
A Multi-agent System for Knowledge

Management based on the Implicit Culture

Framework

Enrico Blanzieri1, Paolo Giorgini1, Fausto Giunchiglia1, and Claudio Zanoni1

Department of Information and Communication Technology
University of Trento - Italy

via Sommarive 14, 38050 Povo Trento
{enrico.blanzieri,paolo.giorgini,

fausto.giunchiglia,claudio.zanoni}@dit.unitn.it

Abstract. We present an implementation of a multi-agent system that
aims at solving the problem of tacit knowledge transfer by means of ex-
periences sharing. In particular, we consider experiences of use of pieces
of information. Each agent incorporates a system for implicit culture
support (SICS) whose goal is to realize the acceptance of the suggested
information. The SICS permits a transparent (implicit) sharing of the
information about the use, e.g., requesting and accepting pieces of infor-
mation.

1 Introduction

In Knowledge Management, knowledge is categorized as being either codified
(explicit) or tacit (implicit). Knowledge is said being explicit when it is possible
to describe and share it among people through documents and/or information
bases. Knowledge is said being implicit when it is embodied in the capabilities
and abilities of the members of a group of people. Experience can be seen as a
way of access and share this kind of knowledge. In [7], knowledge creation pro-
cesses have been characterized in terms of tacit and explicit knowledge transfor-
mation processes, in which, instead of considering new knowledge as something
that is added to the previous, they conceive it as something that transforms it.
Supporting by means of IT systems the transfer of tacit knowledge, namely ex-
perience, among people in organizations represents a challenge whose difficulties
are mainly in the need of explicitly representing tacit knowledge.
In [2] we have introduced the notion of Implicit Culture that can be informally

defined (see Appendix A for a formal definition) as the relation existing between
a set and a group of agents such that the elements of the set behave according
to the culture of the group. Systems for Implicit Culture Support (SICS in the
following) have the goal of establishing an Implicit Culture phenomenon that is
defined as a pair composed by the set and the group, in Implicit Culture relation.
Supporting Implicit Culture is effective in solving the problem of improving the
performances of agents acting in an environment where more-skilled agents are

active, by means of an implicit transfer of knowledge between the group and the
set of agents. In particular, Implicit Culture can be applied successfully in the
context of knowledge management. In particular, the idea is to build systems able
to capture implicit knowledge, but instead of sharing it among people, change
the environment in order to make new people behave in accordance with this
knowledge. As a first step in this direction we have showed how information
retrieval problem can be posed in the implicit culture framework [4]. In this
framework supporting an Implicit Culture phenomenon leads to a solution of the
problem of transfer tacit knowledge without the need to explicitly representing
the knowledge itself.

Some assumptions underlie the concepts of Implicit Culture, Implicit Culture
Phenomenon and SICS. We assume that the agents perform situated actions.
Agents perceive and act in an environment composed of objects and other agents.
In this perspective, agents are objects that are able to perceive, act and, as a
consequence of perception, know. Before executing an action, an agent faces
a scene formed by a part of an environment composed of objects and agents.
Hence, an agent executes an action in a given situation, namely the agent and
the scene at a given time. After a situated action has been executed, the agent
faces a new scene. At a given time the new scene depends on the environment
and on the situated executed actions. Another assumption is that the expected
situated actions of the agents can be described by a cultural constraint theory.
The action that an agent executes depends on its private states and, in general,
it is not deterministically predictable with the information available externally.
Rather, we assume that it can be characterized in terms of probability and
expectations. Given a group of agents we suppose that there exists a theory
about their expected situated actions. Such a theory can capture knowledge and
skills of the agents about the environment and so it can be considered a cultural
constraint of the group. Agents and objects, i.e. the environment, are specified
for each application.

The goal of a SICS is to establish an implicit culture phenomenon. The
general architecture we have proposed in [2] (Figure 1) allows to establish an
implicit culture phenomenon by following two basic steps: defining a cultural
constraint theory Σ for a group G; and proposing to a group G′ a set of scenes
such that the expected situated actions of the set of agents G′ satisfies Σ. Both
steps are realized by using the information about the situated executed actions
of G and G′. An implementation of a SICS has been presented and showed to
be effective in [3] and [4].

In this paper, we propose a multi-agent architecture for knowledge manage-
ment where each agent incorporates a SICS. The multi-agent architecture per-
mits the basic operations of the SICS to be performed in a less invasive way. In
fact, the agents contribute to propagate the information about the actions of the
user to other agents. The system also adopts a distributed point of view of knowl-
edge management opposed to a centralized one as pointed out by [6]. The SICS
incorporated in the agents can be seen as a generalization of a memory-based
collaborative filtering that makes intensive use of similarity-based retrieval [2].

Fig. 1. The basic architecture for Systems for Implicit Culture Support consists of
the following three basic components: observer that stores in a data base (DB) the
situated executed actions of the agents of G and G′ in order to make them available
for the other components;inductive module that, using the situated executed actions of
G in DB and the domain theory Σ0, induces a cultural constraint theory Σ; composer
that, using the cultural constraint theory Σ and the executed situated action of G and
G′, manipulates the scenes faced by the agents of G′ in such way that their expected
situated actions are in fact cultural actions with respect to G. As a result, the agents
of G′ execute (on average) cultural actions w.r.t. G, and thus the SICS produces an
Implicit Culture phenomenon.

The paper is organized as follows. Section 2 and Section 3 present the multi-
agent architecture and the implementation of the SICS, rispectively. Section 4
draws conclusions a future directions, and finally, in order to facilitate the read-
ing, Appendix A recalls the formal definition of Implicit Culture presented in [3].

2 A Multi-agent System based on Implicit Culture

In this section we present the multi-agent system based on the Implicit Culture
we have developed for Knowledge Management applications. The system has
been built using JADE (Java Agent Development Framework) [1], a software
development framework for developing multi-agent systems conforming to the
FIPA standards [5]. Basically, the system is a collection of personal agents that
interact one another in order to satisfies the requests of their users. Each agent
uses locally the SICS to suggest both its user and the other agents. Applying
the SICS locally, each personal agent is able to provide suggestions from its

perspective, namely on the base of the information it has collected observing the
behavior of its user and those of the agents with which it has interacted with. In
our system we have extended the FIPA protocols in order to allows the agents to
exchange each other feedback about how the users use the information suggested
by their personal agents.

A user asks her personal agent about a keyword and the agent starts to search
for documents, links, and references to other users, related to the keyword. The
personal agent tries to suggest the user using the observations done in the past
on the user’s behavior and on the behavior of the users whose personal agents
it interacted with. Alternatively, the personal agent can submit the request to
other agents which will treat the request as it were done by their users. In this
case, however, the suggestions can include also other agents to contact. The
selection of the agents to send the request is done applying locally the SICS
again.

Σ

Σ

internal/external

EVENT

b
eh

av
io

u
r

1

b
eh

av
io

u
r

2 behaviour
active agent

(i.e. agent intention)

event detection

b
eh

av
io

u
r

n

scheduler

of behaviours

inbox
private

ACL messages

agent

CAPABILITIES

Composer

BELIEFS

Executed situated
actions of G

Theory

agent resources

Executed

Cultural Actions
Finder

Scenes Producer

kernel

Pool

New scene

ob
s

filter

qu
eu

e

Executed situated
action of G’

qu
eu

e

situated action of G

Fig. 2. Internal architecture of a JADE agent implementing a SICS

Figure 2 presents the general architecture of each single personal agent im-
plemented with JADE. The architecture of a JADE agent consists of four main
components: Behaviors, Scheduler, Inbox , and Resources. In our implementation
we have:

– Behaviors, an agent is able to carry out several concurrent tasks in response
to different internal and external events. All tasks are implemented as be-
havior objects; we have a specific behavior for the SICS. A request from the
user or from another agent actives the SICS behavior.

– Scheduler, that determines which behavior is the current focus of the agent
and consequently it selects an action to perform.

– Inbox , a queue of incoming messages (ACL). It contains the messages coming
from the user as well as those from other agents.

– Resources, consisting of beliefs and capabilities. The agent’s beliefs are the
information available to the agent and the capabilities are particular func-
tionality used in the behaviors. In our implementation the three main com-
ponents of the SICS (observer, composer and inductive module) are three
different capabilities and the observations and the cultural constraint theory
are stored as beliefs. Additionally, each personal agent has beliefs about a
local schema useful to organize the information available. This schema is not
mandatory.

The capability (the composer) and the beliefs (situated executed actions and
cultural constraint theory) related to the SICS and reported in Figure 2 will be
presented in details in the next section. Here we concentrate on the other beliefs
and behaviors. Each personal agent has among its beliefs a local schema in order
to organize information available to its user. Basically, the schema is a tree where
the nodes are labeled with strings that the user uses to describe her own areas of
interest and the leaves are links. A link can be a reference to a document stored
locally in the user system or it can be an Internet address or a reference to a
person (e.g., a phone number, an email address or just the name of the person).
The schema is a conceptual representation of how the user organize locally its
information and it does not say anything about how this representation matches
with those of the other users. The schema is represented in XML (see Figure 3
for an example).
Figure 4 shows the algorithm used by personal agent when it receives a

request of information from its user or from some other agent. The global variable
result contains both links and names of agents of the platform. If the message
is a query the SICS behavior is activated and it modifies result; if no agents
appear in result the DF agent is added to it in order to propagate the query
in any case; if the sender of the query is the user the link contained in result

are sent back and a query is sent to all the agents contained in result. If the
message is a reply from an agent the complete result (links and agents) is sent,
whereas an incomplete result (links only) is sent in the case the reply comes
from the user.
The agents interact one another using the FIPA-Iterated-Contract-Net Pro-

tocol, that starts with a call for proposal to perform a given action. In particular,
we use the call for proposal for checking the availability of an agent to perform
a search action. Differently, the user interacts with its personal agent using the
the FIPA-Query Protocol. Additionally, we have introduced a third protocol for
the propagation of the user feedback about the suggestions provided to him.

<?xml version="1.0"?>
<tree name="USER">

<node name="travels">
<node name="train timetable">

<node>
<name>www.fs-on-line.it< /name>
<type>http< /type>

< /node>
<node>

<name>info@trenitalia.it< /name>
<type>mailto< /type>

< /node>
< /node>

< /node>
< /tree>

Fig. 3. An example of local schema expressed in XML

1 global result
2 for all message in INBOX do
3 if (message.type == ’query’) then
4 result := nil
5 SICS-behavior(query.sender,query.content

result.links,result.agents)
6 if (result.agents == nil) then
7 add(DF,result.agents)
8 end if

9 if (query.sender == user) then
10 inform(self,user,result.links)
11 for all result.agent do
12 request(self,result.agent,query.content)
13 end for

14 end if

15 else if (message.type == ’reply’) then
16 if (reply.sender == user) then
17 inform(self,user,result.links)
18 else inform(self,message.sender,result)
19 end if

20 end if

21 end if

22 end for

Fig. 4. The algorithm used by the personal agent for processing the messages

In particular, the protocol guarantees that the user informs the personal agent
about the acceptance of the refusing of a suggestion, and that the personal agent
informs about this the other agents it asked. In practice, the sending of an inform
whose content is “accept” is triggered by an action of the user, e.g., following a
link, maintaining it implicit.

An example of interaction. Let consider the case in which a user searches
information about ‘‘train timetable’’ and asks his personal agent. Let
suppose that the SICS suggests an Internet address (www.fs-on-line.it) and
another agent, agent-1. The personal agents informs the user about the address
www.fs-on-line.it and send a request to agent-1. Supposing that agent-1
replies with another internet address www.trenitalia.it and another agent,
agent-2, then the personal agent will send a request to agent-2. When agent-2
replies with th email address info@trenitalia.it, the personal agent in-
forms the user with the results it has collected (namely, ‘‘www.fs-on-line.it’’
+‘‘www.trenitalia.it’’+‘‘info@trenitalia.it’’). Finally, if the user exe-
cutes an action considered of acceptance for example of ‘‘info@trenitalia.com’’
an inform with that content is sent. The personal-agent informs agent-2 be-
cause it has suggested such an address, and agent-1 because it has suggested
agent-2. Figure presents the sequence of messages exchanged by the agents.

1. request(user,personal-agent,‘‘train timetable’’)

2. inform(personal-agent,user,‘‘www.fs-on-line.it’’)

3. request(personal-agent,agent-1,‘‘train timetable’’)

4. inform(agent-1,personal-agent,‘‘www.trenitalia.it’’+‘‘agent-2’’)

5. request(personal-agent,agent-2,‘‘train timetable’’)

6. inform(agent-2,personal-agent,‘‘info@trenitalia.it’’)

7. inform(personal-agent,user,‘‘www.trenitalia.it’’+‘‘info@trenitalia.it’’)

8. inform(user,personal-agent,‘‘accept(info@trenitalia.it)’’)

9. inform(personal-agent,agent-1‘‘accept(info@trenitalia.it)’’)

10. inform(personal-agent,agent-2,‘‘accept(info@trenitalia.it)’’)

Fig. 5. The interaction example

The example shows how the variant of the FIPA communication protocol
permits to the agents to propagate the feedback of the user. In this way each
personal agent has access locally to information about the use of the information
done by the requester. The availability of the information permits to the agent to
observe a wider number of actions permitting the transfer of knowledge between
the users. Indeed, if the personal agent would limit its observations only to the
actions performed by its user, the effect achieved by the user would be a simple
personalization. With the communication protocol we have adopted, each SICS
can observe also actions done by the users of the personal agents it has been
put in contact to. It is worth to note that this is transparent to the user. As a
summary, the personal agent act on behalf of the user in a complex way. It uses

the observations of the behavior of its user to provide a better service to the
user herself (personalization) and to the other users (collaboration). Moreover,
with the same goal, it integrates locally the observations of the user with the
observations of the other users and contribute to propagate the observations of
its own user in order to give feedback to the other agents. In other terms the
user delegates to the personal agent the capacity of sharing information about
the use of information.

3 The implementation of the SICS behaviors and

capability

The SICS we have implemented and inserted in the agents as behavior and capa-
bility of JADE is a particular case of the general one. Observations are treated
as beliefs that are updated depending on the type of messages. Moreover, we
do not consider any kind of theory induction over the observations, the cultural
constraint theory is completely specified and the inductive module is omitted
(i.e., in Figure 1, Σ ≡ Σ0). The cultural constraint theory is expressed by a set
of rules of the form:

A1 ∧ · · · ∧An → C1 ∧ · · · ∧ Cm

in which A1 ∧ · · · ∧ An is referred to as the antecedent and C1 ∧ · · · ∧ Cm as
the consequent. The idea is to express that “if in the past the antecedent has
happened, then there exists in the future some scenes in which the consequent
will happen”. Hence the consequents has to be interpreted as situated expecta-
tions. Antecedent and consequent are conjunctions of atoms, namely two types
of predicates: observations on an agent and conditions on times. For instance,
request(x, y, k, t1) is a predicate of the first type that says that the agent x
requests to agent y informatin relevanto to the keyword k at the time t1; while
less(t1, t2) is an example of the second type and it simply states that t1 < t2.
In our application the cultural constraint theory is fixed a priori and very

simple. Indeed, we want each personal agent PA to recommend links or agents
that satisfy the request, namely that the expected situated action of the user
(and consequently of her personal agents in the system) is to accept the recom-
mendation of the agent PA. The following rule is used to express the cultural
theory:

request(x, PA, k, t1) ∧ inform(PA, x, y, t2) ∧ less(t1, t2)→
acceptx, y, k, t3) ∧ less(t2, t3)

(1)

which states that if x (user or agent) asks the PA information relevant to the
keyword k, and the PA replies informing x that y (link or agent) are relevant,
then x will accept from y information as relevant to the keyword k. In other
terms, the theory specifies that the agents should accept the information they are
offered. Each agent has the goal of having the group of agents and users behaving
consistently with the theory. This goal is achieved by using the composer of the
SICS architecture.

filter

Executed situated
actions of G

Executed situated
actions of G’

qu
eu

e
qu

eu
e

ob
s.

Σ

New scene

POOL

kernel

Cultural Actions
Finder

Scenes
Producer

Fig. 6. The composer architecture

The goal of the composer is to propose a set of scenes to agents of G′ such
that the expected situated actions of these agents satisfy the cultural constraint
theory Σ for the group G. In our implementation, the composer consists of two
main submodules (Figure 6)1:

– the Cultural Actions Finder (CAF), that takes as inputs the theory Σ and
the executed situated actions of G′, and produces as output the cultural
actions w.r.t. G (namely, the actions that satisfy Σ).

– the Scenes Producer (SP), that takes one of the cultural actions produced
by the CAF and, using the executed situated actions of G, produces scenes
such the expected situated action is the cultural action.

Cultural Actions Finder

The CAF matches the executed situated actions of G′ with the antecedents of the
rules of Σ. If it finds an action that satisfies the antecedent of a rule, then it takes
the consequent of the rule as a cultural action. Figure 3 presents the algorithm
for the CAF. For each rule r (ant→cons), the function match(a,α) verifies
whether the atom a of ant=ant(r) matches with the executed situated action α;
then the function find-set(ant,past-actions) finds a set past-actions of past
executed situated actions that matches with the set of atoms of ant; and finally,
the function join(past-actions,r) joins the variables of r with the situated

1 An additional component of the composer is the Pool, which manages the cultural
actions given as input from the satisfaction submodule. It stores, updates, and re-
trieves the cultural actions, and solves possible conflicts among them.

loop

get the last executed situated action α
for all rule r of Σ do
for all atom a of ant(r) do
if match(a,α) then
if find-set(ant,past-actions) then
r′=join(past-actions,r)
return cons(r′)

end if

end if

end for

end for

return false
end loop

Fig. 7. The algorithm for the CAF submodule

for all y ∈ G′

for all situated executed actions βy of y
if sim(βy, α)> Tmin then {
if y 6∈ Q then y → Q
s → S(y)

}

Fig. 8. The algorithm for step 1

executed actions in past-actions. The function cons(r′) returns the consequent
of r′.

Scenes Producer

Given a cultural action α for the agent x ∈ G′ that performed actions on the set
of scenes S(x), the algorithm used in the scenes producer consists of three steps:

1. find a set of agents Q ⊆ G∪G′ that performed actions similar to α and the
sets of scenes S(y) with y ∈ Q and in which they performed actions;

2. select a set of agents Q′ ⊆ Q similar to x;

3. Estimate (using Q′) the expected similarity between the expected actions of
x in the scenes of the set S =

⋃
y∈Q S(y) and the cultural action α. Return

the scene that maximizes the expected similarity and propose it to x.

Figure 3 shows the simple algorithm used in step 1. An agent y is added to
the set Q if the similarity sim(βy, α) between at least one of its situated executed
actions βy and α is greater than the minimum similarity threshold Tmin. The
scenes s in which the βy actions have been executed are added to S(y), that is
the set of scenes in which y has performed actions similar to α.

Step 2 selects in Q the k nearest neighbors to x with respect to the agent
similarity defined as follows:

wx,y =
1

|S(x) ∩ S(y)|

∑

σ∈S(x)∩S(y)

1

|Ax(σ)||Ay(σ)|

∑

βx∈Ax(σ)

∑

βy∈Ay(σ)

sim(βx, βy)

(2)
where S(x)∩S(y) is the set of scenes in which both x and y have executed at least
an action. Ax(σ) and Ay(σ) are the set of actions that x and y have respectively
performed in the scene σ. Eq. 2 could be replaced by a domain-dependent agent
similarity function if needed.
Step 3 selects the scenes in which the cultural action is the expected situated

action. To do this, firstly we estimate for any scene σ ∈ S =
⋃
y∈Q S(y) the

similarity value between the expected action of x and the cultural action, and
then we select the scene with the maximum value. The function to be maximized
is the expected value E(sim(βx, α)|σ), where βx is the action performed by the
agent x, α is the cultural action, and σ ∈ S is the scene in which βx is situated.
The following estimate is used:

Ê (sim(βx, α)|σ) =

∑
u∈Q′ E (sim(βu, α)|σ) ∗ wx,u∑

u∈Q′ wx,u
(3)

that is we calculate the weighted average of the similarity of the expected actions
for the neighbor of the scene, the weight wx,u is the similarity between the agent
x and the agent u, whereas E (sim(βu, α)|σ) with u ∈ Q′ in Eq. 3 is estimate as
follows:

Ê (sim(βu, α)|σ) =
1

|Au(σ)|

∑

βu∈Au(σ)

sim(βu, α) (4)

that is the average of sim(βu, α) over the set of actions Au(σ) performed by u
in σ.
The algorithms described above, as well as the multi-agent system presented

in the previous section, is fully implemented in Java using XML for expressing
the cultural constraint theory.

4 Conclusions and future work

We have presented a multi-agent system that exploits the architecture of the
Systems for Implicit Culture Support in order to solve the problem of the tacit
knowledge transfer in a knowledge management context. We have argued that
the tacit knowledge transfer requires the sharing of experiences and that the
main difficulty relies in the need of explicitly representing the tacit knowledge.
Our approach aims to by-pass the problem of the explicit representation.
The system incorporates a SICS in each agent. The SICS is used in order

to provide information to the user and also to the other users by means of a
communication protocol between the agents. The SICS observes the local actions
of its own user and, by means of a variant of the FIPA communication protocols,

also the actions of the other users. The multi-agent architecture permits the
exchange of information about the users actions, improving so the range of the
actions that each local SICS can observe. The overall effect is an implicit transfer
of information about the use of the suggested items. In other terms, the system
supports the sharing of the experience of the use of some pieces of information.
In our opinion the present proposal represents a viable way of supporting the

transfer of tacit knowledge between individuals in an organization. Each personal
agent contributes locally to a realization of an implicit culture phenomenon. It is
important to note that the local perspective of each agent permits the existence
of different practices, given the fact that not all the agents will converge to the
same set of observations and consequently to the same suggestions.
Further work requires an experimentation on the field, where the notion

of implicit culture can be of great help in order to boost acceptance of the
transfer of tacit knowledge, namely experience. Indeed, the user can be explicitly
asked to participate at the knowledge transfer process without imposing any
specific additional activity. On the other hand, accepting to have her own actions
partially propagated in the multi-agent system can be facilitate by the idea of
contributing to a culture and by the perspective of sharing the advantages.

References

1. F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with
jade. In Seventh International Workshop on Agent Theories, Architectures, and
Languages (ATAL-2000).

2. E. Blanzieri and P. Giorgini. From collaborative filtering to implicit culture. In
Proceedings of the Workshop on Agents and Recommender Systems, Barcellona,
2000.

3. Enrico Blanzieri, Paolo Giorgini, Paolo Massa, and Sabrina Recla. Implicit Culture
for Multi-agent Interaction Support. In Carlo Batini, Fausto Giunchiglia, Paolo
Giorgini, and Massimo Mecella, editors, Cooperative Information Systems, 9th In-
ternational Conference - CoopIS 2001, volume 2172 of Lecture Notes in Computer
Science (LNCS). Springer-Verlag, 2001.

4. Enrico Blanzieri, Paolo Giorgini, Paolo Massa, and Sabrina Recla. Information
Access in Implicit Culture Framework. In Proceedings of the Tenth ACM Inter-
national Conference on Information and Knowledge Management (CIKM 2001),
Atlanta, Georgia, November 2001.

5. FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org.
6. Bonifacio M., Bouquet P., and Manzardo A. A distributed intelligence paradigm

for knowledge management. In AAAI’2000 Spring Symposium on Bringing Knowl-
edge to Business Processes, Stanford University, Palo Alto (California, USA), 20-22
Marzo 2000.

7. I. Nonaka and H. Takeuchi. The knowledge Creating Company. Oxford University
Press, New York, 1995.

APPENDIX A: Formal Definition of Implicit Culture

We consider agents and objects as primitive concepts to which we refer with
strings of type agent name and object name, respectively. We define the set
of agents P as a set of agent name strings, the set of objects O as a set of
object name strings and the environment E as a subset of the union of the set
of agents and the set of objects, i.e., E ⊆ P ∪ O.
Let action name be a type of strings, E be a subset of the environment

(E ⊆ E) and s an action name.

Definition 1 (action). An action α is the pair 〈s,E〉, where E is the argument

of α (E = arg(α)).

Let A be a set of actions, A ⊆ A and B ⊆ E .

Definition 2 (scene). A scene σ is the pair 〈B,A〉 where, for any α ∈ A,
arg(α) ⊆ B; α is said to be possible in σ. The scene space SE,A is the set of all
scenes.

Let T be a numerable and totally ordered set with the minimum t0; t ∈ T is
said to be a discrete time. Let a ∈ P, α an action and σ a scene.

Definition 3 (situation). A situation at the discrete time t is the triple 〈a, σ, t〉.
We say that a faces the scene σ at time t.

Definition 4 (execution). An execution at time t is a triple 〈a, α, t〉. We say
that a performs α at time t.

Definition 5 (situated executed action). An action α is a situated executed
action if there exists a situation 〈a, σ, t〉, where a performs α at the time t and
α is possible in σ. We say that a performs α in the scene σ at the time t.

When an agent performs an action in a scene, the environment reacts propos-
ing a new scene to the agent. The relationship between the situated executed
action and new scene depends on the characteristics of the environment, and in
particular on the laws that describe its dynamics. We suppose that it is possible
to describe such relationship by an environment-dependent function defined as
follows:

FE : A× SE,A × T → SE,A (5)

Given a situated executed action αt performed by an agent a in the scene σt at
the time t, FE determines the new scene σt+1 (= FE(αt, σt, t)) that will be faced
at the time t+ 1 by the agent a.
While FE is supposed to be a deterministic function, the action that an agent

a performs at time t is a random variable ha,t that assumes values in A.
Let a ∈ P and 〈a, σ, t〉 be a situation.

Definition 6 (expected action). The expected action of the agent a is the
expected value of the variable ha,t, that is E(ha,t).

Definition 7 (expected situated action). The expected situated action of
the agent a is the expected value of the variable ha,t conditioned by the situation
〈a, σ, t〉, that is E(ha,t|〈a, σ, t〉).

Definition 8 (party). A set of agents G ⊆ P is said to be a party.

Let L be a language used to describe the environment (agents and objects),
actions, scenes, situations, situated executed actions and expected situated ac-
tions, and G be a party.

Definition 9 (cultural constraint theory). The Cultural Constraint Theory
for G is a theory expressed in the language L that predicates on the expected
situated actions of the members of G.

Definition 10 (group). A party G is a group if exists a cultural constraint
theory Σ for G.

Definition 11 (cultural action). Given a group G, an action α is a Cultural
Action w.r.t. G if there exists an agent b ∈ G and a situation 〈b, σ, t〉 such that

{E(hb,t|〈b, σ, t〉) = α},Σ 6`⊥

where Σ is a cultural constraint theory for G.

Definition 12 (implicit culture). Implicit Culture is a relation >/ between
two parties G and G′ such that G and G′ are in relation (G>/G′) iff G is a
group and the expected situated actions of G′ are cultural actions w.r.t G.

Definition 13 (implicit culture phenomenon). Implicit Culture Phenomenon
is a pair of parties G′ and G related by the Implicit Culture.

We justify the “implicit” term of implicit culture by the fact that its definition
makes no reference to the internal states of the agents. In particular, there is
no reference to beliefs, desires or intentions and in general to epistemic states
or to any knowledge about the cultural constraint theory itself or even to the
composition of the two groups. In the general case, the agents do not perform
any actions explicitly in order to produce the phenomenon.

