
A Natural Extension of Tropos Methodology for Modelling Security

Haralambos Mouratidis1, Paolo Giorgini2, Gordon Manson1, Ian Philp3

1Computer Science Department, University of Sheffield, England
{h.mouratidis, g.manson} @dcs.shef.ac.uk

 2 Department of Information and Communication Technology, University of Trento, Italy
paolo.giorgini@dit.unitn.it

3 Sheffield Institute for Studies on Ageing, University of Sheffield, England
i.philp@sheffield.ac.uk

Abstract

Although security is an important issue when developing
complex computerised systems, very little work has been
done in integrating security concerns in the agent-
oriented methodologies. This paper introduces extensions
to the Tropos methodology to accommodate security. A
description of new concepts is given along with an
explanation of how these concepts are integrated to the
current stages of Tropos. The above is illustrated using
an agent-based health and social care information system
as a case study.

1. Introduction

It is recognised amongst the agent research community
[1,2,3] the need for developing a complete methodology
for analysing and designing multi-agent systems. The
main role of such a methodology will be to help in all the
phases of the development of a system, and more
importantly, to help capture and model the unique
characteristics that agent-oriented systems introduce such
as flexibility, autonomous problem solving, and the rich
interactions between the individual agents.

Security is an important issue when developing
complex computerised systems. According to [4]
“Security concerns must inform every phase of software
development, from requirements engineering to design,
implementation, testing and deployment”. We believe that
if agent-oriented software engineering is to become
widely accepted as a basis for developing complex
computerised systems, agent-oriented software
engineering methodologies must unify system engineering
with security engineering.

 Although many agent-oriented software engineering
methodologies have been developed during the last few
years (see [5] for an overview on the state of the art), very
little work has been done in integrating security concerns
during the analysis and design of an agent-based system.
The common approach towards the inclusion of security

within a system is to identify security requirements after
the definition of a system. This approach has provoked the
emergence of computer systems afflicted with security
vulnerabilities [6]. From the viewpoint of the traditional
security paradigm, it should be possible to eliminate such
problems through more extensive use of formal methods
and better software engineering.

This paper introduces extensions to Tropos, an agent
oriented software engineering methodology [7], to
accommodate security concerns during the requirements
analysis. The concept of constraints is also defined and
the reason for employing constraints and how they can
help in the analysis of the system’s security is described.

 The paper is organized as follows. Section 2
introduces security in software engineering while Section
3 presents extensions to the Tropos methodology
necessary for capturing security aspects of the system
under development. In Section 4 we describe the security
modeling features that we use in our approach, and in
Section 5 we present how our approach can be integrated
on the current Tropos stages. Finally, Section 6 presents
some concluding remarks and directions for future work.
The eSAP System (an agent-based health and social care
information system) is used throughout the paper to
illustrate the proposed extensions.

2. Security in Software Engineering

Security is usually defined in terms of the existence of
properties such as confidentiality, authentication,
integrity, access control, non-repudiation and availability
[6] and the ability to overcome possible threats.

The security requirements of the system are obtained
after studying the security policy1 of the organisation.
Currently, the definition of security requirements is
usually considered after the design of the system. This
typically means that security enforcement mechanisms

1 A security policy is the set of decisions that, collectively,
determines an organisation’s posture towards security.

have to be fitted into a pre-existing design therefore
leading to serious design challenges that usually translate
into software vulnerabilities. Adopting a security focus
through the overall system development process
represents a solution to mitigate such problems.

Software engineering considers security requirements,
as well as performance and reliability requirements, as
non-functional requirements. Non-functional requirements
introduce quality characteristics but also they represent
the constraints under which the system must operate.
Software designers have already recognised the
importance of integrating non-functional requirements,
such as performance and reliability, into software design
processes [8], however security requirements are still an
afterthought.

There are at least two reasons for the lack of support
for security engineering [9]. Firstly, security requirements
are generally difficult to analyse and model, and secondly
because of developer lack of expertise for secure software
development. Furthermore, security policies are generally
specified in terms of security models that are not
integrated with general software engineering models.

In the current state of the art, security properties are,
within the requirements engineering process, supported by
a qualitative reasoning rather than a formal reasoning.
Existing formal methods support the verification of a
protocol, which has already been specified [10], while
qualitative directions provide a process-oriented approach
to represent non-functional requirements as potentially
conflicting or concordant goals and using them during the
development of software systems [11]. These approaches
only guideline the way non-functional requirements, such
as security, can be handled within a certain stage of the
software development process.

We believe that security should be considered during
the whole development process and it should be defined
together with the requirements specification. By
considering security only in certain stages of the
development process, more likely, security needs will
conflict with functional requirements of the system.
Taking security into account along with the functional
requirements throughout the development stages helps to
limit the cases of conflict, by identifying them very early
in the system development, and find ways to overcome
them. On the other hand, adding security as an
afterthought not only increases the chances of such a
conflict to exist, but it requires huge amount of money and
valuable time to overcome it, once they have been
identified (usually a major rebuild of the system is
needed).

The agent-oriented paradigm represents a feasible
approach for the integration of security to software
engineering. As mentioned in [1] agents act on behalf of
individuals or companies interacting according to an
underlying organisational context. The integration of

security within the context will require for the rest of the
subsystems to consider the security requirements,
specified in the security policy, when specifying their
objectives and interactions therefore causing the
propagation of security requirements to the rest of the
subsystems. However, at present, no agent-oriented
software methodology considers security requirements as
an integral part of the whole software development
process. In the following section we extend Tropos
methodology in order to consider security concerns in the
early and late requirements analysis phases.

3. Extending Tropos to Accommodate
Security

Tropos is a methodology, for building agent-oriented
software systems, tailored to describe both the
organisational environment of a system and the system
itself. Tropos adopts the i* modelling framework [12],
which uses the concepts of actors, who can be (social)
agents (organisational, human or software), positions or
roles, goals and social dependencies (such as soft goals,
tasks, and resources) for defining the obligations of actors
(dependees) to other actors (dependers). The type of the
dependency describes the nature of an agreement (called
dependum) between dependee and depender. Goal
dependencies represent delegation of responsibility for
fulfilling a goal; softgoal dependencies are similar to goal
dependencies, but their fulfilment cannot be defined
precisely; task dependencies are used in situations where
the dependee is required to perform a given activity; and
resource dependencies require the dependee to provide a
resource to the depender. Graphically, actors are
represented as circles; dependums – goals, softgoals, tasks
and resources – are represented as ovals, clouds,
hexagonal, and rectangle, respectively; and the
dependencies have the form depender → dependum →
dependee.

Currently in Tropos, the process of integrating
security and functional requirements throughout the whole
range of the development stages is quite ad hoc. A
systematic process that will guide the developer in
considering security requirements (as well as other non-
functional requirements) during the whole development
phases is necessary. Such a process will provide guidance,
and it will use the same concepts and notations throughout
the development phases.

The last few years, work on agent oriented software
engineering has been focused on providing a complete
methodology that will help in all the phases of the
development of an agent-oriented system, and more
importantly it will help to capture and model the unique
characteristics that agent-oriented systems introduce such
as flexibility, autonomous problem-solving, and

interactions between individual agents. However, security
has been mainly ignored and very little work has been
taken place in order for agent oriented software
engineering methodologies to support security concerns
during the development stages.

On the other hand, although work has taken place on
trying to capture non-functional requirements (including
security) and consider different design alternatives [13,
14], none of these approaches were developed with the
agent paradigm in mind.

Trying to close this gap, Eric Yu has recently initiated
work that provides ways of modelling and reasoning about
non-functional requirements (with emphasis on Security).
Yu is using the concept of a soft goal to assess different
design alternatives, and how each of these alternatives
would contribute positively or negatively in achieving the
soft goal.

The concept of a soft goal is “used to model quality
attributes for which there are no a priori, clear criteria for
satisfaction, but are judged by actors as being sufficiently
met” [15].

However, non-functional requirements may relate to
system’s quality attributes, or alternatively may define
constraints on the system [16,17]. Qualities are properties
or characteristics of the system that its stakeholders care
about, while constraints are restrictions, rules or
conditions imposed to the system and unlike qualities are
(theoretically) non negotiable. Thus, although the concept
of a soft goal captures qualities, it fails to adequately
capture constraints.

Possible constraints might be imposed to the system
as restrictions for satisfying the system’s goals (global or
for each individual component). For example security
constraints might be imposed on the system representing
restrictions related to its security. Constraints might affect
the analysis and design of the system, by restricting some
alternative design solutions, conflict with some of the
requirements of the system, and also by refining some of
the goals of the system or introducing new ones that help
the system towards the satisfaction of the constraint.

3.1 Constraints

Constraints are limitations (restrictions) that do not
permit specific actions to be taken or prevent certain
objectives from being achieved. Thus, constraints can
represent a set of conditions; rules and restrictions
imposed on a system, and the system must be operating in
such a way that none of them will be violated.

More often [19] constraints are integrated in the
specification of existing concepts and are expressed in
terms of informal textual descriptions. However, this
approach leads many times to misunderstanding and an
unclear definition of a constraint, and its role in the

development of the system. This often results in errors in
the very early development stages that propagate to the
later stages of development causing many and serious
problems when discovered, if they are discovered. In
addition, integrating constraints on existing concepts
might introduce problems when a system is modified.

 Thus, we believe constraints must be introduced as a
separate concept, next to other existing concepts (in our
case actors, goals, soft goal, task and resources) during the
whole range of the development process.

Defining constraints as a separate concept does not
mean isolate them from the rest of the system. Constraints
are closely related with the parts of the system they
restrict. The part of the system that a constraint restricts is
called the context of the constraint [19]. In our case, the
context can include a different number of goals, soft
goals, and dependencies of the system.

In addition, a constraint can contribute either
positively or negatively to functional and non-functional
requirements. This basically depends on the type of
constraints (for example performance, reliability or
security constraints) and the purpose for which they have
been imposed to the system (for example to restrict access
to the system).

Constraints can be human-imposed or environment-
imposed. The first category includes constraints imposed
by stakeholders, users, or actors, while the second
category involves constraints imposed by organizations,
policies, laws, rules or regulations.

3.2 The eSAP case study

To illustrate the need to extend Tropos, let us
consider a system similar to the eSAP system first
presented by Mouratidis et al [18]. In this system we have
five actors:

� Older Person: The Older Person that wishes to

receive appropriate health and social care (patient)
� Professional: The health and/or social care

professional
� DoH: The English Department of Health
� Benefits Agency: An agency that helps the older

person financially
� R&D Agency: A research and development agency.

To model the goals and the dependencies between the
stakeholders (actors) Tropos introduces actor diagrams. In
such a diagram each node represents an actor, and the
links between the different actors indicate that one
depends on the other to accomplish some goals. The
actors diagram for the above actors is shown in figure 1.

Figure 1Figure 1Figure 1Figure 1. The stakeholders of the eSAP system. The stakeholders of the eSAP system. The stakeholders of the eSAP system. The stakeholders of the eSAP system

Although the dependencies between the actors are

shown clearly, some possible constraints (in our case
related to security) that might be imposed to some of the
actors are not captured.

For example, the Older Person depends on the
Benefits Agency to Receive Financial Support but Older
Person might introduce a constraint to the Benefits
Agency such as to keep their financial information private.
R&D Agency depends on the Professional to Obtain
Clinical Information but the Professional might be
restricted (for example by the DoH or the Older Person)
to provide only anonymous medical information. In
addition, the Older Person might restrict the Professional
by imposing a constraint to share medical information
only if the Older Person’s consent is obtained.

Thus the Professional has to achieve their goals while
having to satisfy different constraints imposed to them.
Taking into considerations these constraints, it helps to
refine existing goals and also introduce, in the later stages
of the development, some extra (secure) goals to the
Professional such as to Obtain Older Person Consent, to
help towards the satisfaction of the constraints.

An alternative way would be to introduce goals
(related to security) to the actors without first imposing
any constraints. For example, in the above example a goal
such as Obtain Older Person Consent could be introduced
to the Professional actor without analysing any constraints
that could be imposed to the system. This would be
possible, but it would represent a totally ad hoc process,
depending only on the experience and the capability of the
designer. Using the concept of constraints helps to provide
a systematic approach in refining existing goals and also
identifying goals that are related to the security of the
system. It also gives reasons why these goals have to be
introduced to the system, and in which actors.

However there is confusion. The question why not
capturing the constraints that are imposed to a system as
the system’s goals? has been asked to the authors. For
example, the constraints described above could be
captured as goals as shown below (the arrows indicate
dependency according to the Tropos concepts [7]):

Older Person -> Keep Financial Info Private -> Benefit
Agency

R&D Agency -> Only provide anonymous medical info ->
Professional

Older Person -> Share this info only if consent is obtained
-> Professional

The confusion mainly comes from the fact that

constraints can be incorporated in the specification of
existing concepts. However, the concept of a constraint is
different from the concept of a goal. A goal represents a
desired state of the world, while a constraint represents a
condition, rule, or restriction towards the achievement of a
goal. Although a goal can be achieved with various ways,
a constraint defines a set of restrictions on how the goal
will be achieved. Considering the difference between a
goal and a constraint we see the statements made are not
correct.

Keep Financial Info Private is not a goal of the Older
Person (the goal is to Receive Financial Support) but
rather a restriction imposed in achieving the goal.

R&D Agency -> Only to provide anonymous medical
info -> Prof. According to this statement the R&D Agency
has a goal to Receive Only Anonymous Medical
Information from the Professional. However, this is not
true because the R&D Agency would be happy to get
named information but the Professional cannot provide
named information because it has been restricted by the
Older Person or by laws (Department of Health).

Older Person -> share info only if consent is obtained
-> Professional. This is not a goal that the Older Person
has and depends on the Professional but rather a
constraint that restricts the Professional in achieving the
goal Provide Appropriate Care that the Older Person
depends on him.

4. Security Modelling Features

We introduce the concepts of security diagram,
security constraint, secure dependency, and secure goal,
task, and resource.

4.1. Security Diagram

A security diagram is constructed after analysing the
security requirements of the system-to-be and its
environment and it is similar to the security catalogue first
introduced by Yu [15]. The process of analysing the
security requirements of the system-to-be and its
environment is not unique and it depends on the engineer.
This process usually involves identification of the security
needs of the system; problems related to the security of
the system (such as possible threats and vulnerabilities)
and possible solutions to the security problems (these

solutions can usually be identified in terms of a security
policy that the organisation might have).

The usability of the security diagram is twofold.
Firstly it helps a designer to identify possible constraints
that must be introduced to the system-to-be (by taking into
account the security needs of the system) and secondly to
identify in the later stages of the design possible means
(security mechanisms) that contribute to the satisfaction of
the security constraints that are introduced to the system.
In addition to that, the security diagram displays some
general advantages:

� It provides a framework of security needs, threats and

possible solutions using concepts known to the
software engineer. In this work we are interested in
extending Tropos methodology, so we have adopted
the diagram using Tropos’ concepts such as goals,
tasks, and soft goals. That means the software
engineer can use the same concepts throughout the
whole Tropos development process.

� Many systems under development are similar to
systems already in existence. Thus the security
diagram can be used as a reference point that can be
modified or extended according to specific needs of
particular systems, saving developers time and effort.

For the construction process of the security diagram

the engineer takes into consideration the security features
of the system-to-be, the protection objectives of the
system, the security mechanisms, and also the threats to
the system’s security features. The security diagram
represents the connection between security features,
threats, protection objectives, and security mechanisms
that help towards the satisfaction of the objectives. Thus,
each security feature identified receives positive
contributions from different protection objectives and
negative contributions from the threats. Positive
contributions help towards the satisfaction of the security
feature while negative contributions put in danger the
security feature. In addition, the diagram captures possible
security mechanisms that contribute positively or
negatively to the protection objectives.

Security features (also protection properties)
represent features associated to security that the system-
to-be must have. We are using the concept of a soft goal
to capture security features on the security diagram. This
decision have taken place since the concept of a soft goal
is “used to model quality attributes for which there are no
a priori, clear criteria for satisfaction, but are judged by
actors as being sufficiently met” [15]. In the same sense,
security features are not subject to any clear criteria for
satisfaction. Examples of security features are privacy,
safety, accountability, availability, and integrity.

Threats on the other hand represent circumstances
that have the potential to cause loss or problems that can

put in danger the security features of the system.
Protection objectives represent a set of principles or rules
that contribute towards the achievement of the security
features. These principles identify possible solutions to
the security problems and usually they can be found in the
form of the security policy of the organisation. We are
representing protection objectives using the concept of a
goal. This has been decided because a goal defines
desired states of the world. In the same sense, a protection
objective represents desired security states that the system
must have.

Security mechanisms identify possible protection
mechanisms of achieving protection objectives. In order
to represent security mechanisms we are employing the
concept of a task. A task represents a way of doing
something, such as the satisfaction of a goal. However, it
must be noticed that tasks (security mechanisms) can
contribute positively (+) but also negatively (-) to different
protection goals. The following figure shows the above-
mentioned concepts and how they are graphically
represented in the security diagram.

Figure 2. Graphical representation of the security Figure 2. Graphical representation of the security Figure 2. Graphical representation of the security Figure 2. Graphical representation of the security
conceptsconceptsconceptsconcepts

A part of the security diagram for the eSAP system is

shown on figure 3. In the presented security diagram we
take into consideration two desired security features of the
eSAP system; privacy and availability. It must be noticed
that this diagram is not meant to be a precise and complete
security diagram of the eSAP system but rather serves as
an illustration diagram to help better understand the
concepts and notations of a security diagram. Both
privacy and availability are receiving negative
contributions from different threats on the system such as
Social Engineering, Eavesdropping and Cryptographic
Attacks, Viruses, System Crashes and Denial of Service
Attacks.

On the other hand, the privacy of the system is
receiving positive contributions from different protection
objectives identified during the security analysis of the
system. In our case we have mainly identified the
protection objectives taking into consideration the security
policy proposed by Ross [20] about medical information
systems.

For example one of the most important protection
objectives that helps the privacy of the system is Access

Threat

Figure 3. Part Figure 3. Part Figure 3. Part Figure 3. Part

Control. Access Control is achieved ba
Authentication of the person that tries t
resource (in our case a care plan). Authentica
performed using different security mechanis
Biometrics, Digital Signatures, Call Back
and Passwords. On the other hand, to help
availability of the system, Back-up and Re
procedures can be employed. It is worth
that although Encryption helps tow
Cryptography protection objective, it
negative to the satisfaction of Auditing.

4.2 Security Constraints

Constraints can be categorised according
functional requirement they are related to. T
have reliability, performance or security con
to mention few of them. In this work we ar
in imposing to a system security constraints,
help towards the security of the system.
security constraint as a constraint that is re
security of the system. Since, constraints ca
the security of the system either positively or
we further define positive and negativ
constraints respectively. An example of

Social

Engineering
Cryp

A

Denial Of
Service Attack
-

of the security diagramof the security diagramof the security diagramof the security diagram

sically by
o access a
tion can be
ms such as
Procedures
towards the
coverability
mentioning
ards the
contributes

 to the non-
hus, we can
straints just
e interested
 in order to
We define

lated to the
n influence
 negatively,
e security
a positive

secu
Pers
coul
addi
nega
syst

(dur
diag
guar
capa
acto
posi
cons
posi

stag
to t
Mos
beca
will
capt
secu
secu
Dat
-

-

 of the eSAP system of the eSAP system of the eSAP system of the eSAP system

rity constraint could be Allow
onal Care Plan, while a negative
d be Send Care Plan Plain Text (
tion, security constraints migh
tively or positively to other re

em.
Security constraints are imposed b
ing the early requirements stage)
ram (during the late requiremen
anteed by assigning capa
bilities) to the components of th
rs or the agents of it). Stakeho
tive and negative security cons
traints imposed by the security
tive security constraints.
As mentioned above, during the
e, the software engineer imposes s
he system-to-be according to the
t likely “root” security constrain
use of the security features, wh

 be imposed because of the pro
ured at the security diagram.
rity diagram that includes priva
rity features could impose a secur

a Private to the system. This

Eave
A

 Viruses
-

 Acce
securit
not enc
t also
quirem

y the s
and by
ts sta

bilities
e syst
lders
traints
diagra

 late r
ecurity
 securi
ts will
ile sub
tection

 For
cy am
ity con
constra
-

-

tographic
ttack

sdropping
ttack
ss Only
y constra
rypted).
 contrib
ents of

takehold
 the secur
ge) and
 (secur
em (i.e.
can imp
, while
m are o

equireme
 constrai
ty diagra
be impo
-constrai
 objecti
example,
ongst ot
straint Ke
int can

System
Crashes

to
int
 In
ute
the

ers
ity
are
ity
the
ose
the
nly

nts
nts
m.

sed
nts
ves
 a
her
ep
be

furthered analysed taking into consideration different
protection objectives that the security diagram has
captured for the privacy security features, such as Access
Control or Cryptography. In this case the “root”
constraint Keep Data Private can be decomposed to
Allow Access Only to Personal Care Plan and Allow
Only Encrypted Data Transfer. However, this is not a
strict process and it depends on the designers and the
design decisions they might take. For example, it is
possible that a protection objective will not impose a
sub-constraint to a root constraint. Constraints are
analysed according to the constraint analysis processes
(due to lack of space these analysis processes are not
described in this paper).

By imposing security constraints to different parts
of the system, we are able to identify possible conflicts
between security and other (functional and non
functional) requirements of the system, identify
(stakeholder) constraints that can put in danger the
security of the system, and propose possible ways
towards a design that will integrate security and systems
engineering leading to the development of a more secure
system.

It is worth mentioning that we consider a security
constraint contributing to a higher level of abstraction,
meaning that a security constraint does not involve the
identification of particular security protocols so that it
does not restrict the development of the system to a
specific security solution. This means we are not taking
into consideration specific security protocols that should
be decided during the implementation of the system, and
that most of the times restrict the design with the use of a
particular implementation language. A security
constraint is represented graphically as shown in figure
4.

Figure 4. Graphical representation of a security Figure 4. Graphical representation of a security Figure 4. Graphical representation of a security Figure 4. Graphical representation of a security

constrainconstrainconstrainconstrain

4.3 Secure Entities
The term secure entities involves any secure goals,

tasks and resources of the system. A secure entity is
introduced to the actor (or the system) in order to help in
the achievement of a security constraint. For example if
the professional actor has a security constraint Share
Info Only If Consent Obtained a secure goal is
introduced to this actor Obtain OP Consent in order to
help in the achievement of the constraint. In a later
stage, capabilities are added to the actor (according to

the security entities added) in order to guarantee the
security constraints.

A secure goal does not particularly define how the
security constraint can be achieved, since (as in the
definition of a goal) alternatives can be considered.
However, this is possible through a secure task, since a
task specifies a way of doing something. Thus, a secure
task represents a particular way for satisfying a secure
goal. For example, for the secure goal Check
Authorisation we might have secure tasks such as Check
Password or Check Digital Signatures.

A resource that is related to a secure entity or a
security constraint is considered a secure resource. For
example, an actor depends on another actor to receive
some information. However, this dependency (resource
dependency) is restricted by a constraint Only Encrypted
Info.

Secure Entities are represented by introducing an S
within brackets (S) before the text description as shown
in figure 5.

Figure 5. Representation of a secure goal, task, Figure 5. Representation of a secure goal, task, Figure 5. Representation of a secure goal, task, Figure 5. Representation of a secure goal, task,
resource. resource. resource. resource.

4.4 Secure Dependencies

A secure dependency introduces security
constraint(s), proposed either by the depender (most
likely) or the dependee (most unlikely) in order to
successfully satisfy the dependency. Both the depender
and the dependee must agree in this constraint (or
constraints) for the secure dependency to be valid. That
means, in the depender side, the depender expects from
the dependee to satisfy the security constraints while in
the dependee side, a secure dependency means that the
dependee will make an effort to deliver the dependum by
satisfying the security constraint(s). There are two
degrees of security: Open Secure dependency (normal
dependency) and Secure dependency. In an Open Secure
Dependency some security conditions might be
introduced but if the dependee fail to satisfy them, the
consequences will not be serious. This means that the
security of the system will not be in danger if some of
these conditions are not satisfied. An Open Secure
Dependency is graphically represented (figure 6) as
unmarked (as the normal dependency). On the other
side, there are three different types of a secure
dependency:

− Depender Secure Dependency, depender depends
on dependee, and depender introduces security
constraints for the dependency. The dependee must
satisfy the security constraints introduced by the
depender, otherwise the security of the dependency
will be in risk. This type of secure dependency is
graphically represented with a constraint at the side
of the dependee (figure 6).

− Dependee Secure Dependency, depender depends
on dependee and dependee introduces security
constraints for the dependency. Depender must
satisfy the security constraints introduced by the
dependee in order to help in the achievement of the
secure dependency. This type of secure dependency
is graphically represented with a constraint at the
side of the depender (figure 6).

− Double Secure Dependency, depender depends on
dependee and both depender and dependee
introduce security constraints for the dependency.
Both must satisfy the security constraints introduced
to achieve the secure dependency. This type of
secure dependency is represented with constraints
on both sides (figure 6).

Figure 6. The different types of secure Figure 6. The different types of secure Figure 6. The different types of secure Figure 6. The different types of secure

dependenciesdependenciesdependenciesdependencies

5. Security Integration in Tropos
Tropos covers four phases of software development:
− Early Requirements, concerned with the

understanding of a problem by studying an existing
organisational setting; the output of this phase is an
organisational model, which includes relevant actors
and their respective dependencies.

− Late requirements, where the system-to-be is
described within its operational environment, along
with relevant functions and qualities. This
description models the system as a (small) number
of actors, which have a number of dependencies
with actors in their environment; these dependencies
define the system’s functional and non-functional
requirements.

− Architectural design, where the system’s global
architecture is defined in terms of subsystems,
interconnected through data and control flows;
within the diagram, subsystems are represented as
actors and data/control interconnections are
represented as (system) actor dependencies.

− Detailed design, where each architectural
component is defined in further detail in terms of
inputs, outputs, control, and other relevant
information. Tropos uses elements of AUML [21] to
complement the features of i*. Agent capabilities
and interactions are specified.

The process of security is basically one of analysing

the security needs of the stakeholders and the system in
terms of security constraints imposed to the system and
the stakeholders, identify secure entities that guarantee
the satisfaction of the security constraints, and assign
capabilities to the system to help towards the satisfaction
of the secure entities. So far in this work, we have
focused in the integration of security during the early
and late requirement stages of the Tropos methodology.
Thus, the security process is integrated in the Tropos
stages as follows.

5.1. Early Requirements

In the early requirements analysis the Security
Diagram (SD) is constructed as described in a previous
section. In addition, security constraints are imposed to
the stakeholders of the system (by other stakeholders).
These constraints are analysed and security entities are
introduced.

In our example, the Older Person depends on the
Benefits Agency to Receive Financial Support.
However, the Older Person worries about the privacy of
their finances so they impose a constraint to the Benefits
Agency actor, to keep their financial information private.
The Professional depends on the Older Person to
Obtain Information, however one of the most important
and delicate matters for a patient (in our case the older
person) is the privacy of their personal medical
information, and the sharing of it. Thus most of the times
the Professional is imposed a constraint to share this
information if and only if consent is achieved. One of
the main goals of the R&D Agency is to Obtain Clinical
Information in order to perform tests and research. To

get this information the R&D Agency depends on the
Professional. However, the Professional is imposed a
constraint (by the Department of Health) to Keep Patient
Anonymity.

The following figure illustrates part of the actor
diagram of the eSAP system taking into consideration
the above-mentioned constraints that are imposed to the
stakeholders of the system.

Figure 7. The actor diagram including security Figure 7. The actor diagram including security Figure 7. The actor diagram including security Figure 7. The actor diagram including security

constraintsconstraintsconstraintsconstraints
In addition, the security constraints imposed at each

actor are further analysed by identifying which goals of
the actor they restrict (Figure 8). The assignment of a

security constraint to a goal is indicated using a
constraint link (a link that has the “restricts” tag). For
example, the Professional actor has been imposed two
security constraints (Share Info Only If Consent
Achieved and Keep Patient Anonymity). During the
means-end analysis of the Professional actor we have
identified the Share Medical Info goal. However, this
goal is restricted by the Share Info Only If Consent
Achieved constraint imposed to the Professional by the
Older Person. For the Professional to satisfy the
constraint, a secure goal is introduced Obtain Older
Person Consent. However this goal can be achieved
with many different ways, for example a Professional
can obtain the consent personally or can ask a nurse to
obtain the consent on their behalf. Thus a sub-constraint
is introduced, Only Obtain Consent Personally. This sub
constraint introduces another secure goal Personally
Obtain Consent. This goal is divided into two sub-tasks
Obtain Consent by Mail or Obtain Consent by Phone.

The Professional has also a goal to Provide Medical
Information for Research. However, the constraint Keep
Patient Anonymity has been imposed to the
Professional, which restricts the Provide Medical
Information for Research goal. As a result of this
constraint a secure goal is introduced to the
Professional, Provide Only anonymous Info.

Figure 8. MeansFigure 8. MeansFigure 8. MeansFigure 8. Means----ends analysis of the Professional Actorends analysis of the Professional Actorends analysis of the Professional Actorends analysis of the Professional Actor

5.2 Late Requirements
During the late requirements stage, security

constraints are imposed to the system-to-be (by taking
into account the security diagram). These constraints are
further analysed according to the constraint analysis
processes. The main aim of the eSAP system (Figure 9)
is to Automate Care in order to help professionals
provide faster and more efficient care, and allow on the
other hand older people get more involved in their care.
Taking into consideration the security diagram, of the
previous section, we see there are two main constraints
imposed (by the desired security features of the system-
privacy and availability) to the eSAP’s main goal - Keep
Data Private and Keep Data Available. For the eSAP to
satisfy these constraints two secure goals have been
identified. Ensure Data Privacy and Ensure Data
Availability. Although, these statements initially seem
very superficial they can be further analysed. In our case
we focus only on the Keep Data Private constraint. This
constraint can be further analysed to sub-constraints
Allow Only Encrypted Transfer of Data, Allow Only
Authorised Access, and Allow Access Only to Personal
Care Plan. Taking into consideration the security
diagram, secure goals are introduced to help towards
the satisfaction of the imposed security constraints. Thus
the secure goals Use Cryptography, Check
Authorisation, Check Access Control, and Check
Information Flow are introduced. In addition, some of
the secure goals are further analysed in terms of secure
tasks. Thus, the Use Cryptography goal is divided to
two secure tasks Encrypt Data and Decrypt Data. It
must be noticed in this point that although someone
might thought of further decomposing these tasks by
indicating for example the type of the encryption
algorithm this is not the case, since the type of the
encryption algorithm depends on the implementation of
the system and it will restrict the developers of the
system in a particular implementation style. The Check
Authorisation is decomposed into four secure tasks,
Check Password, Check Digital Signatures, Check
Biometrics and Call Back. However, it is indicated in the
diagram that the last two tasks contribute negatively
towards the mobility of the system, and this is one factor
that the developers must take into consideration in the
implementation of the system.

6. Conclusions and future work

In this paper we have presented extensions to the
Tropos methodology, so that it can deal with capturing
security concerns of the system-to-be. During the
process of extending Tropos it was concluded that
Tropos methodology facilitates the consideration of
security requirements for different reasons:

− By considering the overall software development
process it is easy to identify security requirements at
the early requirements stage and propagate them
until the implementation stage. This introduces a
security-oriented paradigm to the software
engineering process.

− Tropos allows a hierarchical approach towards
security. Security would be defined in different
levels of complexity, which will allow the software
engineer a better understanding while advancing
through the process.

− Iteration allows the re-definition of security
requirements in different levels therefore providing
a better integration with system functionality.

− Consideration of the organisational environment
facilitates the understanding of the security needs in
terms of the security policy.

− Functional and non-functional requirements are
defined together however a clear distinction is
provided.

Our aim is to provide a clear well guided process of

integrating security and functional requirements
throughout the whole range of the development stages.
Such a process must use the same concepts and notations
throughout the development phases.

As mentioned, the presented extensions apply only
to the first two stages (early and late requirements) of
the Tropos methodology. So far we are able to impose
security constraints that help towards the satisfaction of
the desired security features. We analyse the system in
terms of security constraints imposed to the system and
the stakeholders and then identify secure entities that
guarantee the satisfaction of the security constraints.

Future work involves the assignment of capabilities
to the system to help towards the satisfaction of the
secure entities, and verify the security of the system by
analysing potential attacks and if necessary introduce
extra secure capabilities. Then, the design of the system
will take place by taking into consideration the security
analysis performed in the previous stages.

More specifically, during the architectural design
stage security constraints, which imposed to the new
actors of the system, can be further identified. Then
secure capabilities can be identified and assigned to each
agent of the system. Finally, scenarios can be used to
check the security of the system. In the case where
security vulnerabilities are identified, extra secure
capabilities can be introduced to the system to help
towards the identified vulnerabilities.

During the detailed design stage, the agent
capabilities and interactions can be specified taking into
account the security aspects. AUML notation can be
used by introducing the tag of security rules. This is

 Figure 9. Means Figure 9. Means Figure 9. Means Figure 9. Means----ends analysis of the eSAP Systemends analysis of the eSAP Systemends analysis of the eSAP Systemends analysis of the eSAP System

similar to the business rules that UML has for defining
constraints on the diagrams.

In addition, we are constantly refining and checking
the identified concepts, notations, and process by
applying them to different real life examples in order to
justify them.

Tropos graphical representation is complemented
using Formal Tropos [22], a rich specification language
inspired by KAOS [23]. Formal Tropos provides a
textual notation for i* models and is amenable to formal
analysis. However, Formal Tropos was not conceived
with security in mind and it fails to adequately model
many security aspects. Towards this direction, we are
extending Formal Tropos in order to accommodate
security modeling according to the above-proposed
extensions.

8. Acknowledgements

The first Author would like to thank the RANK
Foundation for the funding of his research project,
during which this work was carried out. Also many
thanks to Erika Sanchez for her comments and assistance
with security matters.

9. References

[1] N. R. Jennings, M. Wooldridge, “Agent-Oriented Software
Engineering” in Handbook of Agent Technology (ed. J.
Bradshaw) AAAI/MIT Press 2001

[2] M. Wooldridge, P.Ciancarini, “Agent-Oriented Software
Engineering: The State of the Art” In P. Ciancarini and M.
Wooldridge, editors, Agent-Oriented Software Engineering.
Springer-Verlag Lecture Notes in AI Volume 1957, January
2001

[3] N. R. Jennings, “An agent-based approach for building
complex software systems”, Communications of the ACM,
Vol. 44, No 4, April 2001

[4] P. Devanbu, S. Stubblebine, “Software Engineering for
Security: a Roadmap”, Proceedings of the conference of The
future of Software engineering, 2000.

[5] C. Iglesias, M. Garijo, J. Gonzales, “A survey of agent-
oriented methodologies”, Intelligent Agents IV, A. S. Rao, J.
P. Muller, M. P. Singh (eds), Lecture Notes in Computer
Science, Springer-Verlag, 1999

[6] W. Stallings, “Cryptography and Network Security:
Principles and Practice”, Second Edition, Prentice-Hall 1999.

[7] J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-
Driven Development Methodology,” In Proc. of the 13th Int.
Conf. On Advanced Information Systems Engineering
(CAiSE’01), Interlaken, Switzerland, June 2001.

[8] Dardenne, A. van Lamsweerde, S. Fickas, “Goal-directed
Requirements Acquisition. Science of Computer
Programming”, Special issue on 6th Int. Workshop of Software
Specification and Design, 1991.

[9] B. Lampson, “Computer Security in the real world”,
Annual Computer Security Applications Conference 2000.

[10] C. Meadows, “A Model of Computation for the NRL
protocol analyser”, Proceedings of the 1994 Computer
Security Foundations Workshop, 1994.

[11] L. Chung, “Dealing with Security Requirements During
the Development of Information Systems”, 5th International
Conference on Advanced Information Systems Engineering,
1993.

[12] E. Yu, “Modelling Strategic Relationships for Process
Reengineering”, PhD thesis, Department of Computer Science,
University of Toronto, Canada, 1995

[13] L.K. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, “Non-
Functional Requirements in Software Engineering”, Kluwer
Publishing, 2000

[14] L.M. Cysneiros, J.C.S.P. Leite, “A Framework for
Integrating Non-Functional Requirements into Conceptual
Models”, Requirements Engineering Journal, Vol. 6, Issue 2,
pp 97-115, April 2001

[15] E. Yu, L. Cysneiros, “Designing for Privacy and Other
Competing Requirements”, (to appear) 2nd Symposium on
Requirements Engineering for Information Security (SREIS’
02), Raleigh, North Carolina, 15-16 November, 2002

[16] I. Sommerville, “Software Engineering”, sixth edition,
Addison-Wesley, 2001

[17] G.C. Roman, “ A Taxonomy of Current Issues in
Requirements Engineering”, IEEE Computer, Vol. 18,
No. 4, pp 14-23, April 1985

[18] H. Mouratidis, P. Giorgini, G. Manson, I.Philp, “Using
Tropos Methodology to Model an Integrated Health
Assessment System”, Proceedings of the 4th International Bi-
Conference Workshop on Agent-Oriented Information
Systems (AOIS-2002), Toronto-Ontario, May 2002

[19] Steegmans, E., Lewi, J., D'Haese, M., Dockx, J., Jehoul,
D., Swennen, B., Van Baelen, S., and Van Hirtum, P.,
“EROOS Reference Manual Version 1.0”, Department of
Computer Science, K.U.Leuven, CW Report 208, Leuven, B,
1995, 176 p

[20]R. Anderson, “Security Engineering”, Wiley
Computer Publishing, 2001

[21] B. Bauer, J. Müller, J. Odell, “Agent UML: A Formalism
for Specifying Multiagent Interaction”. In Agent-Oriented
Software Engineering, Paolo Ciancarini and Michael
Wooldridge (eds), Springer, Berlin, pp. 91-103, 2001.

[22] A. Fuxman, M. Pistore, J. Mylopoulos, P. Traverso,
“Model Checking Early Requirements Specification in
Tropos”, Proceedings of the 5th Int. Symposium on
Requirements Engineering, RE’ 01, Toronto, Canada, August
2001

[23] A. Dardenne, A. van Lamsweerde, S. Fickas, “Goal-
directed Requirements Acquisition”, Science of Computer
Programming, 20, pp 3-50, 1993

