Information access in Implicit Culture framework

Enrico Blanzieri
Department of Psychology
University of Turin - Italy

blanzier@psych.unito.it

ABSTRACT

The goal of a System for Implicit Culture Support (SICS) is
to establish an implicit culture phenomenon, namely when
the elements of a set behave according to the culture of a
generally different group of agents. Earlier work claimed
that Implicit Culture support can be seen as a generaliza-
tion of Collaborative Filtering. In this paper, we recall the
concept of Implicit Culture, show how it is useful for auto-
matically exploit tacit knowledge and we present an imple-
mentation of a System for Implicit Culture Support.

1. INTRODUCTION

Systems for Implicit Culture Support [1] have the goal
of estabilishing an Implicit Culture phenomenon. Support-
ing Implicit Culture is effective in solving the problem of
improving the performances of agents acting in an environ-
ment where more-skilled agents are active. In fact, support
of Implicit Culture can be useful for various applications:
Computer Supported Collaborative Work, Group profiling,
Cognitive modelling of social phenomena, e-books, Com-
puter Mediated Communication Systems and, as we briefly
present in the following, generalization of collaborative fil-
tering, Knowledge Managment and requirements and inter-
action control of agent-based systems.

As suggested in [1] Collaborative filtering [5] (a popular
technique exploited in recommendation systems) can be seen
as a System for Implicit Culture Support (SICS).

In Knowledge Management, generally knowledge is cate-
gorized as being either codified (explicit) or tacit (implicit).
Implicit Culture can be applied successfully in this context.
In particular, the idea is to build systems able to capture
implicit knowledge, but instead of sharing it among people,
change the environment in order to make new people behave
in accordance with this knowledge.

2. IMPLICIT CULTURE SUPPORT

The goal of a SICS is to establish an implicit culture phe-
nomenon. In the following, we informally introduce the no-

Paolo Giorgini
Department of Mathematics
University of Trento - Italy

pgiorgio@science.unitn.it

Sabrina Recla and
Paolo Massa
ITC/Irst - Italy

{recla,massa}@itc.it

tions of implicit culture and implicit culture phenomenon
(the formal definitions can be found in [2]). The second
part of the section presents the general architecture of a
SICS and shows how it relies on learning techniques.

We call Implicit Culture a relation between a set of agents
G’ and a group G such that the agents of G’ perform actions
that satisfy a cultural constraint for G. When a set and a
group of agents are in Implicit Culture relation, we have
an Implicit Culture phenomenon. The definitions do not
require the empirical validation of the cultural constraint
theory against the executed actions of G.

The general architecture of a SICS proposed in [1] allows
to achieve the goal of estabilishing an implicit culture phe-
nomenon following two steps. First, the elaboration of a
cultural constraint theory X from a given domain and a set
of situated executed actions of a group G. Second, the pro-
posal to a group G’ of a set of scenes such that the expected
situated actions of the set of agents G’ satisfies 3. Both the
steps present learning problems.

A general SICS (see Figure 1-a) consists of three com-
ponents: observer, inductive module and composer. The
observer stores the situated executed actions of a group
of agents G in oder to make them available for the other
components. The inductive module uses these actions to
produce a cultural constraint theory X for G. Finally, the
composer, using the theory 3 and the actions, manipulates
the scenes faced by a set of agents G’ in such a way that
their expected situated actions are cultural action w.r.t G.
As a result, the agents of G' executes (on average) cultural
actions w.r.t G (implicit culture phenomenon).

In general, our implemented architecture accepts cultural
theories expressed by a set of rules of the form:

in which A1 A--- A A, is said antecedent and C1 A--- A Cp,
consequent. The idea is to express that “if in the past the
antecedent has happened, then there exists in the future
some scenes in which the consequent will happen”.

The composer proposes to a set of agents G’ a set of scenes
such that their expected situated actions satisfy a cultural
constraint theory 3 for a group G. The main idea is split-
ting the problem in two sub-problems: (i) find the cultural
actions and (ii) find the scenes where such actions are the
expected situated actions. Figure 1-b shows the composer
in detail. Basically, the composer consists of two main sub-
modules. The first is the Cultural Actions Finder (CAF),
that takes as inputs the theory ¥ and the executed situated
actions of G’, and produces as output the cultural actions

Z Inductive |

Module
v i

e ol
Composer T
executed situated executed situated
actionsof G’ actionsof G
New scenes

Figure 1: Architecture (a)

w.r.t. G (namely, the actions that satisfy X). The CAF
matches the executed situated actions of G’ with the an-
tecedents of the rules of . If it finds an action that satis-
fies the antecedent of a rule, then it takes the consequent of
the rule as a cultural action. The second is the Scenes Pro-
ducer (SP), that takes one of the cultural action produced
by the CAF and, using the executed situated actions of G,
produces scenes such the expected situated action is the cul-
tural action. The SICS architecture requires the solution of
two learning problems:

Inductive Module Problem. Given a set of situated
executed actions performed by the agents of G, find a cul-
tural constraint theory.

Scene Producer Problem. Given a set of situated exe-
cuted actions of the agents of G and G’, and given a cultural
action a for the agent z, find a scene s such that the expected
situated action of z in the scene s is a.

The Inductive Module Problem is a rather standard learn-
ing problem: inducing the behavior patterns of a group and
it is possible to solve using standard data mining techniques.
As we previously noted, we do not require any specific vali-
dation of the theory. Obviously, very different effects will be
reached depending on the fact that the theory is validated
or not. In the Scene Producer Problem the request is on
the effectiveness of the scene w.r.t the goal of producing the
execution of a given action, namely its persuasiveness.

3. THE SCENE PRODUCER PROBLEM

The solution exploits the principles of instance-based learn-
ing (namely, memory-based or lazy). Given a cultural action
o for the agent z that performed actions on the set of scenes
S(z), the algorithm used in the SP consists of three steps:

1. find a set of agents @ that performed actions similar
to a;

2. select a set of agents Q' C Q similar to z and the set
of scenes S in which they performed actions;

3. select and propose to = a scene of S.

An agent y is added to the set Q) if the similarity sim(8y, @)
between at least one of its situated executed actions 8, and
a is greater than the minimum similarity threshold Thmin.
The scenes s in which the (8, actions have been executed
are added to S(y), that is the set of scenes in which y has
performed actions similar to a.

Executed situated
actions of G

1)
!]
Cultural Actions
Finder N {g "
H ;%
L Scenes 4
Producer =3
= ¢
L kend!]
ﬂ W
New scene Executed situated

actionsof G'

The composer in detail (b)

Step 2 selects in @ the k nearest neighbors to x with
respect to the agent similarity defined as follows:

1 1 .
e S5 2 MM, 2 2 (B

Bz €Nz (s) ByENy(s)
(1)

where Szy = S(z)NS(y) is the set of scenes in which both z
and y have executed at least an action. N, (s) and N, (s) are
the set of actions that x and y have respectively performed
in the scene s. Eq. 1 can be replaced by a domain-dependent
agent similarity function if needed (e.g., Pearson).

Step 3 selects the scenes in which the cultural action is the
expected situated action. To do this, firstly we estimate for
any scene s € S = |J, o S(y) the similarity value between
expected action and cultural action, and then we select the
scene with the maximum value. The function to be maxi-
mized is the expected value E(sim(835,@)|s), where 3, is the
action performed by the agent z, « is the cultural action,
and s € S is the scene in which 3, is situated. The following
estimate is used:

EueQ’ E (sim(Bu, @)|$) * Wa,u
EuEQ’ Wz ,u

that is we calculate the weighted average of the similarity of

the expected actions for the neighbor of the scene, wg,, is

the similarity between the agent x and the agent u, whereas
E; is estimate as follows:

E (sim(B5,)|s) = (2)

By (sim(Bu, a)ls) = ——

W@ 2 fmBea) @)

Bu€Ny(s)

that is the average of sim(B., @) over the set of actions N, (s)
performed by w in s.

The algorithms described above and the general architec-
ture described in Section 2 are fully implemented in Java
using XML for expressing the cultural constraint theory.

4. RECOMMENDATIONSEXPERIMENTS

Collaborative filtering can be seen as a particular SICS.
In this section we present the results of some experiments
aimed to compare a SICS parametrized for a recommenda-
tion problem with collaborative filtering. The goal of the ex-
periments is validating the system against a well-estabilished
method on a particular domain. For collaborative filtering
we use a memory and neighborhood based algorithm pre-
sented by Herlocker et al. in [5].

action sim eq. 4 (domain-dependent similarity) simple
agent sim Pearson Correlation coefficient eq. 1 Pearson
sim min Tmin=0 Trmin=0.8 | Tmin=0 | Tpmin=0
neighbors k=10 | k=30 | k=50 | k=80 | k=150 | k=300 k=80 k=80 k=80

ranks

1 25.4 57.6 65.3 68.6 68.6 69.5 66.1 58.0 6.8

2 14.4 11.0 11.0 10.2 10.2 11.0 12.7 14.3 4.2

3 8.5 7.6 6.8 7.6 8.5 6.8 6.8 8.4 4.2

4 10.2 5.1 5.1 4.2 4.2 3.4 5.9 5.9 4.2

5 6.0 2.5 1.7 0.0 0.0 1.7 0.0 1.7 5.1

over 5 35.5 16.2 10.1 9.4 8.5 7.6 8.5 11.7 75.5

Table 1: Experimental results.

position proposed by the CF algorithm with K¢r = 30.

The SICS used for the experiments is characterized by: a
set of agents (users) P = {u1, -+, un}; a set of objects O =
MUYV (M is the set of items and V = {0,0.2,---,0.8,1}
the set of the possible votes) and a set of possible actions
A = {vote, request}. For a recommender system the cul-
tural theory is specified in advance (so no inductive module
is needed) with the following rule:

request(x,t1) — vote(x, m, Vmaz, t2) A less(t1, t2)

that states that if x requests a suggestion, then z will as-
sign the maximum vote to the proposed item. For a recom-
mender system we require the satisfation of the user with
the recommended items. For similarity between actions we
use the following domain-dependent function:

0 if(A1 = vote A Ag = request)V
(A1 = request A As = vote)V
(A1 = vote(z, 0,v1)A
sim(A1, A2) = Ao = vote(y, p,v2) Ao # p)
1 if(A1 = Az = request)
1—|vi —wv2| if(A1 = vote(z,o0,v1)A
Ag = vote(y, p,’l}z) No= p)

(4)
that means that the similarity is zero when the actions are
different or when they are both wote but about distinct ob-
jects; it is maximum (namely 1) when the actions are both
request; and finally, it is 1 — |v1 — v2| when the actions are
both wote about the same object, but with different numer-
ical votes.

For the experimentation we used the database EachMovie
[6] that collects data of 72961 users who voted 1623 movies.
We built a dataset considering the first 50 movies and the
119 users with at least one vote among the first 300 and we
run a leave-on-out w.r.t the users. The CF algorithms re-
turns a list of estimated ranking while in this case the SICS
returns only a scene composed by a movie. We compared
the movie proposed by the SICS and the best 10 movies
ranked by the CF algorithm computing the distribution in
percentage. We run our implementation of the CF algo-
rithm obtaining a Mean Absolute Error comparable to the
ones presented in the literature [3, 4]. We run the experi-
ments on the SICS changing the number of neighbours, the
threshold and the functions used to compute the similarity
among agents and actions. Table 1 presents the results of
the experiments.

A low k implies a low number of scenes (items) valu-
tated and consequently low performance (compare columns
1-6) because it is likely to miss some valuable items. With
Tmin = 0 the number of valutated scenes is on average 38.4
against 25.2 with Thn, = 0.8, hence the speed of presen-
tation is higher with a slight decrease in the performance
(compare columns 4 and 7). The domain-dependent agent
similarity function (Pearson) is slightly better that the gen-
eral one 1 (compare columns 4 and 8). Finally, a very sim-

Distribution in percentage of the items proposed by SICS in the rankings

ple (syntactic) action similarity performs poorly (compare
columns 4 and 9). We can conclude that with domain-
dependent similarities our SICS is comparable with CF.
More interestingly, comparing the last cells of column 4 and
8 it is possible to conclude that also the version without the
domain-dependent agent similarity but with a general one
performs satisfactorily.

5. CONCLUSIONSAND FUTURE WORK

We have presented an implementation of a System for Im-
plicit Culture Support that exploit an application of instance-
based learning techniques. We have showed that, in a partic-
ular domain and with a simple a priori theory, the system is
functionally equivalent to Collaborative Filtering. Moreover
we have presented a real-world application. Our three-steps
algorithm for proposing the scene can be considered a gen-
eralization of a Collaborative Filtering algorithm, where the
similarity is performed on executed actions and not on rat-
ings. This generalization is non—trivial for it puts the SICS
in a wider framework than simple CF. In fact it is possible
to vary the domain, the cultural contraint theory, and also
to deal with artificial agents as we have done in [2].

Future work will be devoted to experimentation on do-
mains with a wider range of actions, more complex scenes
and more complex, possibly induced, cultural constraint the-
ories.

6. REFERENCES

[1] E. Blanzieri and P. Giorgini. From collaborative
filtering to implicit culture. In Proceedings of the
Workshop on Agents and Recommender Systems,
Barcellona, 2000.

E. Blanzieri, P. Giorgini, P. Massa, and S. Recla.
Implicit culture for multi-agent interaction support. In
Proc. of the Conf. Cooperative Information Systems
COOPIS, 2001.

J. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proc. of the Fourteenth Conf. on
Uncertainty in Artificial Intelligence. Morgan
Kaufmann, 1998.

A. Gokhale. Improvements to collaborative filters
algorithms. Master’s thesis, Worchester Ploytechnic
Institute, May 1999.

J. Herlocker, J. K. J., A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative
filtering. In Proc. of the 1999 Conf. on Research and
Development in Information Retrieval, 1999.

P. McJones. Eachmovie collaborative filtering data set,
dec systems research center, 1997.
http://research.compaq.com/SRC/eachmovie/.

