
1

Nomadic Communications

Labs

Alessandro Villani
avillani@science.unitn.it

WEP Cracking

WEP: Wired Equivalent Privacy

� The aim declared of the WEP (Wired
Equivalent privacy) key is (Nomina sunt
consequentia rerum) providing
“a security level on the wireless channel
equivalent to what one can expect in the
case of wired networks”

� Some have thought WEP as the sole
mechanism for the access control

� Other as the solution of all the security
problems

2

WEP: Wired Equivalent Privacy

� The shared key must be installed on the
Access Point and on the client

� On the devices up to 4 keys are
configurable but the standard does not
specify how manage these keys: in the
practice just one is used

� PROBLEM:

� It is not possible install/update it

� It is the same for all the users of the same AP

WEP: How it works

� WEP is based on the RC4 algorithm of the
RSA

� It is a system of encryption based on a
shared key

� The shared key is 40 bits (or 104 bits)
long

� It is joined with an initialization vector
(IV) 24 bits long

� In this way a seed of 64 bits (or 128 bits)
is obtained for the RC4

WEP: How it works

� To send a data packet:

� Given the payload M, the 32 bits CRC c(M) is
calculated and concatenated to M � M⋅c(M)

� The k key is concatenated to the IV defined
for the packet � IV⋅K

� The RC4 algorithm is initialized using this
packet and a sequence of bytes is produced �
RC4(IV⋅k)

� Now M⋅c(M) is xor-ed with RC4(IV⋅k) � C =
(M⋅c(M))⊕RC4(IV⋅k)

� The 3 bytes of the IV are transmitted as clear
test (together with the index of the WEP key)

3

WEP: How it works

� The receiving side concatenates the IV
received with the shared WEP key so that
it can rebuild RC4(IV⋅k) � This is the
reason for which the IV must be
transmitted in clear text

� The receiving side decrypts the payload
and if the CRC is equal then the packet is
valid otherwise the packet is discarded

WEP: How it works

WEP: How it works

4

WEP: RC4

� Key Scheduling Algorithm

� RC4 uses a vector of status 256 octets
long S[256] and two counters i, j

� Initialization of the status:
� S [n] = n, i = 0, j = 0

� In the temporary vector T of 256 octets inserts
the IV⋅K key, repeating it if short

� S is run exchanging the elements of the
vector:
for i = 0 to 255

j = (j + S[i] + T[i mod 8]) mod 256
swap (S[i], S[j])

WEP: RC4

� Pseudo Random Generation Alghoritm.
Generation of the keystream:

� To generate an octet z of the keystream
starting from the actual status (S, i, j):
i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap (S[i], S[j])
t = (S[i] + S[j]) mod 256
z = S[t]

� At the beginning i=0, j=0 and discard T

� The generation process continues until there is
no more data

Weakness and

Vulnerability of Wep

5

WEP: Reuse of the coding

� If we use the same IV, the same byte
sequence (keystream) is generated from
RC4

� Encrypting two messages p1 and p2 we
have:
� C1 = P1⊕RC4(IV⋅k)
� C2 = P2⊕RC4(IV⋅k)
� C1 ⊕ C2 = P1⊕RC4(IV⋅k) ⊕ P2⊕RC4(IV⋅k)

= P1 ⊕ P2

� So with the xor of two ciphered messages
we get the xor of the two messages as
clear text

WEP: Reuse of the coding

� If one of the two messages is known, the
other is obtained

� If we have many messages codified with
the same keystream it is easy to go back
to the original messages

� The protocols impose many similarities to
the packets!

� So: do not reuse the keystream

� But: 24 bits of IV means 16.777.216
different keystream: TOO FEW!

WEP: Reuse of the coding

� The standard recommends (but it is not
mandatory) that the IV should change in a
random way after every transmitted
packets

� Some cards generate the 24 bits of the IV
using a counter set at zero every time
they are initialized and then they increase
the counter of 1
� this increases the probability that the key is
reused (the low IV values are more frequent
and always transmitted at the beginning of a
session)

6

WEP: Brute Force Attacks

� It can use a list of “easy” keys

� Analyzing the whole research space given

� Requires up to 45 days with 40 bits

� Not feasible for 104 bits keys

� Two packets are enough in general (to be
sure that the CRC does not coincide by
chance also with a wrong WEP key)

WEP: Attacks Based on Weak IV

� S. Fluhrer, I. Mantin, A. Shamir have
shown that some weaknesses exist in the
algorithm of generation of the keys in RC4
� “Weakness in the Key Scheduling
Algorithm of RC4”

� The attack described in their article,
besides being extremely fast, requires a
time which increases linearly with the
length of the WEP key!

WEP: Attacks Based on Weak IV

� The fact that a large part of the key (3
bytes) is transmitted in clear and make
the cracking easier:

� The first three iterations of the KSA are easily
deducible for the fact that the first three digits
of the key are well known (remembered: the
IV is transmitted in clear)!

� It is possible to see that there is a
probability of 5% than the values in S [0]-
S [3] do not change after the first 3
iterations of the KSA

7

WEP: Attacks Based on Weak IV

� It has been demonstrated that the IV of a
certain type are subject to be cracked:

(B+3:255:x)
where B is the byte of the secret key (the
WEP key) that we are cracking

� Then for every byte of the key there are
256 Weak IV

WEP: Attacks Based on Weak IV

� The first values of the encrypted data is the SNAP
(Sub Network Attachment Point) header. It is a
standard (of layer 2) for the transmission of IP
datagram on IEEE 802 network

� The not encrypted header is AA in hexadecimal

� The xor of the first encrypted data with AA, will
provide the first byte of the PRGA

� This information allows rebuilding the first digit of
the WEP key if we have a Weak IV of the type
(3:255:x)

WEP: Attacks Based on Weak IV

� We analyze the first step of the algorithm
to produce the first byte of the keystream:

i = (i + 1) mod 256 � i = 1

j = (j + S[i]) mod 256 � j = S[1]

swap(S[i], S[j]) � swap(S[1], S[S[1]])

t = (S[i] + S[j]) mod 256 � t = S[1] + S[S[1]]

z = S[t] � z = S[S[1] + S[S[1]]]

� So the first byte is function of:
S[1], S[S[1]] e S[S[1] + S[S[1]]]

8

WEP: Attacks Based on Weak IV

� The first two steps of the generation of the
vector S with IV (3:255:x) are the
following:

� i = 0, j = 0

� i = 0, j = (j + S[i] + T[i mod 8]) =
(0+S[0]+T[0]) = 0+0+3 = 3 �
swap(S[0],S[3])

T �

S �

W1x2553

43210

T �

S �

W1x2553

40213

WEP: Attacks Based on Weak IV

� i = 1, j = 3

� i = 1, j = (j + S[i] + T[i mod 8]) =
(3+S[1]+T[1]) = 3+1+255 = 3 �
swap(S[1],S[3])

W1x2553T �

40213S �

W1x2553T �

41203S �

WEP: Attacks Based on Weak IV

� At the next step j = (3 + S[2] + T[2]) =
(3 + (2 + x)) that is j move forwards of x
+ 2 with x known

� Every IV behaves in different way
depending on x, but we are able to
rebuild the configuration of the vector S

� From here on the evolution of S depends
on the key, and with a probability of 5%
(as we said previously) the first 3 values
of S do not change

9

WEP: Attacks Based on Weak IV

� Beyond the first byte of the key the
operation gets complicated because it
requires to go through the PRGA for
several steps and so we could not be able
to infer with a reasonable probability the
exchanges of S

� Also other Weak IV families exist

WEP: Attacks Based on Weak IV

� Some producers of wireless cards have
started building cards which avoid IV weak

� The space of IV available is further
reduced (some thousands less)

� Observe that, to complete the attack, it is
enough that only one client does not avoid
the weak IVs

Airsnort: software for the
cracking of WEP keys

10

Airsnort

� Several tools exist which allow to
determine in an automatic way a WEP key

� One of these is Airsnort, downlodable to
the address:

http://airsnort.shmoo.com/

� It is a linux program now also for windows

� It requires the wireless card in monitor
mode

� It works for instance with the cards
Prism2, Orinoco and Cisco

Airsnort

� Once activated, the program captures the
packets and simultaneously tries to crack
the WEP key:
� All the non data packets (except the beacon)
are dropped

� The packets not encrypted are dropped

� The encrypted packets are selected and the
ones considered not interesting are dropped

� The packets considered interesting are the
Weak IV identified by Fluhrer, Mantin and
Shamir (plus several Weak IV identified
afterwards)

Airsnort

� Every 10 weak IV acquired, airsnort uses a
probabilistic attack

� It is possible to define how deep the analysis of
the tree of the various possibilities must be

� A value n of the parameter “breadth” indicates
that the algorithm will try the n more probable
values for each position of the key

� About 1000 weak IV for a key to 64 bits and
about 2000 for a key to 128 bits are required

11

Airsnort

� Test of attack completed using:

� An Access Point Avaya AP3

� Two laptop to produce traffic

� A laptop with a Netgear wireless card and
Airsnort

� Set up a 64 bits WEP to, that is 40 key
bits, that is 5 characters � WNLAB

� After about 15 minutes of acquisition with
about 550.000 packets (540.000
encrypted) and 919 Weak IV, the key has
been determined!

Airsnort

Airsnort

� In the following table some runs of Airsnort:

25267608370246640

933567385575137104

850282076285798104

104281596285328104

10228005728387640

10028009828389540

91953884254627140

12027886028361840

weak IV Enchrypted

packets

No. of

packets

Key length

12

Airsnort: WEP and IV

� You have to:

� Acquire some data generated from the laptop
you intend to analyze (ping the AP)

� Take a contiguous sequence of two or more
packets

� Look at the first 3 bytes that are the IV!

� Restart the network card, to verify if the IV
sequence start each time from the same value

WEP and IV: the task

� Many wireless cards generate IV in a
predictable way

� Today we will analyze the IV sequences
for some wireless cards

� You have to work with two laptop:

� One where you install the wireless card (verify
also the integrated wireless network card)

� The other in monitor mode to acquire and
analyze the traffic

