
REDS: A Reconfigurable Dispatching System

Gianpaolo Cugola1

1Dipartimento di Elettronica e Informazione
Politecnico di Milano, Italy

cugola@elet.polimi.it

Gian Pietro Picco1,2

2Dept. of Informatica e Telecomunicazioni
Università di Trento, Italy

picco@dit.unitn.it

ABSTRACT
We present a new publish-subscribe middleware called REDS
(REconfigurable Dispatching System) designed to tolerate
dynamic reconfigurations of the dispatching infrastructure,
like those occurring in scenarios characterized by fluid topolo-
gies as in mobile and peer-to-peer networks. We illustrate
the modular architecture of REDS, which enables program-
mers to change the internal configuration of the middleware
to suit the deployment scenario, focusing on the aspects con-
cerned with the dynamic reconfiguration of the dispatching
network.

Keywords. Publish-subscribe, content-based routing, dy-
namic reconfiguration, mobile and peer-to-peer computing.

1. INTRODUCTION
The publish-subscribe model of interaction has recently em-
erged as a promising approach to tackle the requirements of
modern distributed applications in terms of flexibility and
decoupling among components. Several publish-subscribe
middleware exist, developed both by industry and academia.
In most cases, their focus is on scalability (e.g., in distribut-
ing the dispatching infrastructure and implementing efficient
algorithms for matching messages against subscriptions) and
are designed with fairly stable networks in mind. Conse-
quently, they do not provide any explicit mechanism to rear-
range their dispatching infrastructure in response to changes
in the network topology, as those inevitably occurring in
many scenarios including peer-to-peer and mobile network-
ing. This situation is unfortunate, since it hampers the use
of publish-subscribe precisely in those scenarios where its
flexibility provides most of its benefits.

In the last few years, we worked with colleagues to remove
this limitation by developing several protocols dealing with
various aspects of reconfiguration, with the goal of mak-
ing publish-subscribe suitable for the aforementioned sce-
narios [13]. In experimenting with these protocols we felt

the need for a framework enabling us to sharply decouple
reconfiguration issues from the other aspects characterizing
a publish-subscribe system, to simplify the evaluation of our
solutions without the need to rebuild the whole system.

In this paper we present REDS (REconfigurable Dispatch-
ing System), the publish-subscribe middleware we developed
to satisfy these needs. It provides a modular architecture
whose components can be easily changed to adapt to dif-
ferent deployment scenarios. In particular, the innards of
REDS are easily accessible, enabling one to select (or inte-
grate) the most appropriate protocols to deal with topolog-
ical reconfiguration. Moreover, our system is customizable
also along dimensions of publish-subscribe not immediately
related with reconfiguration (e.g., the routing strategy or the
format of messages and filters). REDS is publicly available
as open source at zeus.elet.polimi.it/reds.

Next, we introduce publish-subscribe middleware and moti-
vate the need for a new system. In Section 3 we present the
application programming interface (API) that REDS pro-
vides to developers of distributed applications, describe its
internal architecture, and discuss the mechanisms offered for
customization and extension. Section 4 illustrates the ver-
satility of our approach by using the built-in components in-
cluded in the REDS distribution. Section 5 compares REDS
with related work. Finally, Section 6 ends the paper with
brief concluding remarks.

2. WHY A NEW SYSTEM?
Distributed applications exploiting publish-subscribe mid-
dleware are organized as a collection of peers (hereafter
called clients) that interact by publishing messages and by
subscribing to the classes of messages they are interested
in [21]. The core component of the middleware, the dis-
patcher, is responsible for collecting subscriptions and for-
warding messages from publishers to subscribers. In doing
so it achieves a high degree of decoupling among the clients.
In principle, it is possible to add or remove one of them
without affecting the others—only the dispatcher needs to
be aware of the change. Clearly, this form of decoupling is
particularly desirable in scenarios where the set of clients
undergoes continuous change as in the peer-to-peer and mo-
bile ones.

Publish-Subscribe on Dynamic Topologies. Unfortu-
nately, much of the potential of the publish-subscribe model
still remains to be unleashed by most of currently available



(a) Message for-
warding

(b) Subscription
forwarding

(c) Hierarchical
forwarding

Figure 1: Tree-based routing strategies. Broker S1

and S2 subscribed (through their clients, not shown
in the figure) to the same “black” filter, while S3

subscribed to “gray”. Arrows represent the con-
tent of subscription tables for the filters of the same
color. Broker P published a message matching the
black filter but not the gray one. The path followed
by this message is shown by thick arrows. Broker R
is the root for hierarchical forwarding.

publish-subscribe systems. Indeed, most of the research in
the field focuses on scalability and realizes the dispatcher as
a distributed set of brokers interconnected in an overlay net-
work, cooperatively routing the messages and subscriptions
issued by the clients connected to them. In this context,
the main design decisions concern the topology of intercon-
nection and the routing strategy. As an example, Figure 1
illustrates the simplest and most common tree-based routing
strategies found in the literature [4,6,11]. These distributed
solutions, however, are meant to be deployed in broker net-
works that are essentially stable: their use in the dynamic
topologies characteristics of the aforementioned scenarios
is inefficient or even impossible. Therefore, paradoxically,
many systems are unusable precisely in the deployment sce-
narios where the decoupling fostered by the publish-subscri-
be model is clearly an asset.

Publish-subscribe over dynamic topologies is an open re-
search issue, where our group has made a number of con-
tributions (e.g., [9, 12, 14,23]). However, no established and
general solution has yet appeared, in part because the trade-
offs strongly depend on the assumptions made on the deploy-
ment scenario (e.g., in terms of the frequency of topological
changes or the nature of the underlying network). In this
situation, we quickly faced the need to experiment with dif-
ferent solutions for different scenarios, without having to
restart from scratch every time, and with the ability to eas-
ily factor out the portion common to multiple approaches.

REDS fulfills this goal with a modular architecture that en-
capsulates the basic mechanisms to support dynamic recon-
figuration of the dispatching infrastructure (i.e., to change
the interconnection topology of brokers and to reconcile sub-
scription tables) into a small set of components. These in-
teract with the rest of the system through well-defined in-

terfaces, and can be easily changed at deployment time.

Publish-Subscribe à la carte. Once we made the leap to-
wards a high degree of modularization, we easily recognized
that other dimensions, not necessarily related with dynamic
topologies, could be left open-ended and easily customizable
according to the application needs.

Indeed, existing publish-subscribe systems interpret the pu-
blish-subscribe paradigm in many different ways [15, 21]. A
first point of differentiation are the very notions of mes-
sage and subscription. Depending on the system at hand,
messages can be bare strings, untyped sequences of values
(tuples), untyped name-value pairs, XML code, typed C-like
structures, and even full-fledged typed objects, complete of
attributes and methods. In turn, the message format con-
strains the subscription language. For instance, regular ex-
pressions are the typical subscription language associated
to string messages. Also, the expressive power of the sub-
scription language impacts the inner working of the mid-
dleware. For instance, as described in [6], under some con-
ditions it is possible to detect that a filter is subsumed by
an already existing one, or even to merge two filters into a
more general one, thus reducing the matching space. The
actual mechanisms used in the implementation of a publish-
subscribe system exhibit an even wider variety. We already
touched upon the routing strategies enabling a distributed
dispatcher. Moreover, several solutions (e.g., [1, 7, 16]) exist
to efficiently match messages against subscriptions and de-
termine the intended recipients. This process usually relies
on subscription tables: dedicated data structures that hold
information about the subscriptions (e.g., filter and source).
Their layout, often designed along with the subscription lan-
guage, is key to the alternative efficient matching and for-
warding strategies found in the literature.

REDS encompasses this space of alternatives by encapsulat-
ing each concern in a separate module. Thus, the format of
message and filters, the mechanisms for managing subscrip-
tion tables and the related matching, the routing strategy,
the underlying network transport protocol, and the man-
agement of the dispatching overlay network are all separate
components in REDS. In some cases (e.g., routing strategy,
network transport, overlay network maintenance) it is possi-
ble to replace one of these components without affecting the
rest of the architecture. In the cases where specific design
choices or the very semantics of publish-subscribe prevents
this desirable orthogonality (e.g., when designing a subscrip-
tion table that relies on a specific subscription language),
the REDS architecture provides a reference for understand-
ing the relationship among components and the extent of
their interactions.

Target users. We believe that the open framework pro-
vided by REDS can be useful to both developers and re-
searchers interested in publish-subscribe systems. To the
former, REDS provides flexibility to deploy the components
most suited for a given application scenario, as well as the
basic building blocks for customizing such components when
faced with new application challenges. To the latter, REDS
provides the ability to experiment with and evaluate novel
algorithms and mechanisms, without the need to reinvent



the wheel each time.

3. ARCHITECTURE
REDS is a framework (in the object-oriented sense) of Java
interfaces and classes, which define:

1. a client API, enabling access to the publish-subscribe
services;

2. a broker API, enabling access to the components inside
the broker.

Moreover, the REDS distribution provides several ready-to-
use implementations of the various components.

In the rest of this section, we describe the client (Section 3.1)
and broker (Section 3.2) APIs, alongside with a brief discus-
sion of available components. Their actual use is exemplified
in Section 4.

3.1 Client API
Application components access the services provided by the
REDS distributed dispatcher through the DispatchingSer-

vice interface, shown in Figure 2. The current release
provides two implementations that differ in the transport
protocol used to connect with brokers (UDP and TCP) and
ultimately hide all the details about how clients are con-
nected and communicate through the network.

Moreover, REDS is independent from the specific format of
messages and filters. This empowers developers with great
flexibility: custom messages and filters with very different
semantics can be easily developed (e.g., using XML mes-
sages and XPath filters) without affecting the dispatching
infrastructure. To achieve this goal, REDS defines one ab-
stract class for messages and two interfaces for filters, which
include the minimal set of methods required by a publish-
subscribe broker to operate. The Message abstract class em-
beds the identifier of the message, computed at publish time.
Instead, the Filter interface defines a method matches to
be redefined by the implementing class with the desired fil-
tering logic. In addition, the methods hashcode and equals

are used internally by REDS brokers to store and compare
filters, e.g., to avoid propagating them multiple times along
the same link. Finally, the ComparableFilter interface rep-
resents filters that can be “covered” by others according to
some notion of partial ordering. As in the case of matching,
the method isCoveredBy encodes the coverage semantics
and is used by brokers to limit the propagation of subscrip-
tions, e.g., as described in [6].

REDS also supports a paradigm where clients are enabled
to send replies to messages, thus naturally providing bidi-
rectional communication within the framework of content-
based publish-subscribe. Brokers keep track of the tran-
sit of messages tagged as Repliable and store routes fol-
lowed back by the reply messages, issued using the reply

method of DispatchingService. By supporting replies na-
tively, REDS brokers are able to track the number of ex-
pected replies for each message and check if and when all of
them have been received—a feature that cannot be obtained
by implementing replies at the application level.

Serializable

<< interface >>

Filter

+ matches(msg:Message):boolean

+ equals(o:Object):boolean

+ hashCode():int

Reply

+ Reply(repliableMessageID:MessageID,last:boolean,payload:Message):Reply

+ getRepliableMessageID():MessageID

+ setLast(value:boolean):void

+ isLast():boolean

+ getPayload():Message

<< interface >>

ComparableFilter

+ isCoveredBy(filter :ComparableFilter ):boolean

<< interface >>

DispatchingService

+ open():void

+ close():void

+ getID():NodeDescriptor

+ getNextMessage():Message

+ getNextMessage(timeout :long):Message

+ hasMoreMessages():boolean

+ subscribe(filter :Filter):void

+ unsubscribe (filter :Filter):void

+ unsubscribeAll ():void

+ publish (msg:Message):void

+ isOpened():boolean

+ reply(reply:Message,repliableMessageID:MessageID):void

+ getNextReply(repliableMessageID:MessageID):Message

+ hasMoreReplies(repliableMessageID:MessageID):boolean

+ getAllReplies(repliableMessageID:MessageID):Replies

Message

+ Message():Message

+ getID():MessageID

1

1

<< interface >>

Repliable

Figure 2: The client API.

3.2 Broker API
While the previous section focused on the API offered to the
application programmers, here we focus on the internal ar-
chitecture of the broker and consequently on the API offered
to system integrators and middleware programmers.

Similarly to most publish-subscribe systems, REDS adopts
a distributed architecture for its message dispatcher, which
is organized as a set of brokers connected in an overlay dis-
patching network. This choice is usually motivated by its
enhanced scalability, and REDS benefits from it as well.
However, we chose to adopt such approach for a different
reason: the fact that the dynamic scenarios we target inher-
ently require the adoption of a distributed dispatcher. Actu-
ally, in most cases these scenarios even require a broker per
host, as it is not possible to rely on permanently available
brokers in, say, mobile ad hoc networks (MANETs) or fully
decentralized peer-to-peer networks.

To support dynamic reconfiguration of the dispatching net-
work, REDS brokers are structured in two layers: overlay
and routing. The two are independent, i.e., the particular
choice of components building one of them generally does
not influence the other.

Overlay. The overlay layer (see Figure 3) is in charge of
managing the topology of the overlay dispatching network.
It offers services to build the overlay network and rearrange
it based on input from upper layers (e.g., for load balanc-



LSTreeTopologyManager

<< interface >>

TopologyManager

SimpleReplyTable

GenericTable

WirelessTopologyManager

TCPTransport

DeferredUnsubscription
Reconfigurator

AbstractTopologyManager

<< interface >>

Transport

<< interface >>

RoutingStrategy

UDPTransport

PTreeTable

<< interface >>

ReplyTable

<< interface >>

Overlay

GenericOverlay

SubscriptionForwarding
RoutingStrategy

<< interface >>

SubscriptionTable

GenericRouter

<< interface >>

Router

<< interface >>

ReplyManagerInformedLinkActivation
Reconfigurator

ImmediateForward
ReplyManager

Routing layer

Overlay layer

MessageForwarding
RoutingStrategy

<< interface >>

Reconfigurator

Figure 3: The broker API. The dark components are
those available in the current REDS distribution.

ing). Moreover, and most crucial for our goals, it embeds the
protocols that maintain the overlay network connected when
the topology of the underlying physical network changes au-
tonomously (e.g., because some peers leave the peer-to-peer
network, or as a consequence of mobility).

The Overlay interface defines the aforementioned services.
Although in principle a single component could offer all the
services specified by this interface, our development greatly
benefited from a design that decouples the details of how
data is transported among brokers from those concerned
with building and maintaining the overlay network itself.
This results in a cleaner design, enabling one to change
the two aspects separately. Therefore, the REDS distribu-
tion provides a GenericOverlay class, which implements the
Overlay interface by delegating its services to the Transport
and TopologyManager components.

The Transport provides methods to open and close a link
toward another broker, and to send and receive data among
directly connected brokers. To provide an entry point for the
TopologyManager, the Transport offers methods to register
listener components to be notified when new links open or
existing links close (or break). The current release includes
two implementations of the Transport interface, using TCP
and UDP. In both cases, messages are encoded using the
standard Java serialization.

The TopologyManager implements the protocol that main-
tains the overlay connected, and does so by guaranteeing
that the topology constraints required by the chosen rout-
ing protocol are satisfied (e.g., that no loops exists in a tree
overlay). This component provides methods called by the
routing layer to explicitly manipulate the overlay (e.g., by
adding or removing brokers), and to access the list of neigh-
boring brokers. It also implements the methods offered by
the Overlay interface to register the listeners to be notified
when the neighbor set changes. These methods are useful to
enable components in the routing layer (e.g., the Reconfi-

gurator we describe next) to react to changes in the overlay
topology.

As shown in Figure 3, the current release includes two topol-
ogy managers, sharing a common set of functionalities im-
plemented into the AbstractTopologyManager class. Both
build and maintain an overlay organized as an unrooted
tree of brokers. The LSTreeTopologyManager targets peer-
to-peer, wired scenarios, and implements the protocol de-
scribed in [17]. It assumes the availability of a low-level
point-to-point routing protocol (i.e., IP) and provides mech-
anisms enabling brokers to freely join and leave the network
(including crashes) guaranteeing that the overlay network
remains connected and operational. A radically different ap-
proach is adopted by the WirelessTopologyManager, which
implements the protocol described in [20] to guarantee con-
nectivity among brokers in a MANET. Given the peculiarity
of the scenario, it does not rely on any lower-level network
protocol and assumes only that a local broadcast facility is
available—a fundamental and always satisfied assumption
in MANETs.

Routing. As shown in Figure 3, the central component of
the routing layer is the Router, which implements the main
routing process by registering with the Overlay component
to be notified when subscriptions, messages, and replies ar-
rive from neighbors (i.e., other brokers or clients). As with
Overlay, although in principle a single component could
implement the entire routing process, our experience sug-
gests that it is better decoupled into independent concerns.
Therefore, REDS provides a GenericRouter class, which im-
plements the Router interface and delegates functionality to
other components:

• SubscriptionTable is in charge of efficiently storing
subscriptions coming from neighbors. When a new
message arrives, the SubscriptionTable is responsi-
ble for matching it against stored subscriptions to de-
termine subscribed neighbors, i.e., it implements the
“matching strategy” [21]. As shown in Figure 3, the
current release includes a very simple subscription ta-
ble, GenericTable, which maintains a list of all the
filters received for each neighbor and matches incom-
ing messages by repeatedly invoking the Filter.match
method. Although not very efficient, this approach is
simple and does not make any assumption about the
format of messages and filters. A radically different ap-
proach is taken by the PTreeTable, which implements
the more efficient algorithm described in [1]. However,
this component requires specialized messages and fil-
ters, with the former organized as a set of attributes



(i.e., key-value pairs) and the latter as a conjunction
of predicates on message attributes.

• As its name suggests, RoutingStrategy implements
the specific routing strategy adopted, which ultimately
determines how subscriptions and messages are routed
along the dispatching network. REDS currently in-
cludes the two most commonly used in publish-sub-
scribe systems: subscription forwarding and message
forwarding [6].

• ReplyManager is in charge of routing replies towards
their corresponding publisher, based on the informa-
tion it stores in the ReplyTable. REDS currently pro-
vides only an ImmediateForwardReplyManager that,
as its name suggests, forwards replies as soon as they
arrive1.

The Router component entirely governs the “standard” rout-
ing behavior on a static topology. However, it is the Reco-

nfigurator component that holds the critical role of guar-
anteeing that routing information, and in particular the
content of subscription tables, remains consistent when the
topology of the dispatching network changes. This is achie-
ved by embedding appropriate protocols to reconcile such
information. In a sense, the Reconfigurator complements
the TopologyManager: the latter guarantees connectivity
among brokers without caring about publish-subscribe rout-
ing, which is instead responsibility of the former. The cur-
rent release provides two reconfiguration strategies, both
extending subscription forwarding with reconfiguration ca-
pabilities. The DeferredUnsubscriptionReconfigurator

component implements the protocol we described in [23]
and, as the name suggests, delays the unsubscriptions nec-
essary to account for a broker leaving the network. This
way, the TopologyManager has the time to restore connec-
tivity and allow new subscriptions to spread in the network
before the unsubscription process starts, therefore reducing
the overhead, as shown quantitatively in [23]. Moreover,
an InformedLinkActivationReconfigurator component is
also provided, which bring significant additional overhead
reduction at the expense of more complicate processing and
more stringent assumptions.

4. REDS IN PRACTICE
A thorough illustration of how REDS addresses scenarios
characterized by topological reconfiguration of the dispatch-
ing network is outside the scope of this paper. In fact, a fun-
damental constituent of this capability are the distributed
protocols that enable REDS brokers to coordinate and co-
operate to change the topology of the overlay network in
response to topological changes occurring at the networking
level, e.g., hosts moving in a wireless network or joining and
leaving in a peer-to-peer one. However, the characteristics
of the various alternatives we provide for overlay or rout-
ing are described in full detail in other papers (see [13] for
an overview). Here, instead, we want to present the reader
with a practical illustration of the benefits of the decoupling
of reconfiguration achieved by the REDS architecture—the
focus of this paper—and in particular that:

1Other strategies could be used, like aggregating replies at
each hop. We are currently investigating the tradeoffs of
several alternatives.

1. the ability to assemble the broker’s inner components
enables simple customization of the infrastructure, by
leaving the application unmodified;

2. the effort to implement such a broker customization is
minimal.

In publish-subscribe systems, application development con-
sists of implementing the client code exploiting the publi-
sh-subscribe operations. This is the case also for REDS,
where the DispatchingService provides applications with
access to the dispatching infrastructure. Nevertheless, while
in other systems the dispatching infrastructure is usually a
run-time component outside the control of the programmer,
REDS provides the ability to adapt it to the application
scenario at hand. This task is performed by the system in-
tegrator (in general different from the application program-
mer) and may consist of “assembling” a broker based on the
elementary components provided by REDS, and/or devel-
oping new ones. Interestingly, dealing with reconfiguration
in REDS is relegated entirely to the customization and de-
ployment of the dispatching network and does not affect at
all the client code. This decoupling is a highly desirable
property, as it allows one to run the same application code
(that can be developed by a third party, and therefore un-
changeable) on different dispatching networks and deploy-
ment scenarios.

Decoupling makes broker customization a straightforward
chore. Of all the components involved in the REDS architec-
ture, only two need to change to address reconfiguration—
TopologyManager and Reconfigurator—and, as illustrated
in Section 3.2, each is largely independent from the other.
Therefore, the provision of custom components that rede-
fine the built-in strategies is simplified as the aspects dealing
with reconfiguration are highly decoupled and independent
from each other and w.r.t. the system at large: the system
integrator performing the customization needs to care about
only one concern at a time.

Instead, if the system integrator decides to use the compo-
nents already available in REDS, their selection is trivial, as
shown in Figure 4. On the left-hand side2 is a broker defini-
tion targeted at a large-scale, wired, peer-to-peer scenario.
Here, we selected the LSTreeTopologyManager overlay, op-
timized for this setting, and used an InformedLinkActiva-

tionReconfigurator to govern the reconciliation of routing
information upon a topological change. On the right-hand
side is instead a broker using our overlay for MANETs, along
with a DeferredUnsubscriptionReconfigurator. Inciden-
tally, note how we also easily configure the transport layer
to be TCP in the wired setting and UDP in the mobile
one. As the reader can appreciate by visually comparing
the code, a change in a few lines of the broker’s code bears a
big impact in the broker’s behavior, making it suited for sce-
narios that have radically different characteristics. In this
case, not only we switch from a socket-based TopologyMa-

nager to a broadcast-based one, but also use reconfiguration
strategies that provide radically different tradeoffs between
performance and applicability. To provide the reader with

2The figure shows the full code for the sake of argument. In
practice, the selection can be performed through configura-
tion files.



Figure 4: Two different broker incarnations: For large-scale, wired, peer-to-peer networks (left) and small-
scale, wireless mobile ad hoc networks (right).

a feel about the entity of changes, from results we derived
recently the Reconfigurator we use in the wired broker ap-
pears to generate 50% less overhead than the one used in
the wireless case. Nevertheless, the former is hard to apply
in a wireless scenario as it uses out-of-band messages, which
would need a separate unicast channel not provided by our
wireless overlay. This shows that there is no one-size-fits-all
approach, and that our architecture is effective in enabling
big configuration changes with minimal programming effort.

5. RELATED WORK
After the first experiences focusing on centralized, subject-
based systems, recent years witnessed the development of
many distributed, content-based, publish-subscribe middle-
ware. They differ in several aspects [15, 21] but most share
two characteristics: i) they do not explicitly take reconfig-
uration of the dispatching network into consideration and
ii) most of their features are hard-wired and unchangeable.
REDS is innovative in both aspects: dynamic reconfigu-
ration of the dispatching topology is the main motivating
requirement, and modularity enables the selection and in-
tegration of several aspects into a coherent and yet highly
decoupled design.

Some approaches (e.g., [5,11]) solve a different and more lim-
ited problem, that is, enabling clients to freely roam from a
broker to another. Reconfiguration of the dispatching net-
work is instead addressed by Joram [3], a distributed imple-
mentation of the JMS API [25] that provides facilities to add

and remove brokers dynamically and to transparently han-
dle network handover and broker failover. Similar features
are provided by Hermes [24], a publish-subscribe middleware
built on top of a peer-to-peer overlay network organized as a
distributed hashtable. With respect to both systems REDS
presents two advantages: i) it provides mechanisms tailored
to mobile wireless networks and in general highly dynamic
systems, while the two aforementioned systems are designed
to operate in wired networks with low degrees of reconfig-
uration; ii) the mechanisms supporting reconfiguration in
REDS are not hard-wired in the broker’s code and can be
easily changed to fulfill different application requirements.

Recently, several works presented possible solutions to the
problem of content-based routing on MANETs. Among
them, those closer to the approach implemented in REDS
through the WirelessTopologyManager are [18,26,27], which
try to achieve efficiency by routing messages through an
overlay network of brokers, built and maintained by rely-
ing on single-hop communication facilities. A different ap-
proach is taken by JEcho [8], which assumes the availabil-
ity of a multi-hop unicast protocol to mask the topology
changes induced by mobility. This simplifies the structure
of the publish-subscribe system, which can be designed as
if operating on a stable network, but may easily result in
an overlay topology that rapidly diverges from the physical
one. Therefore, JEcho brokers periodically run a link state
protocol to build a global view of the physical network and
rearrange the overlay accordingly. The open architecture of



REDS can easily encompass all these approaches by develop-
ing appropriate TopologyManager components. Again, this
is a consequence of the fact that the mechanisms support-
ing reconfiguration are not hard-wired in the code of REDS
brokers.

A different strategy to content-based routing on MANETs is
adopted by those systems, like [2, 10, 19, 22], which support
highly dynamic scenarios, by forsaking the overlay-based ap-
proach. In these systems, routing is performed by using
soft-state information about neighbors and, in some cases,
by also adopting probabilistic techniques when such infor-
mation is unavailable or outdated. While we have not di-
rect experience in trying to introduce such innovative form
of routing into REDS, it is our belief that they could fit the
REDS framework, e.g., by introducing an ad-hoc Overlay

component and by redefining the way the Router works.

6. CONCLUSIONS
In this paper we presented REDS, a novel publish-subscribe
middleware expressly designed to support topological recon-
figuration of the dispatching network. As such, REDS en-
ables publish-subscribe in dynamic environments as peer-to-
peer networks and MANETs. Moreover, its highly modular
design sharply decouples the management of reconfiguration
from the other issues, and in general empowers developers
with a high degree of flexibility.

Clearly, we cannot claim that our design works for any al-
gorithm and design aspect of publish-subscribe—one can al-
ways conceive some novel, unanticipated feature that holds
the potential to break some of the design assumptions in
REDS. Nevertheless, REDS is an ongoing project where the
shape of the framework is undergoing continuous validation
as we implement more modules and progressively extend the
range of features we are incorporating in the system. Thus
far, our design has proven successful in accommodating our
reconfiguration algorithms, as well as many other aspects of
publish-subscribe systems.

Acknowledgements. REDS is part of a larger research
collaboration with Paolo Costa, Davide Frey, Matteo Migli-
avacca, Luca Mottola, and Amy L. Murphy. Moreover,
REDS developers include Fabrizio Buzzi, Sandro Calzoni,
Kubilai Hernandez, and Alessandro Monguzzi. The authors
are deeply indebted with all of the aforementioned people.

This work was partially supported by the Italian Ministry
of Education, University, and Research (MIUR) under the
VICOM project, by the National Research Council (CNR)
under the IS-MANET project, and by the European Com-
munity under the IST-004536 RUNES project.

7. REFERENCES
[1] M. Aguilera, R. Strom, D. Sturman, M. Astley, and

T. Chandra. Matching Events in a Content-Based
Subscription System. In Proc. of the 18th ACM Symp.
on Principles of Distributed Computing, pages 53–61.
ACM, 1999.

[2] R. Baldoni, R. Beraldi, G. Cugola, M. Migliavacca,
and L. Querzoni. Structure-less content-based routing

in mobile ad hoc network s. In Proc. of the IEEE Int.
Conf. on Pervasive Services. IEEE Computer Society,
July 2005.

[3] R. Balter. Joram: The open source enterprise service
bus. Technical report, ScalAgent Distributed
Technologies, March 2004.
www.scalagent.com/pages/en/datasheet/

040322-joram-whitepaper-en.pdf.

[4] G. Banavar et al. An Efficient Multicast Protocol for
Content-based Publish-Subscribe Systems. In Proc. of
the 19th Int. Conf. on Distributed Computing Systems,
1999.

[5] M. Caporuscio, A. Carzaniga, and A. Wolf. Design
and evaluation of a support service for mobile, wireless
publish/subscribe applications. IEEE Trans. on
Software Engineering, 29(12):1059–1071, Dec. 2003.

[6] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and
evaluation of a wide-area event notification service.
ACM Trans. on Computer Systems, 19(3):332–383,
Aug. 2001.

[7] A. Carzaniga and A. L. Wolf. Forwarding in a
content-based network. In Proc. of ACM SIGCOMM
2003, pages 163–174, Karlsruhe, Germany, Aug. 2003.

[8] Y. Chen and K. Schwan. Opportunistic overlays:
Efficient content delivery in mobile ad hoc networks.
In G. Alonso, editor, Proc. of the 6th
ACM/IFIP/USENIX Int. Middleware Conf., LNCS
3790, pages 354–374, Grenoble, France, November
2005. Springer.

[9] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola.
Epidemic Algorithms for Reliable Content-Based
Publish-Subscribe: An Evaluation. In Proc. of the
24th Int. Conf. on Distributed Computing Systems,
pages 552–561. IEEE Computer Society, Mar. 2004.

[10] P. Costa and G. Picco. Semi-probabilistic
Content-based Publish-Subscribe. In Proc. of the 25th

Int. Conf. on Distributed Computing Systems. IEEE
Computer Society, June 2005.

[11] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Trans. on
Software Engineering, 27(9):827–850, Sept. 2001.

[12] G. Cugola, D. Frey, A. Murphy, and G. Picco.
Minimizing the Reconfiguration Overhead in
Content-Based Publish-Subscribe. In Proc. of the
ACM Symp. on Applied Computing (SAC) 2004,
pages 1134–1140. ACM, 2004.

[13] G. Cugola, A. Murphy, and G. Picco. Content-based
Publish-subscribe in a Mobile Environment. In
P. Bellavista and A. Corradi, editors, Mobile
Middleware. CRC, 2005. Invited contribution. To
appear. www.elet.polimi.it/upload/picco.

[14] G. Cugola, G. Picco, and A. Murphy. Towards
Dynamic Reconfiguration of Distributed
Publish-Subscribe Systems. In Proc. of the 3rd Int.



Workshop on Software Engineering and Middleware
(SEM’02), volume LNCS 2596, pages 187–202.
Springer, May 2002.

[15] P. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys, 35(2):114–131, 2003.

[16] F. Fabret et al. Filtering algorithms and
implementation for very fast publish/subscribe
systems. ACM SIGMOD Record, 30(2):115–126, 2001.

[17] D. Frey and A. Murphy. Maintaining publish-subscribe
overlay tree in large scale dynamic networks. Technical
report, Politecnico di Milano, 2005. Submitted for
publication. www.elet.polimi.it/upload/frey.

[18] Y. Huang and H. Garcia-Molina. Publish/subscribe
tree construction in wireless ad-hoc networks. In Proc.
of the 4th Int. Conf. on Mobile Data Management
(MDM03). Springer, 2003.

[19] R. Meier and V. Cahill. Steam: Event-based
middleware for wireless ad hoc networks. In Proc. of
the Int. Workshop On Distributed Event-Based
Systems, Vienna, Austria, 2002.

[20] L. Mottola, G. Cugola, and G. Picco. A Self-Repairing
Tree Overlay Enabling Content-based Routing in
Mobile Ad Hoc Networks. Technical report,
Politecnico di Milano, 2006. Submitted for
publication. www.elet.polimi.it/upload/picco.

[21] G. M uhl, L. Fiege, and P. Pietzuch. Distributed
Event-Based Systems. Springer, 2006.

[22] M. Petrovic, V. Muthusamy, and H.-A. Jacobsen.
Content-based routing in mobile ad hoc networks. In
Proc. of the 2nd Annual Int. Conf. on Mobile and
Ubiquitous Systems: Networking and Services, pages
45—55, Los Alamitos, CA, USA, 2005. IEEE
Computer Society.

[23] G. Picco, G. Cugola, and A. Murphy. Efficient
Content-Based Event Dispatching in Presence of
Topological Reconfiguration. In Proc. of the 23rd Int.
Conf. on Distributed Computing Systems, pages
234–243. ACM, May 2003.

[24] P. Pietzuch and J. Bacon. Peer-to-peer overlay broker
networks in an event-based middleware. In Proc. of
the 2nd Int. Workshop on Distributed Event-Based
Systems, San Diego, CA, June 2003.

[25] Sun Microsystems, Inc. Java Message Service
Specification, Version 1.1, April 2002.

[26] E. Yoneki and J. Bacon. An adaptive approach to
content-based subscription in mobile ad hoc networks.
In Proc. of the 2nd IEEE Annual Conference on
Pervasive Computing and Communications Workshops
(PERCOMW04), 2004.

[27] E. Yoneki and J. Bacon. Content-based routing with
on-demand multicast. In Proc. of the 24th Int. Conf.
on Distributed Computing Systems Workshops
(ICDCSW04), 2004.


