
ST-Tool: A CASE Tool for Modeling and Analyzing
Trust Requirements?

P. Giorgini1, F. Massacci1, J. Mylopoulos1,2, A. Siena1, and N. Zannone1

1 Department of Information and Communication Technology
University of Trento - Italy

{giorgini,massacci,asiena,zannone}@dit.unitn.it
2 Department of Computer Science

University of Toronto - Canada
jm@cs.toronto.edu

Abstract. ST-Tool is a graphical tool integrating an agent-oriented requirements
engineering methodology with tools for the formal analysis of models. Essen-
tially, the tool allows designers to draw visual models representing functional,
security and trust requirements of systems and, then, to verify formally and auto-
matically their correctness and consistency through different model-checkers.

1 Introduction

Requirement Engineering is the phase of the software development process that aims
at understanding the organization of a system, the goals of system actors and social
relationships among them. This phase is critical since a misunderstanding may raise
expensive errors during later development stages.

Visual modeling has been recognized as one of the relevant aspects in Software En-
gineering for aiming the parties involved in the development process at understanding
requirements. However, though a graphical notation is useful for human communica-
tion, graphical models cannot be used for an accurate system verification. To do this,
we need transformation mechanisms to support the translation from graphical model to
formal specification languages.

This paper presents ST-Tool, a CASE tool for design and verification of functional,
security and trust requirements. It has been designed to support the Secure Tropos
methodology [3]. Specifically, this tool provides advanced modeling and analysis func-
tionalities based on the Secure Tropos methodology. Main goals of the tool are:

– Graphical environment: provide a visual framework to draw models;
– Formalization: provide support to translate models into formal specifications;
– Analysis capability: provide a front-end to external tools for formal analysis.

The remainder of the paper is structured as follows. Next (§2) we provide a brief
description of Secure Tropos concepts and diagrams. Then, we describe ST-Tool and its
components (§3). Finally, we conclude with some directions for future work (§4).
? This work has been partially funded by the IST programme of the EU Commission, FET

under the IST-2001-37004 WASP project, by the FIRB programme of MIUR under the
RBNE0195K5 ASTRO Project and by PAT MOSTRO project.



Graphical−layer
Manager

Data−layer
Manager

Integrity
Checker

FormalTropos

Datalog
Front−end

GUI

Editor

Data Model

Datalog

Formal Languages & Analysis

Solvers

ST−Tool

Fig. 1. The Architecture Overview

2 Background

Secure Tropos [3] is an agent-oriented software development methodology, tailored to
describe both the organization and the system with respect to functional, security and
trust requirements. Secure Tropos extends the Tropos methodology [1] and has the con-
cepts of actor, goal, task, resource and social relationships for defining the obligations
of actors to others. A full description of these concepts is provided in [3].

Various activities contribute to the acquisition of a first requirement model, to its
refinement into subsequent models: Actor modeling, Permission Trust modeling, Ex-
ecution Trust modeling, Execution Delegation modeling, Permission Delegation mod-
eling, and Goal refinement (see [3] for full details). A graphical representation of the
model obtained following the first five modeling activities is given through four dif-
ferent kinds of actor diagrams: permission trust model, execution trust model, func-
tional requirements model, and trust management implementation. In these diagrams,
actors are represented as circles; goals, tasks and resources are respectively represented
as ovals, hexagons and rectangles. In the remainder of the paper, we refer to services
when we don’t need to distinguish goals, tasks and resources. Goal refinement aims to
analyze any goals of each actor, and is conducted by using AND/OR decomposition. A
graphical representation of goal refinement is given through goal diagrams.

Due to lack of space, we have focused on the key modeling aspects of the framework
and refer to [3] for the introduction of the formal framework based on Datalog.

3 Overview of ST-Tool

ST-Tool is a CASE tool that provides a user interface for designing Secure Tropos
models, support for translating automatically graphical models into formal specifica-
tions and a front-end with external tools for model checking. To manage visual editing
features and data management consistency at the same time, we have adopted a two-
layer solution: a graphical layer and a data layer. In graphical layer, models are shown
as graphs where actors and services are nodes, and relations are arcs. Each visual object
refers to a data object. The collection of data objects is the data layer.

ST-Tool is mainly composed of two parts: the ST-Tool kernel and external solvers.
ST-Tool kernel has an architecture comprised of three major parts, each of which is



Fig. 2. ST-Tool screenshot

comprised of modules. Next, we will discuss these modules and their interconnections.
In Fig. 1, the modules of ST-Tool are shown, their interrelations are also indicated.

The tool provides a graphical user interface (GUI), through which users can manage
all the components and functionalities of the tool. A screenshot of the interface is shown
in Fig. 2. The GUI’s key component is the Editor Module. This module allows the user
to visually insert, edit or remove graphical objects in the graphical layer and object
properties in the data layer. A second GUI component is the Graphical-layer Manager
(GM) Module that manages graphical objects and their visualization. GM supports goal
refinement. A goal diagram is associated to each actor. When systems are very large, it
could be difficult to read their models. To this end, GM aids users by supporting two
types of collapsing nodes: service and actor collapsing. GM also allows users to display
one or more Secure Tropos diagrams listed in Section 2 at the same time.

The Data-layer Manager (DM) Module is responsible for building and maintain-
ing data corresponding to graphical objects. For example, DM manages misalignments
between social relations and their graphical representation. Actually, GM uses arcs to
connect two nodes to each other, while many Secure Tropos relations are ternary. DM
rebuilds these relations by linking two appropriate graphical objects (the two arcs) to
the same data object (the relation). ST-Tool allows users to save models through the
DM module that stores a neutral description of the entire model in .xml format files.
A support for detecting errors and warnings during the design phase is provided by the
Integrity Checker Module. Integrity Checker analyzes models stored in the DM module
and reports errors such as “orphan relations” (i.e. relations where an arc is missing)
and “isolated nodes” (i.e. services not involved in any relations). Warnings are different
from errors: they are failure of integrity constraints, like errors, but the designer may



be perfectly happy with a design that does not satisfy them. Integrity Checker reports
warnings, for example, when more than one service have the same name. More than
one service with the same name are needed to represent delegation and trust chains.

After drawing so many nice diagrams, system designers may want to check whether
the models derived so far satisfy some general desirable properties. To support formal
analysis, ST-Tool allows an automatic transformation from .xml files stored by DM
into formal languages. Currently, two languages are supported: Formal Tropos [2] and
Datalog. These transformations are performed, respectively, by two different modules:
Formal Tropos Module and Datalog Module. Datalog Front-end (DF) Module provides
direct support for model checking by using external Datalog solvers, namely ASSAT3,
Cmodels4, DLV5 and Smodels6. DF guarantees flexibility since it allows users to select
which security properties they want to verify [3] and to complete models with additional
“ad-hoc” Datalog statements related to the specific domain users are analyzing. Once a
user is confident with the model, DF passes the specifications given by Datalog Module,
the axioms and properties defined in the Secure Tropos formal framework, and the
additional Datalog statements to the external solver. Once the solver ends its job, the
output is parsed and presented in a more user-readable format by the DF module.

4 Conclusion

We have presented a tool for modeling and verifying functional, security and trust re-
quirements. We have already used the tool to model a comprehensive case study of the
application of the Secure Tropos methodology for the compliance to the Italian legisla-
tion on Privacy and Data Protection by the University of Trento, leading to the definition
and analysis of an ISO-17799-like security management scheme [4].

Future work will involve a front-end with T-Tool [2] for automatically verifying
Formal Tropos specification. Further, Secure Tropos is still under work, so is ST-Tool,
too. We are also considering to integrate our tools into the ECLIPSE platform.

References
1. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS: An Agent-

Oriented Software Development Methodology. JAAMAS, 8(3):203–236, 2004.
2. A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopoulos. Specifying and analyzing early

requirements: Some experimental results. In Proc. of RE’03, page 105. IEEE Press, 2003.
3. P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zannone. Requirements Engineering meets

Trust Management: Model, Methodology, and Reasoning. In Proc. of iTrust’04, LNCS 2995,
pages 176–190. Springer-Verlag, 2004.

4. F. Massacci, M. Prest, and N. Zannone. Using a Security Requirements Engineering Method-
ology in Practice: The compliance with the Italian Data Protection Legislation. Comp. Stan-
dards & Interfaces, 2005. To Appear. An extended version is available as Technical report
DIT-04-103 at eprints.biblio.unitn.it.

3 http://assat.cs.ust.hk/
4 http://www.cs.utexas.edu/users/tag/cmodels.html
5 http://www.dbai.tuwien.ac.at/proj/dlv/
6 http://www.tcs.hut.fi/Software/smodels/


