
First Lab Report

Dandrea Silvio, Facchini Christian, Ferrari Rudi

{silvio.dandrea, c.facchini, rudi.ferrari}@studenti.unitn.it

April 16, 2007

Abstract

IEEE Standard 802.11 defines a medium
access control and physical layer speci-
fications for so-called wireless local area
networks (WLANs) while IEEE Standard
802.11b is a supplement which introduced
a higher-speed physical layer extension. As
most of nowadays WLANs are based on
that standard, a 802.11b compliant equip-
ment has been chosen to conduct the expe-
riments. Only a few particular aspects of
the standard are investigated, namely, re-
quest to send / clear to send (RTS/CTS)
mechanism, fragmentation threshold and
transmission speed.

1 Introduction

We have chosen to use the abbreviations and acro-
nyms present in the standard. For particularly im-
portant terms we report the whole transcription
and the acronym or the abbreviation enclosed in
brackets.

2 Test bench

In this session we will illustrate the characteristics
of the environment where we have studied the be-
havior of the access point (AP), the software and
hardware used for tests and their configurations.
The devices used for this laboratory are an AP, a
computer, playing the role of the server, and some
computers, acting as clients, where the number of
which was depending on the type of tests. The
connection among the devices was as in Figure 1.

Figure 1: Connection between Server, Access Point and Clients.

2.1 Environment

The tests have been carried out in a environment
that was not perfect for this type of measurements;
in fact the tests have been made in places with
interference and noise.

In the room where we have carried out the tests,
there were interferences due to the presence of
other APs, signals emitted from the several clients
that were connected to the wireless network of
the Faculty, and there were also the interferences
caused by people moving back and forth.

It is worth emphasizing that all the tests have
not been performed in the same conditions. As we
have had to move in different rooms every testing
day, the environment has changed as well. Each
test has ben run several times (from ten to twenty
times), in order to remove randomness as much
as possible. However, our attempt has been to
roughly maintain the same distances among the
devices. The distances are summarized in Table 1.

1

Devices Distance

S - AP [1-2] m
C1 - C2 [2-4] m
AP - C1 [2-5] m
AP - C2 [2-5] m

Table 1: Table of distances.

In the table we denote the Server, Access Point
and the several Client with S, AP and C1/C2 in
order. For a better vision of the distances we can
observe Figure 2.

Figure 2: Distances between devices.

Moreover, it is important to observe that the
interference due to the presence of APs should not
have weighted in heavy way on the tests. As a
matter of fact, the frequencies were in the same
range but the channel used for our experiments
and the one of the wireless network of Faculty were
sufficiently distant.

Finally, it is necessary to specify that the move-
ment of the people in the measurement environ-
ment, may have caused light variations on the
measures, which, by the way, are far from being
considered imposing.

2.2 Hardware

In this section we will describe the hardware used
in the experiments. We will illustrate the devices
used as server(s), as client(s) and the AP.

PC Server

The personal computer used as server has these
characteristics:

PROC AMD Sempron 3300+ 1.60GHz
RAM 1024 MB
O.S. Windows Xp Home 32 bit
NIC Realtek rtl8169/8110 Gigabit Ethernet

IPERF Version 2.0.2 with Java Interface

Table 2: Characteristics of PC Server 1.

This devices has been utilized for testing the
transmission speed. In order to test the fragmen-
tation and RTS thresholds, we have made use of
another PC: PC Server 2. This choice has been
made because for our tests we had need of a de-
vice that was not busy from other groups.

PROC AMD Turion 64x2 Mobile
RAM 1024 MB
O.S. Windows Xp Home 32 bit
NIC Realtek rtl-8169/8110 Gigabit Ethernet

IPERF Version 2.0.2 with java interface

Table 3: Characteristics of PC Server 2.

PC Client

PC Client 1, whose specifics are summarized in
Table 4, has being used for testing the transmis-
sion speed.

PROC Intel Pentium IV 2.8GHz
RAM 512 MB
O.S. Debian - Kernel 2.4.27

Wifi card Nortek Wireless LAN W-11 PCMCIA
IPERF Version 2.0.2 (03 May 2005) pthreads

Table 4: Characteristics of PC Client 1.

When we have had to use two different clients,
as in the RTS/CTS test, the other one is PC Client
2; its characteristics are written in Table 5.

PROC Intel Pentium Mobile 1.6 GHz
RAM 512 MB
O.S. Linux Ubuntu 6.06 LTS 32 bit
NIC Intel ipw-2100

IPERF Version 2.0.2 (03 May 2005) pthreads

Table 5: Characteristics of PC Client 2.

In Section 3.2 we will refer to ourselves as
“group 1” (PC Server 1 and PC Client 1) and to
our colleagues Davide Molteni and Marco Azzoni

2

as “group 2” (PC Server 2 and PC Client 2). For
all the other tests only “group 1” was involved.

Access Point

The access point used for our tests is Cisco AP
1200 Series. It is a mid-high range AP that im-
plements the IEEE Standard 802.11b.

2.3 Software

In this session we will present the characteristics
of the softwares used to set up the AP and to ob-
serve the behavior of the connection between client
and the AP itself. These softwares are the AP
firmware for configurating the Cisco AP 1200 Se-
ries, Iperf for the performance measurement of the
network with a graphical interface named Jperf,
MatLab for processing the data files and com-
puting some calculations, such as variance and
mean. At last, we have used Wireshark software
for catching the flow of packets in the network and
to analyze the correct operation.

AP firmware

This is downloadable from the Cisco web site at
the page http://tools.cisco.com/support/

downloads/go/MDFTree.x?butype=wireless.
Different parameters can be set, more than the
ones a low range AP would let set: authentica-
tion, the maximum number of customers, role in
a wireless network, transmission speed, power,
RTS/CTS, fragmentation, etc, just to mention
some of them. The version used is 12.3(8)JA.

Iperf and Jperf

Iperf is widely used for the performance analysis
of a network. With such a tool, it is possible to
carry out different measurements, depending on
the transport level protocol that is being used.
For example with TCP, the bandwidth and the
throughput are reported, while with UDP, it al-
lows to measure the jitter and the packet loss. It is
possible to use this tool both as client and server.
The version of Iperf used is 2.0.2.

Jperf is a graphical interface developed in Java,
really useful to those who do not have familiarity
with the command line interpreter. Additionally,
it is also possible to use Jperf to make bandwidth
plots.

3 Tests

3.1 Transmission speed

The 2.4 GHz channel is affected by multipath fad-
ing, which causes attenuations and amplifications;
moreover it is timevarying. Four different trans-
mission speeds are hence defined by the standard,
i.e. 1, 2, 5.5, and 11 Mbps: they are dinamically
chosen depending on the channel conditions.

The MAC header is sent at a fixed speed. IEEE
Standard 802.11b defines two kinds of physical
layer convergence protocol (PLCP) PPDU format:
a long one (mandatory) and a short one (optional).

Figure 3 shows both the PLCP PPDU formats:
we see that the preamble and the header are sent
at 1 and 2 Mbps respectively. The total time
needed for this transmission is 96 µs.

Totaltime =
[(n. of bit

vel.

)

+
(n. of bit

vel.

)]

=
[(72

1 × 106

)

+
(48

2 × 106

)]

= 96µs;

When using the long format, both preamble and
header are transmitted at 1 Mbps: transmitting
them will take 192 µs:

Totaltime =
[(n. of bit

vel.

)

+
(n. of bit

vel.

)]

=
[(144

1 × 106

)

+
(48

1 × 106

)]

= 192µs;

For every packet that is sent, these two frame
(ShortPLCP and PLCP) have always the same
speed, even if the client is able to transmit at the
maximum velocity i.e. 11 Mbps. All the other
frames are transmitted, depending on the speed
at which every device succeeds in using.

3

Figure 3: Above, the short PLCP PPDU format, and below,
the long one.

Our tests have been made on both TCP and
UDP, thus we have changed the transmission
speed. The tests have been run ten times, each one
of them lasting twenty seconds. From the data col-
lected by Iperf, we have calculated average speed
and the average amount of data transmitted.

Tests with TCP. For every test we have cal-
culated the values shown in Table 6. In the last
two columns we can note the average data trans-
mitted with and without the header. In the third
column we can observe the average data transmit
obtained from Jperf, while in the fourth column
we have the same data obtained from follow equa-
tion:

DATA =
[(Avg Speed

8 bit

)

∗ 20 s
]

We multiply for 20 second because our test is
based on 20 second of transmission from client to
AP.

Speed Avg Speed W/o Header W/ Header
(Mbps) (Kbps) (Kbytes) (Kbytes)

1 626.6 1544 1566
2 1252.2 3075 3130

5.5 2942.6 7211 7356
11 4196.6 10267 10491

Table 6: Speed, Average Speed and Average Data Tx, TCP
being used.

In Figure 4 it is possible to observe the results

of our tests for the four speeds 1, 2, 5.5 and 11
Mbps.

1 2 5.5 11
0

1000

2000

3000

4000

5000

6000

7000

Transmission Speed [Mbps]

T
hr

ou
gh

pu
t [

kb
ps

]

Throughput vs. Transmission Speed

TCP

UDP

Figure 4: Throughput as a function of the transmission speed
in TCP and UDP.

Tests with UDP. The same tests have been
carried out with UDP protocol. From such tests
we expected that without the overhead peculiar to
TCP and the acknowkedgment mechanism, UDP
is faster and more efficient than TCP for deter-
minate measurements. In the following table are
summarized the results of tests carried out with
UDP.

Speed Avg Speed W/o Header W/ Header
(Mbps) (Kbps) (Kbytes) (Kbytes)

1 727.8 1766 1819
2 1508.8 3670 3772

5.5 3569.2 8580 8923
11 5464.7 13022 13661

Table 7: Speed, Average Speed and Average Data Tx, UDP
being used.

We can observe these results in the next plot
and so compare them with the results previously
shown.

At the beginning of this tests, we thought that
the speed of transmission with TCP was smaller
than the speed of transmission with UDP. Now we
can observe that this is correct, as shown in the
tables and the plots.

Analysis

We have tried to analyze the UDP data rates, as
such a communication is far simpler to model than
a TCP one.

Our hypotheses:

4

• Every UDP PDU is 1470 bytes long (we ac-
tually have forced it in Iperf)

• No packet is lost

• Backoff duration has been analyzed in a
stochastic way

• Long PLPC PPDU format has been used

A single UDP packet transmission consist of the
following actions:

• A stations waits for a DIFS, then performs
the backoff procedure, and then transmits the
data

• the AP answers after a SIFS with an ACK

Some calculations follow:

• The SIFS is defined to be 10 µs

• The DIFS is equal to one SIFS plus two slots
duration, so 10 µs +2 × 20 µs = 50 µs

• The backoff procedure (BO) means picking
a random value from 0 to the dimension of
the contention window minus 1, where every
number has the same probability to occurr
(i.e. it is a uniformly distributed random
variable); that will be the number of slots
to be waited before a transmission is allowed
to take place E [contention window] = 15.5
slots1 = 15.5 × 20 µs = 310 µs

• The UDP packet is 1500 bytes long while
the ACK is 14 bytes; their duration de-
pends on the transmission speed: 192 µs
+(1500 or 14)/speed

The durations for every different speed are writ-
ten in Table 8 (if not explicited, values are to be
intended expressed in µs).

TS (Mbps) 11 5.5 2 1

DIFS 50 50 50 50
BO 310 310 310 310
DATA 1283 2374 6192 12192
SIFS 10 10 10 10
ACK 202 212 248 304

TOT 1855 2956 6810 12866

TPS (s−1) 539 338 147 77
ADR (Mbps) 6.3 4 1.7 0.9

Table 8

1IEEE Standard 802.11 defines the contention window
to be 32 slots if the first transmission is going to be made.

TS stands for “transmission speed”, TPS
means “transactions per second” and ADR means
“achieved data rate”.

What we have just computed validates what re-
ported in Figure 4.

We have also computed some sort of utilization
factor, that is the ratio between the transmission
speed used and the data rate achieved. It’s no
wonder that the higher the transmission speed,
the lower the utilization factor.

These factors are (from the minimum to the
maximum transmission speed): 90%, 85%, 72%
and 57%.

This is due mainly to the interframe spaces,
which tend to weigh more and more as the trans-
mission speed gets higher.

Even PLPC preamble and header damage the
throughput: let us assume they are sent at the
maximum available speed. If it were so, DATA
and ACK would take 1108 and 27 µs, in order.
Thus the whole transaction would need 1505 µs
and that way there would be 664 transactions per
second, carrying approximately 7.8 Mb per sec-
ond. The utilization factor would reach 71%.

3.2 RTS threshold

Carrier sense multiple access with collision avoid-
ance (CSMA/CA) works perfectly if the medium
is really shared, i.e. when everybody hears every-
body else. Unfortunately, this assumption cannot
always be made and that is when RTS/CTS hand-
shake comes into play.

RTS/CTS handshake is an exchange of mes-
sages in order to reserve the channel; basically,
the station willing to start a communication with
another station sends a RTS frame: that way it
declares it wants to reserve the channel. The re-
cipient will reply with a CTS frame, allowing the
other station to initiate the communication.

As stated in the standard, this procedure aims
at solving the hidden terminal problem (HTP),
which is depicted in Figure 5(a). Stations A and C
are not able to sense each other, so if they transmit
to the same station collisions occurr.

Although not expressly debated in the standard,
this mechanism solves the exposed terminal prob-
lem (ETP), too. We have such a problem when-
ever a node is prevented from talking to another
station, because it thinks the destination is busy

5

with someone else. This situation is sketched in
Figure 5(b).

C

Range

of C's

radio

A CB

(a)

A C

Range

of A's

radio

B

(b)

A wants to send to B

but cannot hear that

B is busy

B wants to send to C

but mistakenly thinks

the transmission will fail

C is

transmitting

A is

transmitting

Figure 5: (a) Hidden terminal problem. (b) Exposed terminal
problem.

Broadly speaking, RTS/CTS helps by reducing
the waste of resources in case of collision, as RTS
and CTS frames are simple MAC layer headers.
Additionally the station sending the CTS frame
to the node allowed to start the communication,
makes every other station aware that the channel
is reserved for a certain amount of time. These
stations will wake up only after that amount of
time, to wit, when the channel will be released.

RTS/CTS handshake is turned on on a thresh-
old basis: the handshake is required if the MPDU
that is going to be sent is larger than the before-
hand chosen threshold. If the MPDU is smaller,
it is sent immediately.

The RTS threshold is expressed in bytes. Val-
ues within the range [0 − 2347] are permitted:
the lower bound means that the RTS/CTS hand-
shake will be used for every MPDU, while values
“larger than the maximum MSDU length shall in-
dicate that all MPDUs shall be delivered without
RTS/CTS exchange”.

Due to physical limitations we have not been
able to reproduce neither HTP nor ETP scenar-
ios; as a consequence we have not taken any mea-
sure about improvements by RTS/CTS in those
situations. We have decided instead to inspect
how throughput varied as the RTS threshold was
changed in an Infrastructured BSS, where all the
nodes (two stations and one AP) see each other.

Since RTS/CTS mechanism adds a non-
negligible overhead, we expected to have a degra-
dation in the total throughput (in inverse ratio to
the threshold value). The fragmentation threshold
has been turned off.

We have changed the threshold in increments of
2347/10, thus getting ten steps. We have run each

test twenty times, making each one of them last
10 seconds.

The output of this experiment is summarized in
Figure 6: “group 1” is represented by the contin-
uous line, “group 2” by the dashed line, and the
total throughput by the dotted one.

0 235 469 704 939 1173 1408 1643 1878 2112 2347
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

RTS Threshold [B]

T
hr

ou
gh

pu
t [

kb
ps

]

Throughput vs. RTS Threshold

group 1
group 2
total

Figure 6: Throughput as a function of the RTS threshold.

Threshold Grp 1 thr Grp 2 thr Tot thr
(Byte) (kbps) (kbps) (kbps)

0 1707.88 1840.40 3548.28
235 2023.20 1666.75 3689.96
469 1955.85 2299.68 4255.53
704 1907.78 2064.09 3971.87
939 1966.47 2150.05 4116.57
1173 2081.82 2249.05 4330.88
1408 1922.37 2219.91 4142.28
1643 1857.58 2286.55 4144.14
1878 1663.50 2529.75 4193.26
2112 1982.77 2322.98 4305.74
2347 1922.37 2430.37 4352.74

Table 9: Data results from tests on RTS threshold.

As it can be seen, throughput of “group 1” keeps
almost constant while throughput of “group 2”
increases a little. This is confirmed by the poly-

fit Matlab tool which “finds the coefficients of a
polynomial P (X) of degree N that fits the data,
P (X(I)) ≈ Y (I), in a least-squares sense”.

We have set N to 1, so to fit the data with a
line. No surprise to find a slope whose value is
near to 0 (−0.004, for the sake of precision). As
for the other group’s throughput, we have a slope
of about 0.26, indicating the throughput gets actu-
ally bigger. Consequently, the whole throughput
increases as well.

Actually, what comes out is not exactly what

6

we expected to see: we thought to see an increase
(if not for single throughputs, at least for the sum
of them) till the threshold would have reached the
value of 1643 bytes. Then the curve should have
converged to an approximately constant value.

Accordingly to what we stated before, a sta-
tion shall start the handshaking mechanism if the
MPDU to be sent is higher than the threshold; the
maximum segment size (MSS) for a TCP segment
should be a little less than the maximum transfer
unit (MTU). Even if IEEE Standard 802.11 de-
fines that the MTU shall be 2304 bytes, most of
the network interface cards (NICs) are (on pur-
pose) not aware and simply do not let this value
to be set. On top of that, often, an AP is directly
connected to an Ethernet-based distribution sys-
tem (DS): this is one of the reasons, if not of the
only one, why the MTU on 802.11 devices is set
to 1500 bytes, and finally this is the reason, for
which we believed to find a somewhat constant
value. But this turned out not to be verified.

We have analyzed the communication by means
of Wireshark, a software protocol analyzer, and
we have found that the RTS/CTS mechanism was
triggered even when the threshold was set to the
maximum value. Since we have no access to spe-
cific technical documentation for the NICs used,
we can only suppose that those NICs are compat-

ible with other 802.11 devices, yet not compliant

to the standard.
This theory may also confirm the more aggres-

sive behavior of “group 2” NIC, whose throughput
gets higher at the expense of the other group’s
throughput.

Analysis

We have tried to dig out an upper bound for this
tests.

First of all, these are some assumptions we have
made in order to simplify calculations:

• Transmission speed is supposed to be always
11 Mbps

• RTS/CTS handshake is done only by the
clients (i.e. RTS threshold is quite high)

• Neither the setup nor the teardown of the
TCP connection are considered

• Every TCP PDU is 1460 bytes long

• No packet is lost

• Backoff duration is analyzed in a stochastic
way

• Long PLCP PPDU format is used

• Stations and AP never collide (well, it’s way
too optimistic but it simplifies a lot all the
calculations)

According to these assumptions, we have tried
to figure out if the results we have found (the
threshold being between 1408 and 1643) actually
make some sense.

The transmission of a single TCP segment goes
like this:

• a station, A, waits for a DIFS, just to be sure
the channel is effectively idle and then, after
the backoff procedure, sends a RTS

• the recipient, say B, waits for a SIFS and
sends a CTS back to A

• A waits for a SIFS, too, and sends the data

• after a SIFS, an ACK is sent back by B

A TCP ACK has to follow, so here is the proce-
dure:

• The DIFS has to expire, then the backoff pro-
cedure has to be done and eventually B sends
the data

• A waits for the SIFS to end and transmits the
ACK

Here some calculations (please refer to Sec-
tion 3.1 for entries which have been already com-
puted):

• The SIFS is defined to be 10 µs

• The DIFS lasts 50 µs

• The backoff procedure (BO) lasts, on average,
310 µs

• A RTS frame is 20 bytes long and is trans-
mitted at 1 Mbps. Since we have to take into
account the long PLCP, the whole transmis-
sion will last: 20 × 8/1E6 + 192 µs = 352 µs

7

• CTS frames are sent, like RTS ones, at 1
Mbps, but it is 14 bytes long; thus the du-
ration will be: 14 × 8/1E6 + 192 µs = 304
µs

• The ACK frame is as long as the CTS one and
it is transmitted at the maximum available
speed; hence 14 × 8/11E6 + 192 µs ≈ 202 µs

• The frame that contains the TCP data is 1500
bytes long, so it lasts: 1500 × 8/11E6 + 192
µs ≈ 1283 µs

• The frame that contains the TCP ACK is
supposed to be 74 bytes (20 from the TCP
header + 20 from the IP header + 34 from
the MAC header); therefore we have 74 ×
8/11E6 + 192 µs ≈ 246 µs

The whole amount of time needed by the trans-
mission of the is summarized in Table 10

TCP data TCP ack

DIFS 50 50
BO 310 310
RTS 352 -
SIFS 10 -
CTS 304 -
SIFS 10 -
DATA 1283 246
SIFS 10 10
ACK 202 202

TOT 2531 818

Table 10

So a complete TCP transmission of 1460 bytes
will last 2531+818 µs = 3349 µs. Thus if there was
only a station transmitting to an AP, there would

be approximately 300 transactions, corresponding
to a rate of 3.5 Mbps, more or less.

As we have supposed that stations never collide
(that is, we consider each one of the two nodes
transmitting half the rate we found) the through-
put per group should be about 1.75 Mbps: the
result we have found fits quite good the through-
put of “group 1”.

Maybe the other group’s throughput can ex-
plained by considering the short PLPC PPDU for-
mat instead: in this case we find that a complete
TCP transmission would take 2773 µs. Then,
the approximate number of transactions per sec-
ond would be 360. As a consequence, the data
rate would become 4.2 Mbps, and the data rate
per group would be 2.1 Mbps, which could make
sense.

3.3 Fragmentation threshold

Very large frames may reduce transmission relia-
bility, e.g. an error in a large frame wastes more
resources than an error in a smaller frame: ac-
tually the time taken by retransmission would be
greater in the first case. Normally small frames
are not widely used unless the channel is really
noisy, because too much overhead would occurr.

In order to overcome this problem, IEEE Stan-
dard 802.11 defined the fragmentation process.
During the transmission of the data, the frame
is subdivided in smaller frames by means of one
fragmentation threshold: MSDUs larger than the
established value are to be splitted, otherwise are
directly sent.

Each fragment is sent as it were a standalone
frame: hence a ACK must follow each fragment.

Figure 7: Fragmented frame.

8

Threshold Max thr. Avg thr. Std dev.
(Byte) (Kbps) (Kbps)

256 5308 4314.43 552.40
465 5243 4332.65 628.66
674 5308 4110.24 715.70
883 4981 4250.38 430.44
1092 5046 4168.08 555.26
1301 4915 4163.68 511.32
1510 5374 4196.87 516.39
1719 5112 4309.70 472.56
1928 4981 4000.96 572.99
2137 5177 3410.76 772.26
2346 4981 3829.50 630.36

Table 11: Data results from tests on fragmentation threshold.

256 465 674 883 1092 1301 1510 1719 1928 2137 2346
0

1000

2000

3000

4000

5000

6000

Fragmentation Threshold [B]

T
hr

ou
gh

pu
t [

kb
ps

]

Throughput vs. Fragmentation Threshold

Figure 8: Throughput as a function of the fragmentation
threshold.

Moreover if a station wins a contention, all the
fragments forming the original frame may be sent
within that dialogue (the same observation also
applies to a RTS/CTS based contention). Each
fragment consists of a MAC header, frame check
sequence (FCS) and a fragment number indicating
its ordered position within the original frame. The
process of fragmentation is depicted in Figure 7.

The fragmentation threshold has a maximum
value of 2346 bytes and a minimum value of 256.
We have divided that range in eleven intervals,
hence changing the threshold in increments of 209
bytes. We have performed ten times each test, let-
ting it run for twenty seconds. The RTS threshold
had a value of 2347 Byte (maximum value) i.e. it
was not active. The protocol we have used is TCP.

The throughput is shown in Figure 8. As it
can be seen, the throughput keeps almost constant
around a certain value, exception made for the
final points, where throughput gets a little worse.

We expected to have a bell-shaped chart: if frag-
mentation threshold were too low, too much over-
head would be generated. While if the threshold
is elevated, the decrease of throughput is caused
by distorsion introduced by the channel.

By using again the polyfit tool, we have tried to
fit the data with a second order polynomial: what
we have found is that a maximum value appears
around the threshold value of 674 bytes. This may
indicate the conditions of the channel were very
adverse.

9

