Implicit Culture for Information Agents

E. Blanzieri»? and P. Giorgini®

1 ITC-irst Trento - Ttaly
2 Department of Psychology - University of Turin - Italy
3 Department of Mathematics - University of Trento - Italy
pgiorgini@science.unitn.it

Abstract. Earlier work introduced the concept of Implicit Culture and
its use in multi-agent systems. Implicit culture support can be seen as a
generalization of Collaborative Filtering and it can improve agents’ per-
formances. In this paper, we present an implementation of a System for
Implicit Culture Support, results obtained in a recommendation-problem
domain, and an application to the eCulture Brokering System, a multi-
agent system aimed to mediate the access to cultural information.

1 Introduction

Given the problem of information overload, the development of information
agents is a mayor issue [11]. On the other hand, Collaborative Filtering demon-
strated to be an effective solution to the problem of information overload, specif-
ically for products recommendation. In [1], we have introduced the notion of
Implicit Culture, in which the application of the collaborative filtering approach
to agent-based systems extends the performances of information agents.

Systems for Implicit Culture Support (SICS in the following) have the goal of
estabilishing an Implicit Culture phenomenon. Informally, Implicit Culture is the
relation existing between a set and a group of agents such that the elements of
the set behave according to the culture of the group. Supporting Implicit Culture
is effective in solving the problem of improving the performances of agents acting
in an environment where more-skilled agents are active. This concept can help
the analysis of existing systems and suggest ideas for the synthesis of new ones.
In fact, support of Implicit Culture can be useful for various applications: Com-
puter Supported Collaborative Work, Group profiling, Cognitive modelling of
social phenomena, e-books, Computer Mediated Communication Systems and,
as we briefly present in the following, generalization of collaborative filtering,
Knowledge Managment and requirements and interaction control of agent-based
systems.

Collaborative filtering [8,9,12,17] is a popular technique exploited in rec-
ommendation systems. The goal is information filtering, namely to extract from
a usually long list of items, e.g. links or products, a little set that the user could
prefer. Collaborative filtering exploits correlations in the pattern of preferences
expressed actively o passively by other users in terms of ratings. Differently from
the content-based filtering, collaborative filtering does not rely on the content or

shape of objects. The central idea is to automate the process of recommending
items to a user on the base of the opinions of people with similar preferences.
As suggested by Blanzieri and Giorgini [1] collaborative filtering can be seen as
a System for Implicit Culture Support (SICS).

In Knowledge Management, generally knowledge is categorized as being ei-
ther codified (explicit) or tacit (implicit). Knowledge is said being explicit when
it is possible to describe and share it among people through documents and/or
information bases. Knowledge is said being implicit when it is embodied in the
capabilities and abilities of the members of a group of people. In [14], knowledge
creation processes have been characterized in terms of tacit and explicit knowl-
edge transformation processes, in which, instead of considering new knowledge
as something that is added to the previous, they conceive it as something that
transforms it. Implicit Culture can be applied successfully in this context. In
particular, the idea is to build systems able to capture implicit knowledge, but
instead of sharing it among people, change the environment in order to make
new people behave in accordance with this knowledge.

Advantages of Implicit Culture support has been proposed also for artificial
agents [6,2], in particular for controlling the requirements of agent-based sys-
tems and supporting their interaction. Autonomy of agents, unknown properties
of the environment and insertion of new agents do not allow to foresee completely
the multi-agent system’s behavior in the modeling phase. As a consequence, the
overall system can fail to fulfill the desired requirements. In particular, require-
ments should persist after a composition changing of the group of agents, that
is the new agents should act consistently with the culture of the group. Using
SICSs, it is possible to modify the view that the agents have of the environment
and, consequently, change the set of possible actions that the agents can perform
in the environment. Working on the possible actions, a SICS is able to lead the
new agents to act consistently with the behavior of the group.

The architecture of SICS proposed in [1,6] relies on the exploitation of learn-
ing techniques. In particular it is possible to identify two learning problems:
(i) induction of a cultural theory on the behavior patterns of the group and (ii)
prediction of a scene such that the elements of the set will behave consistently
with the cultural theory. The first problem can be solved by standard data min-
ing techniques. In this paper we present an implemented SICS that solves the
second problem exploiting an original generalization of a memory-based Collab-
orative Filtering algorithm. The SICS is applied to two different information
access problems.

The paper is organized as follows. Section 2 presents the SICS architecture
and the learning problems. In Section 3 we show a solution to the problem of
prediction of the scene and in Sections 4 and 5 we present some experimental
results and a real-world application, respectively. The final section hosts conclu-
sions and future work.

2 Systems Implicit Culture Support

The goal of a SICS is to establish an implicit culture phenomenon. In the follow-
ing, we informally introduce the notions of implicit culture and implicit culture
phenomenon (Appendix A reports the formal definitions given in [2]). The sec-
ond part of the section presents the general architecture of a SICS and shows
how it relies on learning techniques.

An TImplicit Culture phenomenon is a pair composed by a set and a group
of agents such that the elements of the set behave according to the culture of
the group and Implicit Culture is the relation between the elements of the pair.
The definitions are expressed in terms of expected situated actions and cultural
constraint theories. Some assumptions underlie these concepts.

We assume that the agents perform situated actions. Agents perceive and
act in an environment composed of objects and other agents. In this perspec-
tive, agents are objects that are able to perceive, act and, as a consequence of
perception, know. Before executing an action, an agent faces a scene formed by
a part of an environment composed of objects and agents. Hence, an agent exe-
cutes an action in a given situation, namely the agent and the scene at a given
time. After a situated action has been executed, the agent faces a new scene.
At a given time the new scene depends on the environment and on the situated
executed actions.

Another assumption states that the expected situated actions of the agents
can be described by a cultural constraint theory. The action that an agent ex-
ecutes depends on its private states and, in general, it is not deteministically
predictable with the information available externally. Rather, we assume that
it can be characterized in terms of probability and expectations. Given a group
of agents we suppose that there exists a theory about their expected situated
actions. Such a theory can capture knowledge and skills of the agents about the
environment and so it can be considered a cultural constraint of the group.

We call Implicit Culture a relation between a set of agents G’ and a group G
such that the agents of G’ perform actions that satisfy a cultural constraint for
G. When a set and a group of agents are in Implicit Culture relation, we have
an Implicit Culture phenomenon. The definitions do not require the empirical
validation of the cultural constraint theory against the executed actions of G.

The definition of Implicit Culture (Appendix A briefly discusses the use of
”implicit”) does not give sufficient conditions for its realization, posing the prob-
lem of its support in practise. The general architecture of a SICS proposed in [1]
allows to achieve the goal of estabilishing an implicit culture phenomenon fol-
lowing two steps. First, the elaboration of a cultural constraint theory ¥ from
a given domain and a set of situated executed actions of a group G. Second, the
proposal to a group G’ of a set of scenes such that the expected situated actions
of the set of agents G’ satisfies ¥. Both the steps present learning problems.

A general SICS (see Figure 1-a) consists of three components: observer, in-
ductive module and composer. The observer stores the situated executed actions
of a group of agents G in oder to make them available for the other components.
The inductive module uses these actions to produce a cultural constraint theory

Executed situated

actionsof G j
! ;
Cultural Actions
Finder [g g
> . ‘ -
Inductive |||} [T 3
Module POOL rf
L _ Scenes g
Composer o T °
ernel — d
] ! | |
executed situated executed situated
actionsof G’ actionsof G
New scene Executed situated
New scenes actionsof G'

Fig. 1. Architecture (a) The composer in detail(b)

3 for G. Finally, the composer, using the theory ¥ and the actions, manipulates
the scenes faced by a set of agents G’ in such a way that their expected situated
actions are cultural action w.r.t G. As a result, the agents of G' executes (on
average) cultural actions w.r.t G (implicit culture phenomenon).

In Figure 1-a the composer proposes to the agents a, b, and c the scenes o411,
o441, and o}, ;, respectively. Notice that in this case the agents b and ¢ belong
to both G and G'. This means that also their situated actions are stored in DB
and thus they are used to elaborate the theory ¥ and the new scenes.

In general, our implemented architecture accepts cultural theories expressed
by a set of rules of the form:

AN NA, - CLA---ANCpy

in which A; A---A A, is said antecedent and Cy A- - - AC), consequent. The idea
is to express that “if in the past the antecedent has happened, then there exists
in the future some scenes in which the consequent will happen”. Antecedent and
consequent are conjunctions of atoms, namely two types of predicates: observa-
tions on an agent and conditions on times. For instance, request (x,y,s,t1) is
a predicate of the first type, that says that the agent x requests the agent y for
the service s at time t1; whereas less(ty,t2) is an example of the second type
and it simply says that t;<ts.

The composer proposes to a set of agents G’ a set of scenes such that their
expected situated actions satisfy a cultural constraint theory ¥ for a group G.
The main idea is splitting the problem in two sub-problems: (i) find the cultural
actions and (ii) find the scenes where such actions are the expected situated
actions. Figure 1-b shows the composer in detail. Basically, the composer consists
of two main submodules and an additional component:

— the Cultural Actions Finder (CAF), that takes as inputs the theory ¥ and
the executed situated actions of G, and produces as output the cultural
actions w.r.t. G (namely, the actions that satisfy). The CAF matches the
executed situated actions of G' with the antecedents of the rules of X. If
it finds an action that satisfies the antecedent of a rule, then it takes the
consequent of the rule as a cultural action.

— the Scenes Producer (SP), that takes one of the cultural action produced by
the CAF and, using the executed situated actions of G, produces scenes such
the expected situated action is the cultural action.

— the Pool, an additional component, which manages the cultural actions given
as input from the satisfaction submodule. It stores, updates, and retrieves
the cultural actions, and solves possible conflicts among them.

The SICS architecture requires the solution of two learning problems. A
problem of induction of the cultural constraint theory (Inductive Module) and
a problem of prediction of scenes (Scenes Producer).

Inductive Module Problem. Given a set of situated executed actions
performed by the agents of G, find a cultural constraint theory.

Scene Producer Problem. Given a set of situated executed actions of the
agents of G and G', and given a cultural action « for the agent z, find a scene
s such that the expected situated action of z in the scene s is a.

The Inductive Module Problem is a rather standard learning problem: induc-
ing the behavior patterns of a group and it is possible to solve using standard
data mining techniques. As we previously noted, we do not require any specific
validation of the theory. Obviously, very different effects will be reached depend-
ing on the fact that the theory is validated or not. In the Scene Producer Problem
the request is on the effectiveness of the scene w.r.t the goal of producing the
execution of a given action, namely its persuasiveness.

3 A Solution to the Scene Producer Problem

The solution exploits the principles of instance-based learning (namely, memory-
based or lazy). Given a cultural action « for the agent z that performed actions
on the set of scenes S(z), the algorithm used in the scenes producer consists of
three steps:

1. find a set of agents @) that performed actions similar to «;

2. select a set of agents Q' C @ similar to z and the set of scenes S in which
they performed actions;

3. select and propose to x a scene of S.

Figure 2 shows the algorithm used in step 1. An agent y is added to the set @
if the similarity sim(8,,a) between at least one of its situated executed actions
By and « is greater than the minimum similarity threshold Ty,;,. The scenes s
in which the 3, actions have been executed are added to S(y), that is the set of
scenes in which y has performed actions similar to a. Sections 4 and 5 contain
two examples of similarity function (eq. 5 and 7).

for all y € G’
for all situated executed actions 8y of y
if sim(8y, a)> Tmin then {
ifyd Q then y— Q
s — S(y)

Fig. 2. The algorithm for step 1

Step 2 selects in () the k nearest neighbors to & with respect to the agent
similarity defined as follows:

1 1 .
We,y = |S$y| ; NE(S)Ny(S) Z Z Slm(ﬁm:ﬂy) (1)
SESzy

Ba ENE(S) ﬁyeNy(S)

where S, = S(z) N S(y) is the set of scenes in which both = and y have exe-
cuted at least an action. N,(s) and Ny(s) are the set of actions that = and y
have respectively performed in the scene s. Eq. 1 can be replaced by a domain-
dependent agent similarity function if needed (e.g., Eq. 4 in Section 4).

Step 3 selects the scenes in which the cultural action is the expected situated
action. To do this, firstly we estimate for any scene s € S = |J, o S(y) the
similarity value between expected action and cultural action, and then we select
the scene with the maximum value. The function to be maximized is the expected
value E(sim(f;,a)|s), where 3, is the action performed by the agent z, « is the
cultural action, and s € S is the scene in which 8, is situated. The following
estimate is used:

o Yucq Br (sim(Bu, @)|s) * wa
E /BEJ =
(sim(Bz, a)|s) > uco Wau

(2)

that is we calculate the weighted average of the similarity of the expected actions
for the neighbor of the scene, w; ,, is the similarity between the agent = and the
agent u, whereas F; is estimate as follows:

Ey (sim(Bu,a)ls) = |Nu1(s)|

> sim(Bu,) (3)

Bu€Nu(s)

that is the average of sim(8y,a) over the set of actions N, (s) performed by u
in s.

The algorithms described above and the general architecture described in
Section 2 are fully implemented in Java using XML for expressing the cultural
constraint theory.

4 Experiments in a recommendation-problem domain

Collaborative filtering can be seen as a particular SICS. In this section we present
the results of some experiments aimed to compare collaborative filtering and the

SICS parametrized for a recommendation problem. The goal of the experiments
is validating the system against a well-estabilished method on a particular do-
main.

For collaborative filtering we use a memory and neighborhood based algo-
rithm presented by Herlocker et al. in [9]. The algorithm consists of three basic
steps. In the first step all the users are weighted with respect to their similarity
with the active user by Pearson correlation coefficient:

D » SN ARGV @

Tq % Oy

where m is the number of objects co-valutated, r,,; is the ranking given by the
user a to the object i, T, and o, are respectively the average and variance of
the rankings of a. In the second step the best kop correlates are picked in order
to compute a prediction (third step) using the deviation-from-mean approach
introduced in [17].

The SICS used for the experiments is characterized by: a set of agents (users)
P = {u1, --,un}; a set of objects O = M UV (M is the set of items and
V ={0,0.2,---,0.8,1} the set of the possible votes) and a set of possible actions
A = {vote, request}. For a recommender system the cultural theory is specified
in advance so no inductive module is needed:

Ve € P,m € M : request(x) = vote(x, m, Vmaz)
is expressed by the following rule:
request(zx,t1) — vote(z, m, Vmaz, t2) A less(t1,t2)

that states that if x requests a suggestion, then z will assign the maximum vote
to the proposed item. For a recommender system we require the satisfation of
the user with the recommended items. For similarity between actions we use the
following domain-dependent function:
0 if(A1 = vote A Ax = request)V
(A1 = request A Az = vote)V
(A1 = vote(z, 0,v1)A
sim(Ar, As) = Az = vote(y, p,v2) A o # p) (5)
1 if(A1 = Aa = request)
1 — |v1 — v2| if (A1 = vote(z, 0,v1)A
2= ’UOtC(y,p, ’U2) No= p)

that means that the similarity is zero when the actions are different or when
they are both wvote but about distinct objects; it is maximum (namely 1) when
the actions are both request; and finally, it is 1 — |v; — vy| when the actions are
both vote about the same object, but with different numerical votes.

For the experimentation we used the database EachMovie [13] that collects
data of 72961 users who voted 1623 movies. We built a dataset considering the
first 50 movies and the 119 users with at least one vote among the first 300
and we run a leave-on-out w.r.t the users. The CF algorithms returns a list of
estimated ranking while in this case the SICS returns only a scene composed

action sim eq. 5 (domain-dependent similarity) eq 7
agent sim eq. 4 (Pearson Correlation coefficient) eq. 1 eq. 4
sim min Trmin=0 Trmin=0.8|Tmin=0|Tmin=0
neighbors | k=10|k=30|k=>50|k=80 |k:150|k:300‘ k=80 | k=80 | k=80

ranks

1 25.4| 57.6| 65.3| 68.6| 68.6 | 69.5 |66.1 58.0 6.8

2 14.4(11.0(11.0| 10.2] 10.2 11.0 |12.7 14.3 4.2

3 8.5 7.6 6.8 7.6 8.5 6.8 | 6.8 8.4 4.2

4 10.2 5.1 5.1 4.2 4.2 3.41] 5.9 5.9 4.2

5 6.0 2.5 1.7 0.0 0.0 1.7] 0.0 1.7 5.1

over 5 35.5| 16.2| 10.1 9.4 8.5 7.6 | 8.5 11.7 75.5

Table 1. Experimental results. Distribution in percentage of the items proposed by SICS in the
rankings position proposed by the CF algorithm with K¢cr = 30.

by a movie. We compared the movie proposed by the SICS and the best 10
movies ranked by the CF algorithm computing the distribution in percentage. We
run our implementation of the CF algorithm obtaining a Mean Absolute Error
comparable to the ones presented in the literature [3, 7]. We run the experiments
on the SICS changing the number of neighbours, the threshold and the functions
used to compute the similarity among agents and actions. Table 1 presents the
results of the experiments.

A low k implies a low number of scenes (items) valutated and consequently
low performance (compare columns 1-6) because it is likely to miss some valuable
items. With T,,,;, = 0 the number of valutated scenes is on average 38.4 against
25.2 with T},;, = 0.8, hence the speed of presentation is higher with a slight
decrease in the performance (compare columns 4 and 7). The domain-dependent
agent similarity function eq 4 is slightly better that the general one 1 (compare
columns 4 and 8). Finally, a very simple action similarity (eq. 7) performs poorly
(compare columns 4 and 9). We can conclude that with domain-dependent sim-
ilarities our SICS is comparable with CF. More interestingly, comparing the last
cells of column 4 and 8 it is possible to conclude that also the version without
the domain-dependent agent similarity but with a general one performs satisfac-
torily.

5 An application: The eCulture Brokering System

In this section, we present the eCulture Brokering System [2], a multi-agent
system for cultural information brokering where we have applied the SICS. The
multi-agent system has been developed using JACK Intelligent Agents [4].

In a multi-agent system, a SICS can be either a general capability of the
overall system or a specific capability of a single agent. In the former case, the
SICS observes all the agents acting in the system and manipulates the environ-
ment. In the latter, the SICS is applied to what the agent is able to observe
and change, namely the part of environment and the agents it interacts with.
The SICS capability, both general and specific, affects the whole system. In the
system we present here, we choose to adopt the second option where a SICS is a
capability of a single agent. In order to gain effectiveness we embedded a SICS
in a Directory Facilitator (DF), namely an agent that plays a central role in the

interactions. In particular, we adopt the idea of DF from FIPA specifications [5]
and we extends its capabilities with the SICS.

A DF is a mandatory agent of an agent platform that provides a yellow pages
directory service to agents. Every agent that wishes to publicize its service to
other agents, requests the registration to the DF providing a description of its
services. An agent can ask the DF in order to request information about the
services available and the agents registered for such services. By means of a
SICS, the DF can produce the Implicit Culture relation between an agent and
the agents that have previously requested information, and provide information
that encounters the preference of the agent.

In particular, it focus on the agents interaction for which we use the SICS.
The platform contains a set of personal agents Pa_1,....Pa h, a DF that provides
information about a set of brokers B_1,....B.n and a set of wrappers W_1,...,W_m.
A personal agent is created and assigned to each user who accesses the system
by means of a web browser. The brokers are specialized in providing information
about a specific cultural area (for instance, history, archeology, art, etc...), and
they can collect information from different wrappers. Each wrapper is built for a
specific museum’s database. Basically, the databases are of two types: Microsoft
Access and Oracle. The complete architecture includes other agents, like for in-
stance the agent resource broker, which provides information about the resources
available outside the multi-agent system. The rule used to express the cultural
theory is the following;:

request(x,DF, s, t1) A inform(DF, x,y, t2) A less(ty,t2) — (6)
request(x,y, s, t3) A Lless(ta, t3)

that states that if x asks DF for the service s, and DF replays informing x that
y can provide such a service, then x will request to y the service s.

The similarity function between two actions is the following;:

. 1 if B=«

sim(B,) = {0 otherwise (7)
where 8 = « if the actions are of the same type (namely, request or inform)
and have the same arguments.

The DF uses the SICS to suggest the broker to the personal agent. In particu-
lar, for each personal agent that sends a request, the DF finds all the agents that
have previously performed similar actions (requests and consequent response
messages), and then suggests the personal agent with the broker for which such
agents would be satisfied. The experiments we have made have shown that the
SICS can effectively improve the interaction among agents. In particular, it can
help new agents (users), that do not know the domain, to interact with the
multi-agent system.

6 Conclusions and future work

We have presented an implementation of a System for Implicit Culture Sup-
port that exploit an application of instance-based learning techniques. We have

showed that, in a particular domain and with a simple a priori theory, the system
is functionally equivalent to Collaborative Filtering. Moreover we have presented
a real-world application. Our three-steps algorithm for proposing the scene can
be considered a generalization of a Collaborative Filtering algorithm, where the
similarity is performed on executed actions and not on ratings. This generaliza-
tion is non—trivial for it puts the SICS in a wider framework than simple CF.
In fact it is possible to vary the domain, the cultural contraint theory, and also
to deal with artificial agents as we have shown with the eCulture system. A rel-
evant portion of research on multi-agents learning [18] deals with reinforcement
learning (e.g., [10]). From the point of view of reinforcement learning the works
of Price and Boutillier [16] on Implicit Imitation are relevant to our work. The
critical difference is that a SICS does not imitate but induce an agent to imi-
tate or more generally to act consistently with another group of agents. In the
broad area of web personalization a relevant work is the one by Paliouras et. al.
[15] who clusters communities of on-line users. In our perspective the groups are
given, consequently an integration of the methods would be interesting. Finally,
our approach can be seen as a temptative of supporting organizational learning
in the direction proposed in [19]. Future work will be devoted to experimenta-
tion on domains with a wider range of actions, more complex scenes and more
complex, possibly induced, cultural constraint theories.

Acknowledgments

The authors wish to thank Fausto Giunchiglia and Paolo Traverso for their
precious support and Paolo Massa and Sabrina Recla for their work on the
earlier phases of the project.

APPENDIX A: Formal Definition of Implicit Culture

We consider agents and objects as primitive concepts to which we refer with
strings of type agent_name and object_name, respectively. We define the set
of agents P as a set of agent_name strings, the set of objects O as a set of
object_name strings and the environment £ as a subset of the union of the set
of agents and the set of objects, i.e., £ C PUO.

Let action_name be a type of strings, £ be a subset of the environment
(E C &) and s an action_name.

Definition 1 (action). An action a is the pair (s, E), where E is the argument
of a (E =arg(a)).

Let A be a set of actions, A C A and B C €.

Definition 2 (scene). A scene o is the pair (B, A) where, for any a € A,
arg(a) C B; « is said to be possible in o. The scene space Sg, 4 is the set of all
scenes.

Let T be a numerable and totally ordered set with the minimum ¢o; ¢t € T is
said to be a discrete time. Let a € P, a an action and ¢ a scene.

Definition 3 (situation). A situation at the discrete timet is the triple (a, o, t).
We say that a faces the scene o at time t.

Definition 4 (execution). An execution at time t is a triple {(a,a,t). We say
that a performs « at time t.

Definition 5 (situated executed action). An action « is a situated executed
action if there exists a situation {a,o,t), where a performs a at the time t and
a is possible in 0. We say that a performs « in the scene o at the time t.

When an agent performs an action in a scene, the environment reacts propos-
ing a new scene to the agent. The relationship between the situated executed
action and new scene depends on the charateristics of the environment, and in
particular on the laws that describe its dynamics. We suppose that it is possible
to describe such relationship by an environment-dependent function defined as
follows:

Fg:AXSg’AXT—)S&A (8)

Given a situated executed action a; performed by an agent a in the scene o, at
the time ¢, F¢ determines the new scene o1 (= Fg(at, 0, t)) that will be faced
at the time ¢ + 1 by the agent a.

While F§¢ is supposed to be a deterministic function, the action that an agent
a performs at time ¢ is a random variable h, + that assumes values in A.

Let a € P and (a, 0,t) be a situation.

Definition 6 (expected action). The expected action of the agent a is the
expected value of the variable hy ¢, that is E(hgy).

Definition 7 (expected situated action). The expected situated action of

the agent a is the expected value of the variable h,; conditioned by the situation
(a,0,t), that is E(hg|{(a,0,t)).

Definition 8 (party). A set of agents G C P is said to be a party.

Let £ be a language used to describe the environment (agents and objects),
actions, scenes, situations, situated executed actions and expected situated ac-
tions, and G be a party.

Definition 9 (cultural constraint theory). The Cultural Constraint Theory
for G is a theory expressed in the language L that predicates on the expected
situated actions of the members of G.

Definition 10 (group). A party G is a group if exists a cultural constraint
theory X for G.

Definition 11 (cultural action). Given a group G, an action « is a Cultural
Action w.r.t. G if there exists an agent b € G and a situation {(b,o,t) such that

{E(ht|(b,0,t) = a}, DL
where X is a cultural constraint theory for G.

Definition 12 (implicit culture). Implicit Culture is a relation > between
two parties G and G' such that G and G' are in relation (G><G') iff G is a
group and the expected situated actions of G' are cultural actions w.r.t G.

Definition 13 (implicit culture phenomenon). Implicit Culture Phenomenon
is a pair of parties G' and G related by the Implicit Culture.

We justify the “implicit” term of implicit culture by the fact that its definition
makes no reference to the internal states of the agents. In particular, there is
no reference to beliefs, desires or intentions and in general to epistemic states
or to any knowledge about the cultural constraint theory itself or even to the
composition of the two groups. In the general case, the agents do not perform
any actions explicitly in order to produce the phenomenon.

References

1. E. Blanzieri and P. Giorgini. From collaborative filtering to implicit culture. In
Proceedings of the Workshop on Agents and Recommender Systems, Barcellona,
2000.

2. E. Blanzieri, P. Giorgini, P. Massa, and S. Recla. Implicit culture for multi-agent in-
teraction support. In Proc. of the Conf. Cooperative Information Systems COOPIS,
2001.

3. J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms
for collaborative filtering. In Proc. of the Fourteenth Conf. on Uncertainty in
Artificial Intelligence. Morgan Kaufmann, 1998.

4. P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas. Jack intelligent agents
- components for intelligent agents in java. AOS TR9901, January 1999.
http://www.jackagents.com/pdf/tr9901.pdf.

5. FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org.

6. E. Blanzieri P. Giorgini and F. Giunchiglia. Implicit culture and multi-agent sys-
tems. In Proceedings of the International Conference on Advances in Infrastructure
for Electronic Business, Science, and Education on the Internet, (SSGRR 2000),
L’Aquila - Italy (http://www.science.unitn.it/ pgiorgio/ic), 2000.

7. A. Gokhale. Improvements to collaborative filters algorithms. Master’s thesis,
Worchester Ploytechnic Institute, May 1999.

8. D. Goldberg, D. Nichols, B.M. Oki, and D. Terry. Using collaborative filtering to
weave an information tapestry. Communications of the ACM, 35(12):61-70, 1992.

9. J. Herlocker, J. Konstan, A. Borchers, and J Riedl. An algorithmic framework for
performing collaborative filtering. In Conference on Research and Development in
Information Retrieval, 1999.

10. J. Hu and M. Wellman. Multiagent reinforcement learning theoretical framework
and an algorithm. In Proceedings of the ICML, Madison, Wisciautoh, 1998. Morgan
Kaufmann Publishers.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Klusch and F. Zambonelli, editors. Cooperative Information Agents V. 5th In-
ternational Workshop, CIA 2001, Modena, Italy, September 6-8, 2001. Proceedings,
volume 2182 of LNCS. Springer-Verlag, 2001.

J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon, and J. Riedl.
Grouplens: Applying collaborative filtering to usenet news. Communications of the
ACM, 40(3):77-87, 1997.

P. McJones. Eachmovie collaborative filtering data set, dec systems research center,
1997. http://research.compag.com/SRC/eachmovie/.

I. Nonaka and H. Takeuchi. The knowledge Creating Company. Oxford University
Press, New York, 1995.

G. Paliouras, C. Papatheodorou, V. Karkaletsis, and C. Spyropoulos. Clustering
the users of large web sites into communities. In Proceedings of the ICML, Stanford,
2000. Morgan Kaufmann Publishers.

B. Price and C. Boutilier. Implicit imitation in multiagent reinforcement learning.
In Proceedings of the ICML, Bled, 1999. Morgan Kaufmann Publishers.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: An open architecture for collaborative filtering of netnews. In
Proceedings of ACM CSCW’94 Conference on Computer-Supported Cooperative
Work, 1994.

P. Stone and M. Veloso. Multiagent systems: A survey from amachine learning
perspective. Autonomous Robots, 8(3):345-383, June 2000.

K. Takadama, T. Terano, and K. Shimohara. Can multiagents learn in organiza-
tion? — analyzing organizational learning-oriented classifier system. In IJCAI’99
Workshop on Agents Learning about, from and other Agents, 1999.

