fulfillment condition of BuyMediaItems
states that the customer expects to get the best price for the
type of product that she is buying. The condition for
ContinuousSupply states that the shop expects to have the
items in stock as soon as someone is interested in buying
them.

 3

3 Organizational Styles

Organizational theory [Min92, Sco98] and strategic
alliances literature [Gom96, Seg96, Yos95] study
alternative styles for (business) organizations. These styles
are used to model how business stakeholders -- individuals,
physical or social systems – coordinate in order to achieve
common goals. Tropos adopts (some of these)
organizational styles at the macroscopic level of its
ontology in order to describe the overall structure of the
organizational context of the system or its architecture. In
this section, we explain some of these styles in terms of the
basic ontology introduced in the previous section.

The structure-in-5 (Figure 3) is a typical organizational
style. At the base level, the Operational Core takes care of
the basic tasks -- the input, processing, output and direct
support procedures -- associated with running the
organization. At the top lies the Apex, composed of
strategic executive actors. Below it, sit the Coordination,
Middle Agency and Support actors, who are in charge of
control/standardization, management and logistics
procedures, respectively. The Coordination component
carries out the tasks of standardizing the behavior of other
components, in addition to applying analytical procedures
to help the organization adapt to its environment. Actors
joining the apex to the operational core make up the Middle
Agency. The Support component assists the operational
core for non-operational services that are outside the basic
flow of operational tasks and procedures.

Apex

Standardize

Coordination

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non-operational

Logistics SupportControl

Figure 3 : Structure-in-5

The organizational styles are generic structures defined at a
metalevel that can be instantiated to model/design a
specific application context/architecture (see Figure 10 and
11). As an example, Figure 4 specifies the structure-in-5
style in Telos [Myl90]*. The Telos language provides

* Since Formal Tropos does not support metalevels yet, we use

features to describe metaconcepts used to represent the
knowledge relevant to a variety of worlds – subject, usage,
system, development worlds - related to a software system.
Our organizational styles are formulated as Telos
metaconcepts, primarily based on the aggregation
semantics for Telos presented in [Mot93].

The structure-in-5 style is specified as a Telos metaclass,
StructureIn5MetaClass. It is an aggregation of five (part)
metaclasses, one for each actor composing the structure-
in-5 style: ApexMetaClass, CoordinationMetaClass,
MiddleAgencyMetaClass, SupportMetaClass and
OperationalCoreMetaClass. Each of these five components
exclusively belongs (exclusivePart) to the composite
(Structure-In5MetaClass), and their existence depends
(dependentPart) on the existence of the composite.

TELL CLASS StructureIn5MetaClass

IN Class WITH /*Class is here used as a MetaMetaClass*/
attribute name: String

part, exclusivePart, dependentPart

 ApexMetaClass: Class
 CoordinationMetaClass: Class
 MiddleAgencyMetaClass: Class

 SupportMetaClass: Class
 OperationalCoreMetaClass: Class
END StructureIn5MetaClass

Figure 4 : Structure-in-5 in Telos

The joint venture style (Figure 5) is a more decentralized
style that involves an agreement between two or more
principal partners in order to obtain the benefits derived
from operating at a larger scale and reusing the experience
and knowledge of the partners.

Delegation
Authority

Partner_1
Principal

Principal
Partner_n

Resource
Exchange

Principal
Partner_2

Partner_1
Secondary Secondary

Partner_n

Knowledge
Sharing

Management
Joint

Support

Coordination
Added
Value

Contractual
Agreement

Supplying
Services

Figure 5 : Joint Venture

Telos to specify our styles as metastructures. The styles should be
eventually specified in Formal Tropos.

 4

Each principal partner can manage and control itself on a
local dimension and interact directly with other principal
partners to exchange, provide and receive services, data and
knowledge. However, the strategic operation and
coordination is delegated to a Joint Management actor, who
coordinates tasks and manages the sharing of knowledge
and resources. Outside the joint venture, secondary partners
supply services or support tasks for the organization core.

The takeover style involves the total delegation of
authority and management from two or more partners to a
single collective takeover actor. It is similar in many ways
to the joint venture style. The major and crucial difference
is that while in a joint venture identities and autonomies of
the separate units are preserved, the takeover absorbs these
critical units in the sense that no direct relationships,
dependencies or communications are tolerated except those
involving the takeover.

The vertical integration style merges, backward or
forward, several actors engaged in achieving or realizing
related goals or tasks at different stages of a production
process. An Organizer merges and synchronizes
interactions/dependences between participants, who act as
intermediaries. Figure 6 presents a vertical integration style
for the domain of goods distribution. Provider is expected
to supply quality products, Wholesaler is responsible for
ensuring their massive exposure, while Retailer takes care
of the direct delivery to the Consumers.

Wholesaler

Provider

Consumer

Organizer

Products

Market
Evaluation

Supply

Retailer

Acquire

Detect
Products

Products

Products Products

Products
Deliver

Massive
Supply

Directives

Direct Access

Quality Wide Access
to Market

to Consumer

Interest in

Figure 6 : Vertical Integration

The pyramid style is the well-know hierarchical authority
structure. Actors at lower levels depend on those at higher
levels for supervision. The crucial mechanism is direct

supervision from the Apex. Managers and supervisors at
intermediate levels only route strategic decisions and
authority from the Apex to the operating (low) level. They
can coordinate behaviors or take decisions by their own,
but only at a local level.

The arm’s-length style implies agreements between
independent and competitive, but partner actors. Partners
keep their autonomy and independence but act and put their
resources and knowledge together to accomplish precise
common goals. No authority is lost, or delegated from one
collaborator to another.

The hierarchical contracting style (Figure 7) identifies
coordinating mechanisms that combine arm’s-length
agreement features with aspects of pyramidal authority.

Coordination mechanisms developed for arm’s-length
(independent) characteristics involve a variety of
negotiators, mediators and observers at different levels
handling conditional clauses to monitor and manage
possible contingencies, negotiate and resolve conflicts and
finally deliberate and take decisions. Hierarchical
relationships, from the executive apex to the arm’s-length
contractors (top to bottom) restrict autonomy and underlie a
cooperative venture between the contracting parties.

Controller

Negociator Deliberator

Routing Brokering

Observer

Executive

Mediator

Conflict
Solving

Contractor_1 Contractor_2 Contractor_3 Contractor_n

Authority
Strategic
Decisions

Coordinate

Monitoring Matching

Raw
Data

Figure 7 : Hierarchical Contracting

The bidding style (Figure 8) involves competitivity
mechanisms, and actors behave as if they were taking part
in an auction. The Auctioneer actor runs the show,
advertises the auction issued by the auction Issuer, receives
bids from Bidder actors and ensures communication and
feedback with the auction Issuer. The auction Issuer is
responsible for issuing the bidding.

 5

Start Bid
at the lowest

price

Run
Auction

Bidder_1 Bidder_2

Bid Higher No Higher
Bid

Bidder_n

Auctioneer

Issuer

Best

Bid
PossibleService/

Product

Figure 8 : Bidding

The co-optation style (Figure 9) involves the incorporation
of representatives of external systems into the decision-
making or advisory structure and behavior of an initiating
organization. By co-opting representatives of external
systems, organizations are, in effect, trading confidentiality
and authority for resource, knowledge assets and support.
The initiating system has to come to terms with the
contractors what is being done on its behalf; and each co-
optated actor has to reconcile and adjust its own views with
the policy of the system it has to communicate.

Knowledge
Sharing

Support

Cooptated_1

Contractor_1 Contractor_n

Services
Foreign

Provides
Assets Cooptated_2 Cooptated_n

Ressource
External

Figure 9 : Co-optation

Organizational styles guide the development of the
organizational model for a system. For instance, suppose
that we detect that the organizational style for the Media
Company example of the previous Section can be
represented as a vertical integration. Then, the initial
organizational model of Figure 1 can be refined and
completed as shown in Figure 10.

The model is an instantiation of the vertical integration
style of Figure 6. The Customer takes the role of
Consumer, MediaProducer assumes the position of
Provider, and Media System the role of Organizer. Media
Producer is expected to provide quality products, Media
Supplier ensures massive exposure of media items while

Media Retailer interacts with the Customer. The
information system is also introduced as a full-fledged
organizational actor, and each of the human stakholders
uses the Media system for her particular needs and goals.
For instance, MediaProducer wants to find information
about the media market and stakeholders; MediaSupplier
would like to find and promote new ideas, projects and
talents to increase its market share while MediaRetailer
needs to be provided with e-commerce facilities to satisfy
customers. Finally, Customer would like to consult product
catalogues and place orders.

Customer

Packages

Supply
Products

Supply
Direct Access

Quality

Media
Producer

Massive
Exposure

Supplier

Find
Information

about
Media actors

Media

to Custumer
Continuous

Retailer
Media

Process
Order

Order
Place

Catalogue
Browse

User Needs
Find

Customers
Satisfied

Business
Long-term

Products
Interest in

Discover
New Talents

Media
System

Figure 10 : Modeling the Organizational Context of the Media

Company with the Vertical Integration Style

Tropos aims to apply its social ontology not only to
organizational models, but also to all levels of software
development (most notably, architectural design). For
instance, the joint venture style can be used to produce an
architectural description of the Media System. A more
detailed description of this particular architecture can be
found in [Kol01]. Figure 11 suggests a possible assignment
of system responsibilities for the business-to-consumer
(B2C) part of the Media System. Following the joint
venture style, the architecture is decomposed into three
principal partner actors (Store Front, Order Processor and
Back Store). They control themselves on a local dimension
for exchanging, providing and receiving services, data and
resources with each other.

Each of the three system actors delegates authority to and is
controlled and coordinated by the joint management actor
(Joint Manager), managing the system on a global
dimension. Store Front interacts primarily with Customer
and provides her with a usable front-end Web application.
Back Store keeps track of all Web information about

 6

customer orders, product sales, bills and other data of
strategic importance to MediaRetailer. Order Processor is
in charge of the secure management of orders and bills,
and other financial data. Joint Manager manages all of
them handling Security gaps, Availability bottlenecks and
Adaptability issues, three software quality attributes (as
well as sub-attributes Authorization, Integrity, Usability,
Updatability and Maintainability) required for business-to-
consumer applications identified and evaluated in detail for
our Media system example in [Kol01].

Browser
Item

Item
Detail

Profiler
Customer

Customer
DataShopping

Cart

Integrity

Updatability

Usability
Security
Checker

Order
Processor

Check
Out

Authori-
zation

Front
Store

Database
Product

Consult
Catalogue

Item
Select

ability
Adapt-

Manager

Avail-
ability

Manager

Joint
Manager

Maintain-
ability

Back
Store

Information
Order

Figures
Ratings &

Figure 11 : Designing the System Architecture with the Joint
Venture Style

All the system actors of Figure 11 will eventually be further
specified into subactors, and delegated with specific
responsibilities. For instance, in the Store Front, Item
Browser is delegated the task of managing catalogue
navigation; Shopping Cart, the selection and customization
of items; Customer Profiler, the tracking of customer data
and the production of client profiles; and Product
Database, the management of media items information.
Similarly, to cope with Security, Availability and,
Adaptability, Joint Manager is further refined into three
new system sub-actors Security Checker, Availability
Manager and Adaptability Manager. Further
decomposition details can be found in [Kol01].

4 Social Patterns

The last element of our ontology are the social patterns.
Unlike organizational styles, they focus on the social
structure necessary to achieve one particular goal, instead
of the overall goals of the organization.

A social pattern defines the actors (together with their roles
and reponsibilites) and the social dependencies that are
necessary for the achievement of the goal.

Considerable work has been done in software engineering
for defining software patterns (see e.g., [Gam95, Pre95,

Bus96]); unfortunately, they do not place emphasis on
social aspects. On the other hand, proposals of patterns that
address social issues (see e.g., [Ari98, Deu99, Ken98]) are
not intended to be used at an organizational level, but rather
during implementation phases by addressing issues such as
agent communication, information gathering from
information sources, or connection setup.

In the following, we present some social patterns that focus
on social mechanisms recurrent in multi-agent and
cooperative systems literature; in particular, the following
structures are inspired by the federated patterns introduced
in [Hay99, Woo99]. As with organizational styles, patterns
are also metastructures that can be instantiated to
model/design a specific application context/architecture
(See Figure 18).

A broker (Figure 12) is an arbiter and intermediary who
has access services of an actor (Provider) in order to satisfy
the request of a Consumer. This pattern is especially used
in the hierarchical contracting and joint venture styles.
Notice that roles are established in the context of a
particular interaction. For instance, Consumers may be in
turn Providers, and vice versa.

Service
Requested

Provider

Consumer Broker

Advertise
Service

Requested
Service

Figure 12 : Broker

A matchmaker (Figure 13) locates a Provider that can
handle a Consumer’s request for service, and then directs
the Consumer to the chosen Provider. As opposed to the
Broker who handles all interactions between the Consumer
and the Provider, the Matchmaker only makes the
connection, and leaves all further interaction to be done
directly between the intervening actors. It can also be used
in hierarchical contracting and joint ventures.

Consumer

Provider

Matchmaker

Advertise
Service

Requested
Service

Locate
Provider

Figure 13 : Matchmaker

A mediator (Figure 14) mediates interactions among
different actors. An Initiator addresses the Mediator instead
of asking directly another colleague, the Performer. It has
acquaintance models of colleagues and coordinates the
cooperation between them. Inversely, each colleague has an

 7

acquaintance model of the Mediator. While a broker simply
matches providers with consumers, a Mediator
encapsulates interactions and maintains models of initiators
and performers behaviors over time. It is used in the
pyramid, vertical integration and hierarchical contracting
styles since it underlies direct cooperation and
encapsulation features reinforcing authority.

Map
Performer

MediatorInitiator

Performer

Route

Service
Performs

Service
Requested

Figure 14 : Mediator

A monitor (Figure 15) alerts a Subscriber about relevant
events. It accepts subscriptions, requests notifications for
subjects of interest, receives such notifications, and alerts
subscribers of relevant events. The Subject provides
notifications of state changes as requested. The Subscriber
registers for notification of state changes to distributed
subjects, receives notifications with current state
information, and updates its local state information. This
pattern is used in the hierarchical contracting, vertical
integration, arm’s-length and bidding styles implying
observation activities.

Monitor

Change

Subscriber

NotifySubject

Change

Forward
Subscribed

Figure 15 : Monitor

An embassy (Figure 16) routes a service requested by a
foreign actor (Foreigner) to a local one, and handles back
the response. If the access is granted, the Foreigner can
submit messages to the Embassy for translation. The
content is translated in accordance with a standard
ontology. Translated messages are forwarded to target local
actors. The results of the query are passed back to the
Foreigner, and translated in reverse. This pattern can be
used in the structure-in-5, arm’s-length, bidding and co-
optation styles to take in charge security aspects between
systems component related to the competitivity
mechanisms inherent to these styles.

Route

Translate

Service
Requested

Access

Foreigner Embassy

Performative

Requested
Service

Native

Figure 16 : Embassy

A wrapper is an embassy that incorporates a legacy system
into the organization. The wrapper interfaces the clients to
the legacy by acting as a translator between them. This
ensures that communication protocols are respected and the
legacy system remains decoupled from the clients. This
pattern can be used in the co-optation style when one of the
co-optated actor is a representative for a legacy system.

The contract-net pattern (Figure 17) selects an actor to
which to assign a task. The pattern involves a manager
(Contractor) and any number of participants (Clients). The
manager issues a request for proposal for a particular
service to all participants, and then accepts "proposals" to
meet the service request at a particular "cost". The manager
selects one participant who performs the contracted work
and informs the manager upon completion. This pattern is
especially used in the arm’s-length and bidding and co-
optation styles due to their inherent competitive features.

Accept

Perform
Contracted

ContractorClient

Work

Request for
Poposal

Figure 17 : Contract-net

A detailed analysis of a pattern allows to define a set of
capabilities associated with the roles assigned to the actors
of the pattern. Due to the lack of space, Table 1 only
presents the set of capabilities for the broker pattern.

A capability states that an actor is able to act in order to
achieve a given goal. In particular, for each capability the
actor has a set of plans that may apply in different
situations. A plan describes the sequence of actions to
perform and the conditions under which the plan is
applicable. It is important to notice that we have common
capabilities for different actors; for instance, the capability
“handle services ontology” is common to the three actors of
the Broker pattern. Capabilities are collected in a catalogue
and associated to the pattern. This allows to define the
actors’ role and capabilities suitable for a particular
domain.

 8

BROKER

Actor Capabilities

Customer - Build a request to query the Broker
- Handle services ontology
- Query the broker for a service
- Find alternative brokers
- Manage possible broker failures
- Monitor the broker’s ongoing processes
- Ask the broker to stop the requested service

Provider - Handle services ontology
- Advertise a service to the appropriate broker
- Withdraw the advertisement
- Use an agenda for managing the requests
- Inform the broker of the acceptance of the request service
- Inform the broker of a service failure
- Inform the broker of success of a service

Broker - Update the local database
- Handle services ontology
- Use an agenda for managing the customer requests
- Follow the status of the requested services
- Search the name of an agent to ask a service
- Inform the customer of the impossibility for a service
- Inform the customer of a service failure
- Inform the customer of the success of a service
- Request a service to a provider
- Manage possible provider failures
- Monitor the provider’s ongoing processes
- Ask the provider to stop a requested service

Table 1 : Capabilities for the Broker Pattern

Figure 18 shows a possible use of the patterns in the e-
business system shown in Figure 11. In particular, it shows
how to solve the goal of managing catalogue navigation
that the Store Front has delegated to the Item Browser. The
goal is decomposed into different subgoals and solved with
a combination of patterns.

Searcher
Info

Locate
Source

Source
Matchm.

Route Info
Request

Monitor

Provide
Information

change
Notify

Information
Hits

Processor
Statistics

Database
Product

Translate
Response

Profile
Customer Mediator

Wrapper
Query

Information
Source

Info
Ask for

Advertising

Item
Browser

Fwd source
change

Figure 18 : Social Patterns for Item Browser

The broker pattern is applied to the Info Searcher, which
satisfies requests of searching information by accessing
Product Database. The Source Matchmaker applies the
matchmaker pattern locating the appropriate source for the
Info Searcher, and the monitor pattern is used to check any

possible change in the Product Database. Finally, the
mediator pattern is applied to mediate the interaction
among the Info Searcher, the Source Matchmaker, and the
Wrapper, while the wrapper pattern makes the interaction
between the Item Browser and the Product Database
possible. Of course, other patterns can be applied. For
instance, we could use the contract-net pattern to select a
wrapper to which delegate the interaction with the Product
Database, or the embassy to route the request of a wrapper
to the Product Database.

5 Conclusion

We have proposed an ontology which views information
systems as social structures. The ontology has been inspired
by organizational modeling frameworks and theories, also
by multi-agent and cooperative system research.

Obviously, this social perspective on software systems is
best suited for software which operates within an open,
dynamic, and distributed environment, such as those that
are becoming prevalent with Web, Internet, agent, and
peer-to-peer software technologies.

We are continuing work on formalizing the organizational
styles and social patterns that have been presented. In
particular, we propose to define formally the patterns and
styles as metaclasses which are instantiated for particular
information system designs. To this end, we are improving
the syntax and semantics of Formal Tropos especially to
support metalevel specifications. We also propose to
compare and contrast our styles and patterns to classical
software architectural styles and patterns proposed in the
software engineering literature and relate them to
implementation-inspired architectural components such as
ports, connectors, interfaces, libraries and configurations.
Finally, we are working on formalizing the “code of ethics”
for the different patterns, answering the question: what can
one expect from a broker, mediator, embassy, etc.?

References

[Ari98] Y. Aridor and D. B. Lange. “Agent Design Patterns:
Elements of Agent Application Design”. In Proceeding of
Autonomous Agents (Agents’98), ACM Press, 1998.

[Cas01] J. Castro, M. Kolp, and J. Mylopoulos. “A Requirements-
Driven Development Methodology”. To appear in Proc. of the
13th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’01), Interlaken, Switzerland, June 2001.

[Cla99] E. Clarke, O. Grumberg, and D. Peled. Model Checking,
MIT Press, 1999.

 [Deu99] D.Deugo, F. Oppacher, J.Kuester, and I. V. Otte.
“Patterns as a Means for Intelligent Software Engineering”. In
Proceedings of the International Conference of Artificial
Intelligence (IC-AI’99), Vol II, CSRA Press, 605-611, 1999.

[Feb98] J. Ferber and O. Gutknecht. “A meta-model for the
analysis and design of organizations in multi-agent systems”.
In Proceedings of the 3rd International Conference on Multi-
Agent Systems (ICMAS’98), IEEE CS Press, June, 1998.

 9

[Fox81] M.S. Fox. “An organizational view of distributed
systems”. In IEEE Transactions on Systems, Man, and
Cybernetics, 11(1):70-80, January 1981.

[Fux01] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso.
Model Checking Early Requirements Specification in Tropos.
To be published.

[Gam95] E. Gamma., R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-oriented
Software, Addison-Wesley, 1995

[Gom96] B. Gomes-Casseres. The alliance revolution : the new
shape of business rivalry, Cambridge, Mass., Harvard
University Press, 1996.

[Hay99] S. Hayden, C. Carrick, and Q. Yang. “Architectural
Design Patterns for Multiagent Coordination”. In Proc. of the
International Conference on Agent Systems (Agents’99),
Seattle, WA, May 1999.

[Ken98] E. Kendall, P.V. Murali Krishna, C. V. Pathak, and C.B.
Suersh. “Patterns of Intelligent and Mobile Agents”. In K.
Sycara and M. Wooldridge, eds., Proceedings of the 2nd
International Conference on Autonomous Agents (Agents’98),
pages 92—98, New York, May 1998, ACM Press.

[Kol01] M. Kolp, J. Castro, and J. Mylopoulos. “A Social
Organization Perspective on Software Architectures”. To
appear in Proceedings of the First International Workshop
From Software Requirements to Architectures (STRAW'01),
Toronto, May 2001.

[Min92] H. Mintzberg, Structure in fives : designing effective
organizations, Englewood Cliffs, N.J., Prentice-Hall, 1992.

 [Mal88] T.W. Malone. “Organizing Information Processing
Systems: Paralles Between Human Organizations and
Computer Systems”. In W. Zachry, S. Robertson, and J. Black,
eds. Cognition, Cooperation and Computation, Norwood, N.J.,
Ablex, 1988.

[Mot93] R. Motschnig-Pitrik. “The Semantics of PartsVersus
Aggregates in Data/Knowledge Modeling”. In Proc. of the 5th
Int. Conference on Advanced Information Systems Engineering
(CAiSE’93), Paris, June 1993, pp 352-372.

[Myl90] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis.
“Telos: Representing Knowledge About Information Systems”. In
ACM Trans. Info. Sys., 8 (4), October 1990, pp. 325 – 362.

[Pre95] W. Pree. Design Patterns for Object-Oriented Software
Development, Addison-Wesley, 1995.

[Sha96] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline, Upper Saddle River,
N.J., Prentice Hall, 1996.

[Sco98] W. Richard Scott. Organizations : rational, natural, and
open systems, Upper Saddle River, N.J., Prentice Hall, 1998.

[Seg96] L. Segil. Intelligent business alliances: how to profit
using today's most important strategic tool, New York, Times
Business, 1996.

 [Yos95] M.Y. Yoshino and U. Srinivasa Rangan. Strategic
alliances: an entrepreneurial approach to globalization,
Boston, Mass., Harvard Business School Press, 1995.

[Yu95] E. Yu. Modelling Strategic Relationships for Process
Reengineering, Ph.D. thesis, Department of Computer Science,
University of Toronto, Canada, 1995.

[Woo99] S. G. Woods and M. Barbacci. “Architectural Evaluation
of Collaborative Agent-Based Systems”. Technical Report,
CMU/SEI-99-TR-025, SEI, Carnegie Mellon University, PA,
USA, 1999.

[Zam00] F. Zambonelli, N.R. Jennings, and M. Wooldridge.
“Organisational Abstractions for the Analysis and Design of
Multi-Agent Systems”. In Proc. of the 1st International

Workshop on Agent-Oriented Software Engineering at ICSE
2000, Limerick, Ireland, June 2000.

