
A Multi-agent System for Knowledge Management based
on the Implicit Culture Framework

Enrico Blanzieri Paolo Giorgini Fausto Giunchiglia
Claudio Zanoni

Department of Information and Communication Technology
University of Trento - Italy

via Sommarive 14, 38050 Povo Trento�
enrico.blanzieri,paolo.giorgini,claudio.zanoni � @dit.unitn.it

Abstract:
We present an implementation of a multi-agent system whose goal is to solve the

problem of tacit knowledge transfer by means of sharing of experiences. In particular,
we consider experiences of use of pieces of information. Each agent incorporates a
systems for implicit culture support (SICS) whose goal is to realize the acceptance of
the information suggested. The SICS permits a transparent, namely implicit, sharing of
the information about the use, e.g. requesting and accepting, of pieces of information.

1 Introduction

In Knowledge Management, knowledge is categorized as being either codified (explicit)
or tacit (implicit). Knowledge is said being explicit when it is possible to describe and
share it among people through documents and/or information bases. Knowledge is said
being implicit when it is embodied in the capabilities and abilities of the members of a
group of people. Experience can be seen as a way of access and share this kind of knowl-
edge. In [NT95], knowledge creation processes have been characterized in terms of tacit
and explicit knowledge transformation processes, in which, instead of considering new
knowledge as something that is added to the previous, they conceive it as something that
transforms it. Supporting by means of IT systems the transfer of tacit knowledge, namely
experience, among people in organizations represents a challenge whose difficulties are
mainly in the need of explicitly representing tacit knowledge.

In [BG00] we have introduced the notion of Implicit Culture that can be informally defined
(see [BGMR01a] for a formal definition) as the relation existing between a set and a group
of agents such that the elements of the set behave according to the culture of the group.
Systems for Implicit Culture Support (SICS in the following) have the goal of establishing
an Implicit Culture phenomenon that is defined as a pair composed by the set and the
group, in Implicit Culture relation. Supporting Implicit Culture is effective in solving the
problem of improving the performances of agents acting in an environment where more-



skilled agents are active, by means of an implicit transfer of knowledge between the group
and the set of agents. In particular, Implicit Culture can be applied successfully in the
context of knowledge management. The idea is to build systems able to capture implicit
knowledge, but instead of sharing it among people, change the environment in order to
make new people behave in accordance with this knowledge. As a first step in this direction
we have shown how information retrieval problem can be posed in the implicit culture
framework [BGMR01b]. In this framework supporting an Implicit Culture phenomenon
leads to a solution of the problem of transfer tacit knowledge without the need to explicitly
representing the knowledge itself.

Some assumptions underlie the concepts of Implicit Culture, Implicit Culture Phenomenon
and SICS. We assume that the agents perform situated actions. Agents perceive and act
in an environment composed of objects and other agents. In this perspective, agents are
objects that are able to perceive, act and, as a consequence of perception, know. Before
executing an action, an agent faces a scene formed by a part of an environment composed
of objects and agents. Hence, an agent executes an action in a given situation, namely the
agent and the scene at a given time. After a situated action has been executed, the agent
faces a new scene. At a given time the new scene depends on the environment and on the
situated executed actions. Another assumption is that the expected situated actions of the
agents can be described by a cultural constraint theory. The action that an agent executes
depends on its private states and, in general, it is not deterministically predictable with the
information available externally. Rather, we assume that it can be characterized in terms
of probability and expectations. Given a group of agents we suppose that there exists a
theory about their expected situated actions. Such a theory can capture knowledge and
skills of the agents about the environment and so it can be considered a cultural constraint
of the group. Agents and objects, i.e. the environment, are specified for each application.

The goal of a SICS is to establish an implicit culture phenomenon. The general architecture
we proposed in [BG00](Figure 1) allows to establish an implicit culture phenomenon by
following two basic steps: defining a cultural constraint theory � for a group � ; and
proposing to a group ��� a set of scenes such that the expected situated actions of the set of
agents ��� satisfies � . Both steps are realized by using the information about the situated
executed actions of � and � � . Implementation of a SICS was presented and shown to
be effective in [BGMR01a] and [BGMR01b] where an unique SICS for the whole group
of agents showed to improve agent coordination and reproduced collaborative filtering
functionalities respectively.

In this paper, we propose a multi-agent architecture for knowledge management where
each agent incorporates a SICS. The multi-agent architecture permits the basic operations
of the SICS to be performed in a less invasive way. In fact, the agents contribute to propa-
gate the information about the actions of the user to other agents. The system also adopts
a distributed point of view of knowledge management opposed to a centralized one as
pointed out by [BBT02]. The SICS incorporated in the agents can be seen as a generaliza-
tion of a memory-based collaborative filtering that makes intensive use of similarity-based
retrieval.

The paper is organized as follows: the next section presents the multi-agent architecture
and Section 3 draws conclusions and future directions.



Figure 1: The basic architecture for Systems for Implicit Culture Support consists of the following
three basic components: observer that stores in a data base (DB) the situated executed actions of
the agents of � and �	� in order to make them available for the other components;inductive module
that, using the situated executed actions of � in DB and the domain theory 
�� , induces a cultural
constraint theory 
 ; composer that, using the cultural constraint theory 
 and the executed situated
action of � and �
� , manipulates the scenes faced by the agents of �	� in such way that their expected
situated actions are in fact cultural actions with respect to � . As a result, the agents of ��� execute
(on average) cultural actions w.r.t. � , and thus the SICS produces an Implicit Culture phenomenon.
In the figure, the agents � , � , and � performs the actions � , � and � while they face the scenes ��� , � ��
and � � �� respectively. The composer produces a set of scenes � ����� , � ������ and � � ������

2 A Multi-agent System based on Implicit Culture

In this section we present the multi-agent system based on the Implicit Culture we have de-
veloped for Knowledge Management applications. The system has been built using JADE
(Java Agent Development Framework) [BPR00], a software development framework for
developing multi-agent systems conforming to the FIPA standards [FIP]. Basically, the
system is a collection of personal agents that interact one another in order to satisfy the
requests of their users. Each agent uses locally the SICS to suggest both its user and the
other agents. Applying the SICS locally, each personal agent is able to provide suggestions
from its perspective, namely on the base of the information it has collected observing the
behavior of its user and those of the agents with which it has interacted with. In our system
we have extended the FIPA protocols in order to allow the agents to exchange feedback
about how the users use the information suggested by their personal agents.

A user asks her personal agent about a keyword and the agent starts to search for docu-
ments, links, and references to other users, related to the keyword. The personal agent



tries to suggest the user using the observations done in the past on the user’s behavior and
on the behavior of the users whose personal agents it interacted with. Alternatively, the
personal agent can submit the request to other agents which will treat the request as it were
done by their users. In this case, however, the suggestions can include also other agents to
contact. The selection of the agents to send the request is done applying locally the SICS
again.

Σ

Σ

internal/external

EVENT
b

eh
av

io
u

r 
1

b
eh

av
io

u
r 

2 behaviour
active agent

(i.e. agent intention) 

event detection

b
eh

av
io

u
r 

n

scheduler

of  behaviours

inbox
private

ACL messages

agent

CAPABILITIES

Composer

BELIEFS

Executed situated
actions of G

Theory

agent  resources

Executed 

Cultural Actions
Finder

Scenes Producer

kernel

Pool

New scene

ob
s

filter

qu
eu

e

Executed situated
action of G’

qu
eu

e

situated action of G

Figure 2: Internal architecture of a JADE agent implementing a SICS

Figure 2 presents the general architecture of each single personal agent implemented with
JADE. The architecture of a JADE agent consists of four main components: Behaviors,
Scheduler, Inbox , and Resources. In our implementation we have:

� Behaviors, an agent is able to carry out several concurrent tasks in response to dif-
ferent internal and external events. All tasks are implemented as behavior objects;
we have a specific behavior for the SICS. A request from the user or from another
agent activates the SICS behavior.

� Scheduler, that determines which behavior is the current focus of the agent and
consequently it selects an action to perform.

� Inbox, a queue of incoming messages (ACL). It contains the messages coming from
the user as well as those from other agents.



� Resources, consisting of beliefs and capabilities. The agent’s beliefs are the infor-
mation available to the agent and the capabilities are particular functionality used
in the behaviors. In our implementation the three main components of the SICS
(observer, composer and inductive module) are three different capabilities and the
observations and the cultural constraint theory are stored as beliefs. Additionally,
each personal agent has beliefs about a local schema useful to organize the informa-
tion available. This schema is not mandatory.

The capability (the composer) and the beliefs (situated executed actions and cultural con-
straint theory) related to the SICS and reported in Figure 2 are presented in details in
[BGGZ]. Here we concentrate on the other beliefs and behaviors. Each personal agent
has among its beliefs a local schema in order to organize information available to its user.
Basically, the schema is a tree where the nodes are labeled with strings that the user uses
to describe her own areas of interest and the leaves are links. A link can be a reference to
a document stored locally in the user system or it can be an Internet address or a reference
to a person (e.g., a phone number, an email address or just the name of the person). The
schema is a conceptual representation of how the user organizes locally its information
and it does not say anything about how this representation matches with those of the other
users. The schema is represented in XML.

Figure 3 shows the algorithm used by a personal agent when it receives a request of infor-
mation from its user or from some other agent. The global variable result contains both
links and names of agents of the platform. If the message is a query the SICS behavior is
activated and it modifies result; if no agents appear in result the DF agent is added
to it in order to propagate the query in any case; if the sender of the query is the user the
links contained in result are sent back and a query is sent to all the agents contained in
result. If the message is a reply from an agent the complete result (links and agents)
is sent whereas an incomplete result (links only) is sent in case the reply comes from
the user.

The agents interact one another using the FIPA-Iterated-Contract-Net Protocol, that starts
with a call for proposal to perform a given action. In particular, we use the call for proposal
for checking the availability of an agent to perform a search action. Differently, the user
interacts with its personal agent using the FIPA-Query Protocol. Additionally, we have
introduced a third protocol for the propagation of the user feedback about the suggestions
provided to him. In particular, the protocol guarantees that the user informs the personal
agent about the acceptance of the refusing of a suggestion, and that the personal agent
informs about this the other agents it asked. In practice, the sending of an inform whose
content is “accept” is triggered by an action of the user, e.g. following a link, maintaining
it implicit.

An example of interaction. Let us consider the case in which a user searches information
about “train timetable” and asks his personal agent. Let us suppose that the SICS suggests
an Internet address (www.fs-on-line.it) and another agent, agent-1. The personal agents
inform the user about the address www.fs-on-line.it and send a request to agent-1. Suppos-
ing that agent-1 replies with another internet address www.trenitalia.it and another agent,
agent-2, then the personal agent will send a request to agent-2. When agent-2 replies with



1 global result
2 for all message in INBOX do
3 if (message.type ��� ’query’) then
4 result � � nil
5 SICS-behavior(query.sender,query.content, result.links,result.agents)
6 if (result.agents ��� nil) then
7 add(DF,result.agents)
8 end if
9 if (query.sender ��� user) then
10 inform(self,user,result.links)
11 for all result.agent do
12 request(self,result.agent,query.content)
13 end for
14 end if
15 else if (message.type ��� ’reply’) then
16 if (reply.sender ��� user) then
17 inform(self,user,result.links)
18 else inform(self,message.sender,result)
19 end if
20 end if
21 end if
22 end for

Figure 3: The algorithm used by the personal agent for processing the messages

th email address info@trenitalia.it, the personal agent informs the user with the results
it has collected (namely, “www.fs-on-line.it” +“www.trenitalia.it”+“info@trenitalia.it”).
Finally, if the user executes an action considered of acceptance for example of “info@treni-
talia.com” an inform with that content is sent. The personal-agent informs agent-2 be-
cause it has suggested such an address, and agent-1 because it has suggested agent-2.
Figure presents the sequence of messages exchanged by the agents.

The example shows how the variant of the FIPA communication protocol permits to the
agents to propagate the feedback of the user. In this way each personal agents has ac-
cess locally to information about the use of the information done by the requester. The
availability of the information permits to the agent to observe a wider number of actions
permitting the transfer of knowledge between the users. In fact, if the personal agent would
limit its observations only to the actions performed by its user the effect achieved by the
user would be a simple personalization. With the communication protocol we adopted
each SICS can observe also actions done by the users of the personal agents he has been
put in contact to. It is worth to note that this is transparent to the user. As a summary, the
personal agent acts on behalf of the user in a complex way. It uses the observations of the
behavior of its user to provide a better service to the user herself (personalization) and to
the other users (collaboration). Moreover and with the same goal, it integrates locally the
observations of the user with the observations of the other users and contribute to propa-
gate the observations of its own user in order to give feedback to the other agents. In other
terms the user delegates to the personal agent the capacity of sharing information about



1. request(user,personal-agent,“train timetable”)

2. inform(personal-agent,user,“www.fs-on-line.it”)

3. request(personal-agent,agent-1,“train timetable”)

4. inform(agent-1,personal-agent,“www.trenitalia.it”+“agent-2”)

5. request(personal-agent,agent-2,“train timetable”)

6. inform(agent-2,personal-agent,“info@trenitalia.it”)

7. inform(personal-agent,user,“www.trenitalia.it”+“info@trenitalia.it”)

8. inform(user,personal-agent,“accept(info@trenitalia.it)”)

9. inform(personal-agent,agent-1“accept(info@trenitalia.it)”)

10. inform(personal-agent,agent-2,“accept(info@trenitalia.it)”)

Figure 4: The interaction example

use of information.

3 Conclusions and future work

We have presented a multi-agent system that exploits the architecture of the Systems for
Implicit Culture Support in order to solve the problem of transfer of tacit knowledge in a
knowledge management context. We have argued that tacit knowledge transfer requires
the sharing of experiences and that the main difficulty relies in the need of explicitly rep-
resenting the tacit knowledge. Our approach aims to by-pass the problem of explicit rep-
resentation.

The system incorporates a SICS in each agent. The SICS is used in order to provide
information to the user and also to the other users by means of a communication protocol
between the agents. The SICS observes the local actions of its own user and, thanks to
a variant of the communication protocol w.r.t FIPA standards, also the actions of other
users on the information suggested. The multi-agent architecture permits this exchange
of information about the actions improving the range of actions that each local SICS can
observe. The overall effect is an implicit transfer of information about the use of the items
suggested. In other terms, the system supports a sharing of the experience of the use of
some pieces of information.

As argued in [BBT02], an architecture for a knowledge management system should be
designed with the distributed social form in which knowledge is created within organiza-
tions. Basic characteristics of agent-based systems, such as, autonomy, intentionality and
sociability, can be used to design distributed knowledge management systems that allow us
to overcome the limitation of centralized systems. A purely distributed approach to knowl-
edge management is being consistently addressed in the EDAMOK project [BBT02]. The
system-development part of the project adopts a peer-to-peer architecture with an explicit
notion of context. Based on the published material it is possible to sketch some differ-



ences. Architecturally, our agent-based approach relies on different architecture and tech-
nology and insert a learning functionalities in order to discover and propagate information
about the other entities (agents or peers) in the system. Theoretically, their approach tends
to solve a posteriori the problem of matching between the local perspectives (contexts)
whereas our system tends to support the formation of compatible local perspectives.

In our opinion the present proposal represents a viable way of supporting the transfer of
tacit knowledge between individuals in an organization. Each personal agent contributes
locally to a realization of an implicit culture phenomenon. It is important to note that the
local perspective of each agent permits the existence of different practices, given the fact
that not all the agents will converge to the same set of observations and consequently of
suggestions. Further work requires an experimentation on the field of the system proposed.
On the field, the notion of implicit culture can be of great help in order to boost acceptance
of the transfer of tacit knowledge, namely experience. In fact, the user can be explicitly
asked to participate at the knowledge transfer process without imposing any specific addi-
tional activity. On the other hand, accepting to have her own actions partially propagated
in the multi-agent system can be facilitated by the idea of contributing to a culture and by
the perspective of sharing the advantages.

References

[BBT02] Matteo Bonifacio, Paolo Bouquet, and Paolo Traverso. Enabling Distributed
Knowledge Management. Managerial and Technological Implications. Infor-
matik/Informatique, III(1), 2002. Special Issue on Knowledge Management, S. Lueg
(ed.).

[BG00] E. Blanzieri and P. Giorgini. From Collaborative Filtering to Implicit Culture. In
Proceedings of the Workshop on Agents and Recommender Systems, Barcellona, 2000.

[BGGZ] Enrico Blanzieri, Paolo Giorgini, Fausto Giunchiglia, and Claudio Zanoni. Personal
Agents for Implicit Culture Support. DIT Technical Report DIT-02-084.

[BGMR01a] Enrico Blanzieri, Paolo Giorgini, Paolo Massa, and Sabrina Recla. Implicit Cul-
ture for Multi-agent Interaction Support. In Carlo Batini, Fausto Giunchiglia, Paolo
Giorgini, and Massimo Mecella, editors, Cooperative Information Systems, 9th In-
ternational Conference - CoopIS 2001, volume 2172 of Lecture Notes in Computer
Science (LNCS). Springer-Verlag, 2001.

[BGMR01b] Enrico Blanzieri, Paolo Giorgini, Paolo Massa, and Sabrina Recla. Information Access
in Implicit Culture Framework. In Proceedings of the Tenth ACM International Con-
ference on Information and Knowledge Management (CIKM 2001), Atlanta, Georgia,
November 2001.

[BPR00] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with
JADE. In Seventh International Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL-2000), Boston, MA, 2000.

[FIP] FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org.

[NT95] I. Nonaka and H. Takeuchi. The Knowledge Creating Company. Oxford University
Press, New York, 1995.


