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Abstract

The behavior of agents acting on an external world strongly depends on
their ability of changing opinions and intentions with respect to changes in
the environment. Although, multi-context systems have been successfully
applied for defining agents mental states’ architecture, no revision methods
for multi-context systems have been proposed to deal with the dynamicity
of the environment. In this paper we first introduce BDI agents modeled by
multi-context systems, and then we propose an extension of a basic belief
revision framework to multi-context systems.

1 Introduction

BDI agents (namely agents able to have Beliefs, Desires and Intentions) [10, 17,
21, 22, 24, 26] are supposed to have mental states, which contains explicit be-
liefs, desires and intentions about the environment, and about the other agents’
beliefs, desires and intentions. Multi-context systems have been successfully used
for defining such mental states’architecture [2, 4, 19]. These are defined in terms
of different contexts (each of which contains a set of formulae closed under some
inference rules) and a set of bridge rules for transferring information between con-
texts. Different contexts are used to represent different mental attitudes, such as
beliefs, desires and intentions, and the interactions between these components can
be specified by means of the bridge rules between the contexts.
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The behavior of agents acting on an external world strongly depends on their
ability of changing opinions and intentions with respect to changes in the environ-
ment. In the last two decades, Belief Revision as been defined as the process of
rearranging a cognitive state in order to embody incoming information while pre-
serving global consistency. Since the seminal, philosophical and influential works
of Grdenfors et al. [1] ideas on belief revision have been progressively refined and
ameliorated toward normative, effective and quasi-computable paradigms. Some
of the main theoretical contributes have been:

• the distinction between the notion of “revision” and that of “updating”;

• the notion of “epistemic entrenchment”;

• the duality between syntactic and semantic approaches;

• the notion of “revision for finite bases”;

• the notion of “revision as transmutation of partial epistemic rankings”,

Side by side to this “symbolic” line of research, there has been also a “nu-
merical” way to belief revision whose main contributes were the probabilistic,
possibilistic, and the evidence-based approaches. In [5, 7] we proposed a belief re-
vision framework that combines symbolic and numerical operations. It operates in
ATMS-style (Assumption Truth Maintenance System) to treat the symbolic part
of information, and in Dempster-Shafer style to treat their numerical part. One of
main advantages of the proposed framework is that belief revision can be iterated,
making it practical and usable for implementing agent systems.

The main goal of this paper is extending our belief revision approach to multi-
context systems. The motivations behind are quite simple: if we model a mental
state as a multi-context system and we want such a mental state being able to cope
with the dynamicity of the external world, then we need to extend our single-theory
(cognitive state) updating/revision mechanism to multi-context systems (mental
states) revision methods.

The paper is structured as follows. Section 2 introduces multi-context systems
and how to model agents’ mental state using contexts. Section 3 presents the basic
belief revision framework that we extend to multi-context systems in Section 4.
Finally, Section 5 presents some conclusions and future work.

2 Modeling mental states with contexts

Agents are supposed to be characterized by mental states. We regard a mental
state as a structure based on two primitive mental attitudes: beliefs and desires.
Intuitively, intentions are what the agent desires to be true (or false) and also it
believes it could be true (or false). The “could” means that the agent is able to
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Figure 1: Contexts and bridge rules for agent i

act in order to change the external world and/or the other agents mental states to
reach the desired state of affairs.

In this paper we introduce a very simple level of representation of mental states,
just to give an example and justify our need of a multi-context systems revision
method.

Following [4, 11, 12, 13], we use propositional contexts to formalize agents’
mental states. To further simplify the matter, in this paper contexts are simply
defined as propositional theories.

For any agent i, its sets of beliefs and intentions are represented by the contexts
Bi and Ii, respectively. A formula φ in the context Bi (denoted by the pair Bi : φ)
represents the fact that i believes φ and, analogously, a formula φ in the context
Ii (Ii : φ) represents the fact that i has the intention to bring about φ.

In general, beliefs and intentions are not expressed in the same language. Al-
though contexts support this possibility, for the sake of presentation we consider
the simpler case in which for any agent i the languages for its beliefs and intentions
coincide. We call this language Li.

The beliefs and the intentions of an agent are not independent. The relation
between the beliefs and the intentions of an agent can also be represented by
bridge rules from the context of its beliefs to that of its intentions. For instance,
the bridge rule:

Bi : raining

Ii : bring umbrella
B2I

formalizes the fact that, if agent i believes that it is raining, then i intends to bring
an umbrella. We indicate with B2I the set of these bridge rules.

Figure 1 shows an example of contexts and bridge rules associated to the agent
i (circles represent contexts and arrows represent bridge rules). In particular, i
has a context for its beliefs (Bi), in which the formula raining is true, a context
for its intentions (Ii), and the bridge rule B2I connecting Bi and Ii.

Other contexts can be used for representing beliefs and intentions of other
agents. For instance, in [8] we have introduced the idea of image of mental states, in
which an agent i uses the contexts BiBj and BiIj to represent its beliefs regarding
beliefs and intentions of another agent j. For the sake of simplicity, in this paper
we consider only two contexts, Bi and Ii.

The logical systems that formalize the reasoning with a set of contexts con-
nected by bridge rules are called multi-context systems [13].1

1In [13], multi-context systems are called multi-language systems to stress the fact that they
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Definition 1 A multi-context system MC is a pair 〈C,BR〉, where C is a set of
contexts and BR a set of bridge rules. Any context in C is presented as an axiomatic
propositional system 〈L,A〉, with L a propositional language and A ⊆ L a set of
proper axioms.

The multi-context system associated to the structure of figure 1, is composed
by the set of contexts C = {Bh, Ih}, and the set of bridge rules BR = {B2I}.

3 The Basic Belief Revision Method

In the following we present the sentence-based Belief Revision framework we have
developed in [7] and that we want to extend to the multi-context case. For an agent
i modeled with contexts, as presented in the previous section, the belief revision
framework is applied locally to the context representing the agent’s beliefs (Bi).
Namely, the revision process is applied only to the context Bi without considering
the effects produced by the bridge rules into the other contexts.

Our approach conceives two knowledge repositories:

1. the knowledge background B∗i , which is the set of all the propositional sen-
tences available to the reasoning agent i (as assumptions). Since, it can be
inconsistent, it cannot be used as a whole to support reasoning and decision
processes;

2. the knowledge base Bi ⊆ B∗i , which is the maximally consistent, currently
preferred piece of knowledge that should be used for reasoning and decision
supporting.

The reason why we pick maximally consistent subsets of B∗i is that this is the
perfect implementation of the “Principle of Recoverability” [7] : everything were
known in the past should be believed again now (or still believed) if nothing pre-
vents that.

Following the idea of numerical approaches to belief revision, our approach as-
sociates to each belief a weight of credibility. Redefinition of these weights in the
light of the incoming information is a crucial part of belief revision. Computation-
ally, when an agent i acquires a new information p our belief revision mechanism
follows four basic steps (Figure 2) [5, 6]:

S1 Detection of the minimally inconsistent subsets of B∗i ∪ {p} (nogoods)

S2 Generation of the maximally consistent subsets of B∗i ∪ {p} (goods)

S3 Revision of the credibility weights of the sentences in B∗i ∪ {p}

S4 Choice of a preferred good as the new revised base B ′i

allow for multiple distinct languages.
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Figure 2: Dempster’s and Bayes rules at work

The incoming information p, with its weight of evidence, is evaluated not just
within the current base Bi, but within the overall knowledge background B∗i .
Doing so, the degrees of credibility of the sentences in B∗i ∪ {p} are reviewed on a
broader and less prejudicial basis (S3). The main advantage is that we can rescue
sentences from B∗i by virtue of the maximal consistency of B ′i. If we would revise
only Bi by p, we could not recover information from B∗i .

S1 and S2 deal with consistency and derivation, and act on the symbolic part
of the information. Operations are in ATMS style; to find out nogoods and goods,
we adopt (and adapt) the most efficient set-covering algorithm that we are aware
of [23]. Notwithstanding this, even in the propositional case, determining all the
minimal inconsistencies can be very hard. However, such condition can be re-
laxed (the consequence is that some of the goods are not really consistent) and
in practical applications dealing with commonsense knowledge (for instance [9]),
such minimal inconsistencies could be provided interactively by the external user.

S3 and S4 deal with uncertainty and work with the numerical weight of the
information. Both contribute to the choice of the revised knowledge base so their
reasonableness should be evaluated as a couple. Numerical formalisms are able to
perform both of them since the credibility of a single sentence p is determined in the

5



same way as the credibility of a set of sentences Bi by the weights attached to their
models (or possible worlds) [p] and [Bi], respectively. Flexibility is an advantage
in separating the two steps; for instance, depending on the characteristics of the
knowledge domain under consideration and the kind of task and/or decision that
should be taken on the basis of the revision outcome, the selection function could
consider also one (or a combination) of the methods described in [3].

Probabilistic methods with uncertain inputs seem inadequate for the strong de-
pendence that they impose on the credibility of a sentence and that of its negation.
We see that the belief-function formalism, in the special guise in which Shafer and
Srivastava apply it to auditing [25], could work well because it treats all the pieces
of information as they had been provided at the same time.

The method has the following I/O:

INPUT: list of pairs <source,piece of information>
list of pairs <source,reliability>

OUTPUT: list of pairs <piece of information,credibility>
list of pairs <source,reliability>

Let S={s1, ..., sn} be the set of the sources, and let b∗j be the subset of B∗i
that agent i has received from sj. Each source sj is associated with a reliability
R(sj), that is regarded as the probability that the source is faithful. The main idea
with this multi-source version of the belief function framework is that a reliable
source cannot give false information, while an unreliable source can give correct
information; the hypothesis that sj is reliable is compatible only with the models
of b∗j , while the hypothesis that sj is unreliable is compatible with the overall set
of models Ω of L (in Depster-Sahfer theory, it is called frame of discernment [25]).
Each source sj is an evidence for B∗i and generates the following basic probability
assignment (bpa) mj(·) on 2Ω:

mj(X) =











R(sj) if X = [b∗j ]
1−R(sj) if X = Ω
0 otherwise

All these bpas will be then combined through the Dempster Rule of Combina-
tion. From the combined bpa m(·), the credibility of a sentence p of L is given, as
usual, by:

Bel(p) =
∑

X⊆[p]

m(X)

From this mechanism we obtained an easy way to calculate the new reliabilities
of the sources. Let Φ be an element of 2S. If the sources are independent, the
reliability of Φ is

R(Φ) =
∏

S∈Φ

R(s) ·
∏

S∈Φ

(1−R(s))

It holds that
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∑

Φ∈2S

R(Φ) = 1

It maybe that some source fall in contradiction, so that some elements of 2S

are impossible. The remaining elements are subjected to bayesian conditioning so
that their reliabilities sum up again to 1. The revised reliability R′(sj) of a source
sj is the sum of the new reliabilities of the surviving elements of 2S that contain
sj. If a source has been involved in some contradictions, then R′(sj) ≤ R(sj),
otherwise R′(sj) = R(sj).

The main problem with the belief function formalism is the computational
complexity of Dempster’s Rule of combination. The straight-forward application
of the rule is exponential in the frame of discernment (number of propositional
letters of L, that is smaller than the number of information items in B∗i ) and
the number of evidences. However, much effort has been spent in reducing the
complexity of the rule. Such methods range from “efficient implementations” [14]
to “qualitative approaches” [18] through “approximate techniques” [16].

Among the “quantitative” methods to perform S4, we have chosen to order the
goods according to the average credibility of their elements. A main difference with
respect to other methods like best-out method, inclusion-based method, and lexi-
cographic method, is that the preferred good(s) may no longer necessarily contain
the most credible piece(s) of information (see [7] for a more detailed discussion).

A final step in our revision mechanism is the selection of the derived sentences
which are still derivable from B ′i since the assumptions on which they rely are all
contained in B′i’. Theoretically, it simply consists in applying classical entailment
on the preferred good to deduce plausible conclusion from it. We adopted an ATMS
and we stored each sentence derived by the Theorem Prover with an origin set [15],
i.e., a set of basic assumptions which are all necessary to derive it. Practically, this
step (not represented in figure 2) consists in selecting from the derived sentences,
all those whose origin set is subset of the preferred good. We could relax the
definition of origin set to that of a set of basic assumptions used to derive the
sentence. This is easier to compute and does not have harmful consequences; the
worst it can happen is that, being this relaxed origin set a superset of the real one,
it is not certain that it will be a subset of the preferred good as the real one is, and
so some derived logical consequences of the preferred good may be not recognized
(at first).

Besides recoverability, this computational model for belief revision overcomes
various limitations of other classic approaches. In particular, the revision can be
iterated, it is more flexible, and the splitting between the symbolic treatment of
the inconsistencies and the numerical revision of the credibility weights, provides
a clear understanding of what is going on and lucid explanations for the choices
([7] for more details).
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4 Multi-Context Revision

In this section we present our approach to the multi-context revision. The idea is
to extend the belief revision model presented in the previous section to the case
of a multi-context system. We want this approach to be sentence-based and to
respect the “recoverability principle”.

The correspondence between Mono-Contextual and Multi-Contextual revision
is sketched in Table 1.

Mono-context Revision Multi-context Revision

Knowledge Background Multi-Context Background
(B∗i inconsistent) (MCB inconsistent)

Theory to be revised. This is the global multi-context system that
collects all the contexts. Contexts are fixed and
predefined. Bridge rules among contexts and
assumptions (sentences) inside them are introduced
incrementally. In compliance with the “recover-
ability principle”, nothing will ever be removed
from MCB neither assumptions nor bridge rules.

Good Scenery

Maximally consistent subset This is a subsystem of MCB made of all its
of B∗i . contexts but, eventually, without some assumptions

and/or some bridge rules, in such a way that it
results maximally consistent. This means that it
is not possible to re-introduce any assumption
and/or bridge rule without generating a
contradiction in some contexts.

Table 1: Correspondence between mono-context and multi-context revision

Let us try to be a bit more precise. In the multi-context system we consider
fixed the set of contexts, lets call L the set of labels associated to each context (for
instance in the example of Figure 1, L= {Bi, Ii}). The sentences in these contexts
called “assumptions”, and the bridge rules between them are collected as the time
goes on. The assumptions play, as usual, the same role that proper axioms play
in a logical theory. Let us call KB the set of all these assumptions (a difference
w.r.t. the Mono-Contextual case is that here assumptions are labeled sentences),
and let us call BR the set of all the Bridge Rules introduced so far. We define
Multi-Context Background the tuple:

MCB = 〈L,KB,BR〉

Of course, MCB could fall in contradiction (when at least a context becomes in-
consistent). When this happens, MCB will be “partitioned” into a finite set of
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Figure 3: MCB for the agent i

subsystems, called “sceneries”.
A scenery is a couple 〈B,BR〉 where B ⊆ KB and BR ⊆ BR such that:

• 〈L, B,BR〉 is consistent;

• ∀B′ (B ⊂ B′ ⊆ KB), 〈L, B′, BR〉 is inconsistent;

• ∀BR′ (BR ⊂ BR′ ⊆ BR), 〈L, B,BR′〉 is inconsistent too.

Lets consider the example in Figure 3, in which a multi-context background
for agent i presents a contradiction in the context Ii (both β and ¬β are true).

To solve the contradiction, the three sceneries in Figure 4 are generated. In
scenery 1, ¬β is removed from Ii; in scenery 2, α is removed from Bi, and finally
in scenery 3, the bridge rule is removed.

IiBi Bi

iI

Bi Ii

Bi IiBi

iI

:

:

α
β

α

Scenery 1

α β

Scenery 3

:

:

α
β

β

Scenery 2

 

Figure 4: Sceneries for the example in Figure 3

Following the trivial example in Section 2 (the umbrella example), let us
suppose that a new intention is introduced into the agent’s mental state, i.e.,
that of not to bring an umbrella. We should introduce the assumption: Ii :
¬bring umbrella in KB. This renders MCB inconsistent. The revision method
yields the following three sceneries:

1. 〈{Bi : raining},
Bi : raining

Ii : bring umbrella
B2I〉

9



2. 〈{Ii : ¬bring umbrella},
Bi : raining

Ii : bring umbrella
B2I〉

3. 〈{Ii : ¬bring umbrella, Bi : raining}〉.

It is easy to see that any other subsystem of MCB is not maximally consistent.
In Figure 4 the pseudo-algorithm for generating all the sceneries.

Main:

1. collect all the context labels in the set L;
2. collect all the bridge rules in the set BR;
3. initialize KB = ∅;
4. initialize Sceneries = {L};
5. repeat
6. read(NewInformation);
7. IF NewInformation = (Assumption, Context)

THEN revise(Assumption, Context)
ELSE revise(BridgeRule)

8. endrepeat
9. end

PROCEDURE revise(Assumption, Context)

1. while Sceneries 6= ∅ do begin

(a) POP(S, Sceneries);
(b) IF derivable((¬Assumption, Context),BR, S) = true

THEN
i. generate sceneries(BR,KB ∪ {(Assumption, Context)},

New Sceneries);
ii. Sceneries := Sceneries ∪NewSceneries;

ELSE
i. Context := Context ∪ {Assumption};

ii. update(S,Context);

2. endwhile
3. eliminate subscenaries(Sceneries)
4. end

Figure 5: The pseudo-algorithm for generating all the sceneries

5 Conclusion

This paper is a preliminary step toward extending a classic sentence-based revision
mechanism from single theories to multi-context systems. After introducing the
motivations behind that, the paper presents the main idea of a Multi-Context
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Revision method. It also contains a preliminary version of a main algorithm to
perform the task (in a decidable multi-context system). Most of the work has still
do be done. Here is a list of theoretical and practical task to do.

1. Prove that at least one scenery exists
2. Prove that the number of generated sceneries is finite
3. Prove that the process is deterministic (the set of generated sceneries is

unique)
4. Find an algorithm for revise(BridgeRule)
5. Find an algorithm for derivable((Assumption, Context),BR, S)
6. Find an algorithm for generate sceneries(BR,KB ∪ {(A,C)}, NS)
7. Find an algorithm for eliminate subsceneries(Sceneries)
8. Prove that the overall algorithm is complete
9. Prove that the overall algorithm is sound

10. Implement the overall algorithm
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