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Abstract

Due to the inherent nature of their heterogeneity, re-
source scarcity and dynamism, the provision of middleware
for future networked embedded environments is a challeng-
ing task. In this paper we present a middleware approach
that addresses these key challenges; we also discuss its ap-
plication in a realistic networked embedded environment.
Our application scenario involves fire management in a
road tunnel that is instrumented with networked sensor and
actuator devices. These devices are able to reconfigure
their behaviour and their information dissemination strate-
gies as they become damaged under emergency conditions,
and firefighters are able to coordinate their operations and
manage sensors and actuators through dynamic reprogram-
ming. Our supporting middleware is based on a two-level
architecture: the foundation is a language-independent,
component-based programming model that is sufficiently
minimal to run on any of the devices typically found in net-
worked embedded environments. Above this is a layer of
software components that offer the necessary middleware
functionality. Rather than providing a monolithic middle-
ware ‘layer’, we separate orthogonal areas of middleware
functionality into self-contained components that can be se-
lectively and individually deployed according to current re-
source constraints and application needs. Crucially, the set
of such components can be updated at runtime to provide
the basis of a highly dynamic and reconfigurable system.

1 Introduction

Future networked embedded infrastructures will have to
support very challenging application scenarios. One such

scenario, quite representative of the field and constituting
the applicative focus of our RUNES (Reconfigurable Ubiq-
uitous Network Embedded Systems) project1, involves a
road tunnel that is instrumented with networked embedded
sensors, actuators, and larger, more powerful, devices. The
latter act as gateways and allow the sensors to report moni-
tored readings both directly to the actuator systems and to a
tunnel control centre. The system allows to detect and react
to emergency situations such as fire or chemical spillage. In
an emergency, firefighters enter the tunnel in groups. As the
situation unfolds, the embedded sensor/actuator network re-
configures itself as devices fail, and devices carried by the
firefighters spontaneously inter-work with each other and
with the embedded devices to provide the firefighters with
appropriate information and command/control capability.

Scenarios such as this are essentially characterised by
heterogeneity, resource scarcity and dynamism. In terms of
heterogeneity, the devices employed range from tiny sen-
sors to controller PCs and the PDA-class devices carried
by the firefighters. These different devices employ a va-
riety of power sources, run different operating systems,
and are programmed in different languages. Furthermore,
they interact using a range of network types including both
wired and wireless networks running in both infrastructure
and ad-hoc modes, and a range of higher-level interaction
paradigms such as messaging, RPC, and publish-subscribe.
Resource scarcity is clearly an issue for many of the de-
vice classes involved. Apart from the obvious issues of
power and CPU speed, memory can be a significant limita-
tion that can severely constrain the ‘intelligence’ of devices
and also limit their capability to buffer messages. Finally,
such scenarios are inherently dynamic due to changing envi-

1http://www.ist-runes.org



Figure 1. The RUNES software architecture.

ronmental conditions. Obvious examples from our disaster
management scenario are loss of devices due to fire dam-
age; loss of network connectivity; and the need to sponta-
neously create new patterns of connectivity as firefighters
move around the tunnel. Such situations require the sys-
tem to be capable of dynamically reconfiguring itself along
several different dimensions such as reconfiguring the net-
work topology, loading new functionality onto devices, and
offloading functionality as resources dwindle.

In this paper we focus on the provision of middleware
for such scenarios. We first observe that traditional so-
lutions such as CORBA, Jini, .NET etc. are ill-matched
because they lack sufficient support for heterogeneity, re-
source scarcity and dynamism. We therefore take a “clean-
slate” approach in the shape of the architecture shown in
Figure 1. The foundation for the architecture is provided
by a component-based programming model, provided to the
programmer through a middleware kernel API. Since the
model effectively captures the essence of the required func-
tionality in only a handful of concepts, the kernel support-
ing it is simple enough to be easily implementable on any
of the devices typically found in our target scenarios. This
API is then employed to build, at the upper level, a com-
position of middleware and application-level software com-
ponents that offer the necessary middleware and applica-
tion functionality. Rather than providing a monolithic mid-
dleware “layer”, we factor orthogonal areas of middleware
functionality into self-contained components that can be se-
lectively and individually deployed and composed accord-
ing to current resource constraints and application needs.
For example, some devices might require only a basic com-
munication component that provides unreliable messaging,
whereas others might require a more sophisticated publish-
subscribe service that can be realised by composing addi-
tional components on top of the base one. Crucially, the set
of such components can be updated at runtime to provide
the basis of a highly dynamic and reconfigurable system.

The contributions of this paper are as follows:

• a middleware approach that addresses the above-

mentioned concerns of heterogeneity, resource scarcity
and dynamism;

• a concrete implementation of the approach in three
representative deployment environments, viz. Java,
C/Unix, and severely resource-constrained sensor de-
vices running the Contiki [9] operating system;

• an implementation of the disaster management appli-
cation scenario described earlier, which provides a
concrete way to assess the effectiveness of the ap-
proach;

• an experimental, quantitative evaluation of our three
specific implementations showing their ability to ac-
commodate heterogeneity, resource scarcity and dy-
namism with reasonable performance.

The remainder of the paper is structured as follows. First,
we expand in Section 2 on our motivating disaster man-
agement scenario. In Section 3, we outline our component
model, its API, and its deployment in the three different en-
vironments mentioned above. We then, in Section 4, de-
scribe the design of a specific middleware solution for the
disaster management scenario, and in Section 5 we present
our empirical evaluation. Finally, we compare our approach
to related work in Section 6, and offer our conclusions in
Section 7.

2 The Road Tunnel Application Scenario

Over 200 people have died in Europe in road tunnel fires
during the last decade. There is therefore considerable inter-
est in applying technology to improving safety in road tun-
nels. However, as reported in an article on a Berlin tunnel
in Risks Digest getting the technology right is very difficult
and the current state of the art is not very advanced [1].

In our futuristic scenario, we envisage a road tunnel that
is equipped with networked embedded devices that moni-
tor environmental conditions such as temperature, humidity
and air quality, and actuate tunnel safety systems such as
sprinklers, ventilators and road signage. The system also
incorporates larger, more powerful, devices which act as
gateways and allow the sensors to report monitored read-
ings both directly to the actuator systems and to a tunnel
control centre.

When an accident occurs, the system’s first responsibil-
ity is to detect and report the accident and carry out any
automated emergency sequences. In addition, some sen-
sors, actuators or gateways may be damaged and the system
must reconfigure itself to compensate for this. Eventually,
a team of firefighters arrives. We envision the firefighters
equipped with PDA-class networked devices capable of in-
teracting directly with the tunnel system and also carrying
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interface Capsule : {
ComponentType load(in Pattern p);
void unload(in ComponentType t);
Component instantiate(in ComponentType t);
void destroy(in Component c);
Connector connect(in Interface i, in Receptacle r,

in ConnectorFactory cf);
void setAttribute(in Entity e, in Attribute a);
sequence<Attribute> getAttributes(in Entity e,

in Pattern p);
sequence<Entity> getEntities(in Pattern p);

};

Figure 2. The Kernel API.

body sensors to report vital signs to other workers to ensure
that they are rescued when needed. At this point, the tunnel
system plays the role of a tool that can be directly manipu-
lated by the firefighters. For example, it can be selectively
queried by the firefighters to help them operate in the poor
visibility conditions, and the firefighters can directly control
the actuator devices.

In the next two sections we first expand on the funda-
mentals of our middleware approach and then show how
the approach can be used to build an application for the road
tunnel scenario.

3 The RUNES Middleware Foundations

In this section, we first describe our software compo-
nent model and its associated API. As shown in Figure 1,
this API is provided at runtime by the middleware kernel.
We then discuss the middleware kernel implementation for
three very different platforms and briefly comment on com-
ponents we have developed.

3.1 The Middleware Kernel

Our component model2 comprises the following ele-
ments: components, component types, interfaces, recepta-
cles, connectors, connector factories, attributes and cap-
sules. The API associated with the model is defined in
Figure 2 in terms of the OMG’s Interface Definition Lan-
guage (IDL). In addition, the relationships between the var-
ious elements is shown diagrammatically (using UML) in
Figure 3.

In the model, components are the basic runtime units of
encapsulation and deployment. They are instantiated at run-
time from component types, such that each component type
can be used to create multiple component instances at run-
time. This is performed using the instantiate() op-
eration in Figure 2. Components can be deleted as well,

2A preliminary version of the model appeared in [6]. The one pre-
sented here is richer and is furthermore complemented by details on kernel
implementations, on the application scenario, and on evaluation.

using destroy(). Component types can themselves be
dynamically loaded and unloaded at runtime (see load()
and unload()), which provides the basis for the dynamic
nature of our programming model3.

Components offer their functionality through one or
more interfaces each of which is defined in a programming
language independent manner as a set of types and opera-
tion signatures. In addition, components that have depen-
dencies on other components can express these dependen-
cies in terms of one or more receptacles. This capability
is of considerable help when components are dynamically
deployed, as the required deployment environment of the
new component is made clear and explicit. Such a com-
ponent must have each of its receptacles connected (using
connect()) to a corresponding interface on some ex-
ternal component before it can execute. This connection
between a receptacle and an interface is explicitly repre-
sented in the model through a so-called connector, which
is itself a component and therefore can be deleted using
destroy().

The model also incorporates the notion of connector fac-
tories. These are components that create connectors that
embody a specific piece of behaviour to be invoked ev-
ery time a call is made over a given receptacle/interface
connection. In this way, connectors may encapsulate ar-
bitrary functionality and can thus be used to perform such
functions as monitoring or intercepting communications be-
tween their associated receptacle and interface. Connec-
tor factories are passed as arguments to connect(); or,
if a null argument is passed, a “default” connector factory
is used which binds the receptacle directly to the interface.
Note that connector factories are not normally used to ab-
stract over network communications; rather, they are in-
tended for “local” use only. Network communication is as-
sumed to be encapsulated within middleware components
(see Section 4) and is thus transparent to the component
model itself.

All of the foregoing entities (i.e., components, com-
ponent types, interfaces, receptacles, and connectors)
may be annotated with attributes. These are key/value
pairs that can be used to express arbitrary meta-data.
Attributes are managed using setAttribute() and
getAttributes(). Finally, all of the foregoing entities
reside inside a capsule which serves as a runtime compo-
nent container, providing name space functionality. A cap-
sule is typically implemented as an operating system ad-
dress space although this is not mandatory. All the enti-
ties currently inside a capsule can be enumerated using the
getEntities() operation.

It is notable that the component model can be managed
using only eight operations as illustrated in Figure 2. This

3The ‘pattern’ argument to load() is simply a flexible way of speci-
fying a component type.
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Figure 3. The RUNES component model.

enables an easy and lightweight implementation of the ker-
nel mechanisms on a wide range of platforms, as illustrated
next.

3.2 Kernel Implementations

We now describe concisely how the core abstractions de-
fined by our component model are realised in three differ-
ent implementations: (i) a Java-virtual-machine-based im-
plementation; (ii) a C/Unix-based implementation; and (iii)
an implementation based on tiny embedded devices running
the Contiki [9] operating system.

Component Types and Components. In the Java imple-
mentation, component types are straightforwardly repre-
sented as classes that inherit from a specific abstract class.
This approach allows us to “factor out” the code needed
to support component instantiation and destruction. There-
fore, components can be realised simply as objects instan-
tiated from a class representing a component type, and the
load() operation is simply implemented using the default
Java class loader. In the C/Unix implementation compo-
nent types are represented as Unix “shared objects” com-
piled from source files conforming to a specified structure.
The load() operation is implemented in terms of the na-
tive load/link facilities provided by the operating system,
e.g., using dlopen(), and instantiation amounts to allo-
cating a struct containing per-component state. Each in-

terface operation defined in a component type (realised as
a C function) takes as its first argument a pointer to this
per-component struct so that the particular component in-
stance being invoked can be determined. In the Contiki im-
plementation, component types are similarly implemented
as C source files which map to Contiki “services”; and the
Contiki dynamic loading facility is used. Because Con-
tiki supports only a single instance of a given type of “ser-
vice”, the instantiate() operation currently only re-
turns a newly instantiated component once for each com-
ponent type. We are currently looking into removing this
limitation.

Interfaces, Receptacles and Connectors. In the Java envi-
ronment, interfaces are trivially implemented as Java inter-
faces, whereas receptacles are implemented as Java objects.
Component types contain initialisation code to create the
appropriate receptacles at component instantiation time. In
the C/Unix environment both interfaces and receptacles are
represented as C structs. Both contain an array of function
pointers. In the case of an interface, these pointers point at
the target operations (C functions). In the case of a recep-
tacle, they are assigned during connect() either directly
to the function pointer values in the associated interface,
or indirectly via functions within the specified connector
that contains some intermediate functionality. In the Con-
tiki environment, a similar approach is adopted. In the Java
and C/Unix environments we provide the ‘full’ semantics
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Figure 4. A component-based calculator.

import runes.kernel.Interface;
public interface IMultiplier extends Interface {
public int multiply(int x, int y); }

Figure 5. Java kernel: interface for a generic multi-
plier component. Interface is a tagging interface every
RUNES interface must extend.

of connectors, i.e., we provide the ability to employ user-
defined connector factories to customize their behaviors as
described above. Currently we do not provide this function-
ality in the Contiki environment, but there is no a priori rea-
son why the Contiki implementation could not be extended
in this way.

3.3 Using Components: An Example

We have developed a range of application and middle-
ware components on top of the kernel API discussed above.
Some of these are discussed in our previous paper [6]. Here
we describe the implementation of a simple application
to illustrate the use of the abstractions and API described
above.

Our example application consists in a component-based
calculator, designed according to the component configu-
ration shown in Figure 4. The Calculator component of-
fers an interface providing operations to multiply or add
two integers. Each of these operations is implemented by a
dedicated component, connected to the Calculator through
a dedicated connector. At some point, the system recog-
nizes the component initially employed to implement the
add operation as faulty. Therefore, the system dynamically
replaces it with a different Adder component implementing
the same interface.

Developers start writing the interfaces expressing the op-
erations requested/exported by components. For instance,
the Multiplier component relies on a single interface con-
taining an operation to multiply two integers, as illustrated
in Figure 5 using Java. The operation signatures must
then be implemented within the actual components, pos-
sibly along with initialization and destruction routines ex-
ecuted at component instantiation and destruction time, re-

public class Multiplier extends BaseComponent
implements IMultiplier {

public void construct() {
System.out.println("Multiplier instantiated"); }

public void destroy() {
System.out.println("Multiplier destroyed");}

public int multiply(int x, int y) {
return x * y;}

}

Figure 6. Java kernel: implementation of a simple mul-
tiplier component. BaseComponent is an abstract class
every Java component must inherit from.

// Loading and instantiating a Calculator component
ComponentType calcT =

capsule.load("sampleApp.Calculator");
Component calc = capsule.instantiate(calcT);
// Loading and instantiating a (faulty) Adder component
ComponentType adderTFaulty =

capsule.load("sampleApp.FaultyAdder");
Component adder = capsule.instantiate(adderTFaulty);
...
// Retrieve interfaces and receptacles as attributes
Interface adderIf = (Interface) capsule.

getAttribute(adder,"INTERFACE-sampleApp.IAdder");
Receptacle calcAdderRecpt = (Receptacle) capsule.

getAttribute(calc, "RECEPTACLE-sampleApp.IAdder");
...
// Connecting the Calculator to the (faulty) Adder
Connector calcToAdder =

capsule.connect(adderIf, calcAdderRecpt);

Figure 7. Java kernel: instantiating and connecting com-
ponents for the calculator application.

// Loading and instantiating a new Adder component
ComponentType adderTCorrect =

capsule.load("sampleApp.CorrectAdder");
Component adder = capsule.instantiate(adderTCorrect);
// Retrieving the new Adder interface
Interface adderIf = (Interface) capsule.

getAttribute(adder,"INTERFACE-sampleApp.IAdder");
// Destroying the Calculator-FaultyAdder connector
capsule.destroy(calcToAdder);
// Connecting the Calculator to the correct Adder
calcToAdder = capsule.connect(adderIf, calcAdderRecpt);

Figure 8. Java kernel: replacing the adder component in
the calculator application.

spectively. This is illustrated in Figure 6 in the case of the
Multiplier component.

Components are wired together so that the Calculator
exploits the other components to implement its operations.
This wiring is performed using the primitives provided by
the Kernel API, as shown in Figure 7. In our example, this
involves creating various component instances, and con-
necting the Calculator component to a pair of components
implementing the IMultiplier and IAdder interfaces.
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The Kernel API is also used to replace the faulty adder
component with a correct one. This is done by first destroy-
ing the Connector binding the Calculator and the FaultyAd-
der, and then reconnecting the former to a newly instanti-
ated Adder component, as exemplified in Figure 8.

In its simplicity, the above example shows the power and
ease of use of the kernel API. The next section illustrates
how we leveraged off these characteristics to address the
challenges of our reference scenario.

4 The RUNES Middleware in Action

Using our three middleware kernel implementations, we
have developed a set of middleware and application compo-
nents that collectively address the road tunnel disaster man-
agement scenario outlined earlier. The overall design of the
resulting application is depicted in Figure 9.

The application is structured as follows. TMote Sky [23]
nodes running the Contiki-based kernel support a Data Ac-
quisition component and a Data Dissemination component
that together monitor and disseminate environmental condi-
tions in the tunnel. These report, via gateways running the
C/Unix kernel and supporting a Packet Forwarding compo-
nent, to a central control station that includes a Data Log-
ging component running on a PC that runs the Java kernel.
The communication is handled by an underlying µAODV
component which provides multi-hop routing.

When an emergency occurs, the Data Acquisition com-
ponents respond initially by sending readings more fre-
quently. In addition, the µAODV component has the abil-
ity to automatically recover from damage to either sen-
sors or communication paths. Eventually, firefighters arrive
equipped with mobile, wireless devices, forming a mobile
ad-hoc network. The firefighters’ devices instruct the sen-
sors to send their readings direct to the firefighter as well as
to the Data Logger and also a Publish-Subscribe [10] com-
ponent that helps the firefighters coordinate their actions.
The firefighters additionally run a Deployment component
that has the capability to dynamically deploy a Contiki ver-
sion of the Publish-Subscribe component directly onto the
sensor devices so that the latter can start broadcasting di-
rectly to any nearby firefighters who subscribe to relevant
events, e.g., temperature readings above a safety thresh-
old. The Deployment component first checks if the sen-
sors within range already run the Publish-Subscribe com-
ponent. If not, the owning firefighter is prompted about the
possibility of uploading the component on those sensor de-
vices still lacking it. If there is no space on a sensor for the
Publish-Subscribe component, the original Data Dissemi-
nation component can be removed. All of this behaviour is
under the control of the firefighters who interact with their
devices using a GUI component. Table 1 summarises the
configuration of the devices involved as the situation un-

Device Kernel Middleware
Platform Components

Step 1 Sensor Contiki Data Acquisition
Quiescent Data Dissemination
conditions µAODV

Gateway C/Unix Packet Forwarding
Control center C/Unix Data Logging

Step 2 Firefighter Java Publish-Subscribe
Fire detected GUI Component
Step 3 Sensor Contiki Publish-Subscribe
Firefighters Firefighter Java Publish-Subscribe
reconfigure sensors Firefighter Deployment

Table 1. Configuration of the application as the scenario
unfolds.

folds.
The Publish-Subscribe component is the most complex

of the components described above and deserves further ex-
planation. The component employs a layered architecture,
in which two sub-components take care respectively of the
two concerns relevant to dealing with host mobility, i.e.,
overlay maintenance and route reconfiguration on top of
the overlay. The separation of these two concerns is espe-
cially beneficial in allowing independent customisation of
these two aspects. In more detail, the first sub-component
takes care of creating and maintaining a tree-shaped over-
lay based on the algorithm described in [24]. The second
sub-component is then in charge, using the mechanism de-
scribed in [25], of setting up message routes on top of the
overlay, and reconfiguring these routes in case of topology
change.

Note that the application provides a clear illustration
of the benefits of our middleware approach. First, a uni-
fied component-based software development approach is
adopted regardless of the type of device involved. Second,
the component approach encourages the development of in-
dependent pieces of functionality that can be composed in
various useful ways depending on context. Third, the dy-
namic loading capability relaxes the need to anticipate all
the functionality that will be needed on a node. This is espe-
cially beneficial for resource-constrained devices on which
it may not be possible to fit all the components required
at any one time. Fourth, the dynamic (re)connection capa-
bility makes it possible for newly deployed components to
interact in complex ways with the existing components in
a type-safe manner. For example, initially, the Data Acqui-
sition component is bound to the Data Dissemination com-
ponent; however, when the Publish-Subscribe component is
uploaded, it is dynamically rebound to the latter.

5 System Evaluation

This section assesses the effectiveness of our middle-
ware in coping with heterogeneity, resource scarcity and
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Figure 9. Fire in a road tunnel: application design.

dynamism, and also assesses its specific competence for our
reference disaster management scenario.

5.1 Middleware Kernel Evaluation

First we present an evaluation of our three middleware
kernel implementations. For the Java implementation we
used Sun JVM v5.01a running on Linux Gentoo 2006.1 on
a Pentium 4 3.2Ghz with 1 GB RAM. For the C/Unix imple-
mentation we used and 2.4 Ghz P4 running Linux 2.6.12-9-
386; and for the C/Contiki implementation we used TMote
Sky motes [5] with a 250 kbps radio, 10 KB RAM, 48 KB
flash, and 1 MB storage.

Metrics. To demonstrate the ability of the middleware to
support heterogeneity and resource scarcity, we measure the
kernel memory footprint, i.e., the data and code memory
footprint consumed by the run-time support for our compo-
nent model. In addition, to evaluate the memory overhead
required to represent the component, interface and recepta-
cle concepts from the programming model, we measure the
memory footprint of a null component and the per-interface,
per-receptacle memory footprint. A null component is a
component with no interfaces/receptacles and null initiali-
sation/destruction routines.

To investigate the dynamic aspects of the middleware,
we consider the overhead of null operation calls through
a default connector. A null operation is one with no in-
/out parameters performed across a connector without inter-

vention in the control flow, and introduces some overhead
w.r.t. “native” operation calls (e.g., a method invocation in
Java). This measure represents the run-time overhead of in-
troducing connectors in the programming framework. We
also consider the operations needed to dynamically mod-
ify the software running on a node. To that end, the kernel
must load a new component, instantiate it, and connect the
new instance to an existing component. In the case of the
Java and C/Unix kernels, we measured each of these aspects
separately, using a null component. We note that the fine-
grained time aspects cannot be measured on the motes due
to timer service limitations.

Results and Discussion. Our approach addresses hetero-
geneity effectively. This is shown by implementing the
same software component model on a variety of devices,
ranging from powerful desktop PCs to resource-constrained
devices. Different programming languages and concur-
rency models have been used on different platforms. Our
support of heterogeneity is further demonstrated by the rel-
ative sizes of the different middleware kernel implementa-
tions, shown in Table 2. This highlights that our implemen-
tations scale down to severely constrained devices.

Even on the most resource-constrained of our platforms,
the TMote Sky motes, the kernel footprint of 780 bytes is
less than 1% of the total available flash memory of the motes
(48KB internal and 1MB external flash memory). The over-
head due to the introduction of components, interfaces and
receptacles in the programming model of Contiki is negli-
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Performance Measure Java C/Unix C/Contiki
(Memory Footprint)
Kernel Code 14.65 KB 16 KB 780 bytes
Kernel Data 840 bytes 4 KB 52 bytes
Null Component Data 544 bytes 24 bytes 9 bytes
Per-Interface Data 200 bytes 40 bytes 2 bytes
Per-Receptacle Data 264 bytes 22 bytes 2 bytes

Table 2. Memory overhead.

Performance Measure Java C/Unix C/Contiki
Overhead of null Calls
(DefaultConnector) 158.93% 99.84% 137.5%
Component Loading Time 0.0006 ms 0.2116 ms 2.4973 s
Component Instantiation Time 0.0047 ms 0.7674 ms N/A

Table 3. Run-time overhead

gible with respect to the amount of RAM (10KB) available
on the TMote Sky motes onto which they would be loaded.
This minimal overhead obtained is due to the simplicity of
our component model. This enables software reconfigura-
tion through simple, yet powerful, abstractions, that are eas-
ily implementable.

Table 3 reports on the dynamic aspects of our implemen-
tations4. The overhead introduced by null operation calls
through default connectors may appear to be non-negligible
with respect to their “native” equivalents. However, fur-
ther investigation revealed that invoking a void Java method
through a default connector takes only 23.5 µs, on average.
Therefore, the time needed to execute an actual fragment
of code inside the method body would consume the major-
ity of the overall computation time, making the overhead of
the connector negligible. Similar considerations apply for
the C/Unix and the Contiki implementations.

The remaining data in the same table refers to the op-
erations needed to change the software running on a node.
Among these operations, component loading and instantia-
tion are the most expensive, because of the work involved
in transferring the component and creating data structures
within the middleware kernel. Given the values obtained,
and also considering that such operations should be trig-
gered only when needed, we argue our kernel implemen-
tations are able to adapt sufficiently quickly to a changing
environment.

5.2 Scenario-Based Evaluation

We now provide a basic evaluation of aspects of the road
tunnel scenario reported in Section 4. These measurements
were made on an experimental set-up consisting of a TMote
Sky node representing a sensor device in the tunnel, and two
laptops representing firefighter devices. More precisely, the
firefighter devices each comprise a laptop plus a TMote Sky

4We executed 10,000 iterations and averaged the results.

Performance Data Data Publish-
Measure Acquisition Dissemination Subscribe
Source Lines of Code 287 lines 181 lines 197 lines
Memory Footprint 1462 bytes 738 bytes 772 bytes

Table 4. Application component size.

node attached to the laptop via a USB cable; the TMote
Sky node simply forwards IP packets from the firefighter
laptop to the tunnel sensor and vice versa. The sensor device
runs the Contiki implementation of our middleware kernel,
whereas the firefighter devices run the Java version.

First, we evaluated the sizes of some of the components
running on the sensor device. The results in Table 4 show
that these are negligible compared to the available resources
of the TMote Sky motes. By adding together the footprints
of the components and the middleware kernel, we see that
the size of the sensor node installation is 3750 bytes. This is
still less than 1% of the total memory available on a TMote
Sky mote.

We also measured the lines-of-code and memory over-
head for the Java Publish-Subscribe component on the
firefighter devices. This amounts to 1327 lines of non-
commented code, and occupies 8.23 KB of memory. Again,
a very acceptable overhead.

Finally, we carried out some basic performance mea-
sures to confirm that the network overheads are sufficiently
small for run-time reconfiguration to be feasible. To this
end, we measured 2.07 seconds to deploy a null compo-
nent onto the sensor device; 61.52 ms for an ICMP round-
trip ping between the sensor device and a firefighter device;
and 4.25 ms for a Publish-Subscribe message sent between
firefighter devices. These figures indicate that the network
overheads are indeed acceptable.

6 Related Work

There is a substantial body of literature on reconfigurable
middleware systems. First, the RUNES middleware builds
on our earlier work on the OpenCOM component model [7].
Compared to this earlier work, our middleware exhibits a
richer and more coherent set of features, a sounder concep-
tual basis provided by the model we outlined in Section 3,
and a more marked slant towards the requirements of net-
worked embedded systems.

Other relevant component models exist. Gravity [4] is a
component model built on top of the Open Services Gate-
way Initiative (OSGi) Framework [28]. P2PComp [12] is
a lightweight service-oriented component model for mobile
devices which is also built using OSGi; it provides location
independent synchronous and asynchronous communica-
tion between components. The Dynamically Programmable
and Reconfigurable Software (DPRS) architecture [26] is
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a component-based design for dynamically programmable
and reconfigurable systems. PCOM [2] is a distributed com-
ponent model for pervasive computing. It allows for de-
signing applications as a collection of potentially distributed
components, which make their dependencies explicit. If
those dependencies are invalidated, PCOM can attempt to
automatically adapt by detecting alternatives according to
various strategies. FarGo-DA [30] is a distributed compo-
nent model that uses logical mobility to allow disconnected
operation. The Software Dock [14] is an agent-based soft-
ware deployment network that allows negotiation between
software producers and consumers. THINK [11] presents
an approach for building component-based operating sys-
tem kernels. And finally, one.world [13] is a system for
pervasive applications that supports dynamic service com-
position, migration of applications and discovery of context.

Other component based systems are targeted specifically
at embedded systems. These include Pebble [21], PECOS
[31], PBO [27], SaveCCM [15] and Koala [29]. Most
of these are build-time only technologies—components are
not visible at run-time and therefore these systems do not
support dynamic reconfiguration, as we do. A further obser-
vation is that many of these embedded systems technologies
(e.g., PBO, SaveCCM, and Koala) are tightly coupled to a
specific underlying operating system and/or are program-
ming language specific.

Existing middleware for WSNs (e.g., [16, 17, 20])
mostly addresses homogeneous systems and targets appli-
cations such as data collection and analysis. Therefore, it
is unsuited to control applications like the ones we consider
here, in which heterogeneous devices are deployed, and the
system not only observes the environment, but also acts on
it. Impala [19] is one system that does provide hooks for
sensor actuation as a result of data sensing, but it targets ho-
mogeneous systems and does not provide a framework that
can be used to develop components on multiple platforms.
Similarly, most existing mechanisms for code deployment
in WSNs (e.g., [18, 22]) cannot be used in our context, as
they assume a single hardware platform, and are geared to
distributing code to the whole system. Moreover, some of
them do not even provide fine-grained control over the unit
of deployment. For instance, [18] basically replaces the
whole binary running on a node. Instead, our component
model enables greater control over the unit of code distribu-
tion, ultimately achieving more efficient code deployment
in terms of network load.

Finally, in terms of application scenarios, a number of
middlewares targeting disaster, medical and emergency ser-
vices have started to appear [8, 3]. However, we have
not yet seen efforts offering a unique solution tackling the
different requirements of heterogeneity, dynamism and re-
source variability.

In summary, there are two main differences between the

approaches outlined above and our work. The first differ-
ence relates to generality: RUNES is a generic software
fabric that is designed from the ground up to be imple-
mentable on a wide range of devices, and to allow the im-
plementation of a large number of very different primitives.
This is an essential requirement of pervasive applications
such as disaster management. The second difference relates
to our two-layer architecture in which systems are built by
selecting (and dynamically reconfiguring) appropriate mid-
dleware and application components on top of the middle-
ware kernel. This capability, lacking in other works, results
in significantly greater flexibility than current systems offer.

7 Conclusions

In this paper we have described our approach to the
provision of middleware for networked embedded environ-
ments and have demonstrated its application in a road tunnel
disaster management scenario. We have shown in particular
how our component model and its implementation provides
a unified programming model over a wide range of devices
including very small ones. Furthermore, the application of
our approach in the highly heterogeneous road tunnel sce-
nario has proved to be straightforward and to have low re-
source overhead.

As part of future work we will look into implementations
of the middleware more tightly coupled with the operating
system, into delivery of security properties and particularly
access control, and into more sophisticated mechanisms for
code deployment.

The middleware implementation is publicly available at
http://www.ist-runes.org/middleware.
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