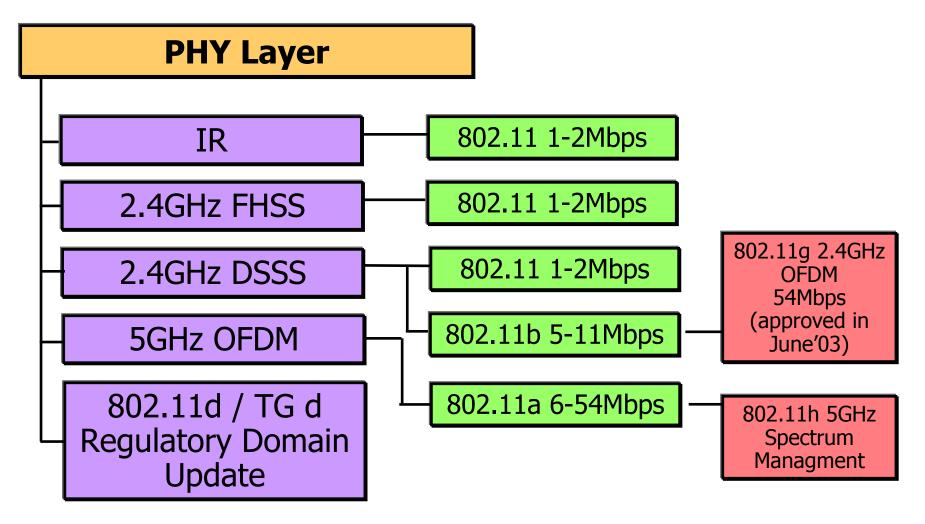
WLAN (802.11)

Renato Lo Cigno www.disi.unitn.it/locigno/didattica/NC/

...Copyright

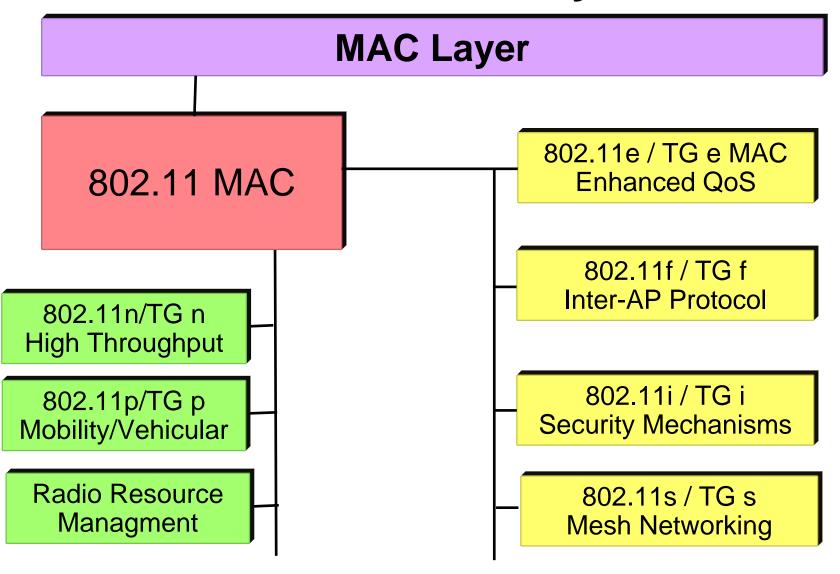
Quest'opera è protetta dalla licenza *Creative Commons*NoDerivs-NonCommercial. Per vedere una copia di questa licenza, consultare:
http://creativecommons.org/licenses/nd-nc/1.0/
oppure inviare una lettera a:
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

This work is licensed under the *Creative Commons NoDerivs-NonCommercial* License. To view a copy of this license, visit: http://creativecommons.org/licenses/nd-nc/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.



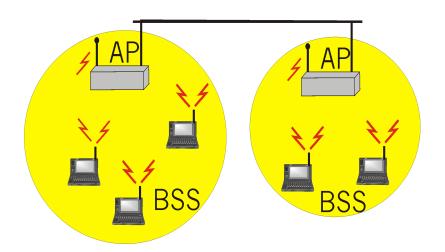
IEEE 802.11

- Wireless LAN standard specifying a wireless interface between a client and a base station (or access point), as well as between wireless clients
- Defines the PHY and MAC layer (LLC layer defined in 802.2)
 - Physical Media: radio or diffused infrared
- Standardization process begun in 1990 and is still going on (1st release '97, 2nd release '99, then '03, '05, ...)



IEEE 802.11 PHY Layer Activities

IEEE 802.11 MAC Layer Activities


802.11 Architecture

- BSS (Basic Service Set): set of nodes using the same coordination function to access the channel
- BSA (Basic Service Area): spatial area covered by a BSS (WLAN cell)
- BSS configuration mode
 - ad hoc mode
 - with infrastructure: the BSS is connected to a fixed infrastructure through a centralized controller, the so-called Access Point (AP)

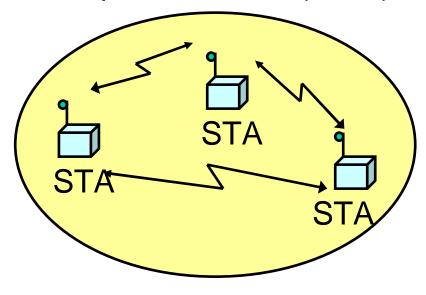
WLAN with Infrastructure

- BSS contains:
 - wireless hosts
 - access point (AP): base
 station
- BSS's interconnected by distribution system (DS)

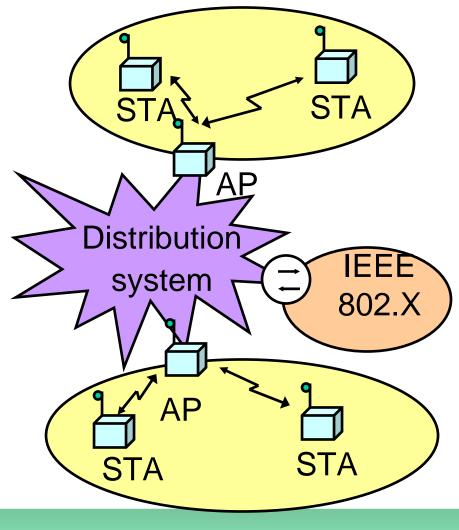
Ad Hoc WLANs

- Ad hoc network: IEEE 802.11 stations can dynamically form a network without AP and communicate directly with each other
- Applications:
 - "laptop" meeting in conference room, car
 - interconnection of "personal" devices
 - battlefield
- IETF MANET
 (Mobile Ad hoc Networks)

 working group

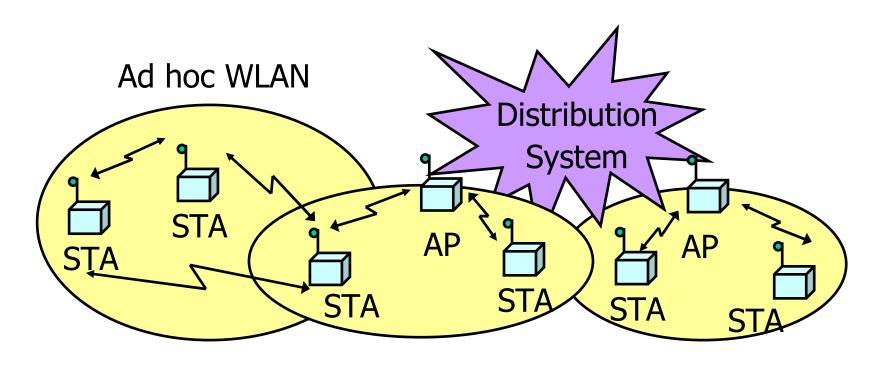

Extended Service Set (ESS)

- Several BSSs interconnected with each other at the MAC layer
- The backbone interconnecting the BSS APs (Distribution System) can be a:
 - LAN (802.3 Ethernet/802.4 token bus/802.5 token ring)
 - wired MAN
 - IEEE 802.11 WLAN, possibly meshed (routing problems!)
- An ESS can give access to the fixed Internet network through a gateway node
 - If fixed network is a IEEE 802.X, the gateway works as a bridge thus performing the frame format conversion



Possible Scenarios (1)

Ad hoc networking Independent BSS (IBSS)



Network with infrastructure

Possible Scenarios (2)

WLANs with infrastructure

Joining a BSS

Scanning Authentication **Association**

- BSS with AP: Both authentication and association are necessary for joining a BSS
- Independent BSS: Neither authentication neither association procedures are required for joining an IBSS

Joining BSS with AP: Scanning

A station willing to join a BSS must get in contact with the AP. This can happen through:

1. Passive scanning

 The station scans the channels for a Beacon frame (with sync. info) that is periodically sent by the AP

2. Active scanning (the station tries to find an AP)

- The station sends a ProbeRequest frame
- All AP's within reach reply with a ProbeResponse frame

Joining BSS with AP: Authentication

Once an AP is found/selected, a station goes through authentication

- Open system authentication (default, 2-step process)
 - Station sends authentication frame with its identity
 - AP sends frame as an ack / nack
- Shared key authentication
 - Stations receive shared secret key through secure channel independent of 802.11
 - Stations authenticate through secret key (requires encryption via WEP)

Joining BSS with AP: Association

Once a station is authenticated, it starts the association process, i.e., information exchange about the AP/station capabilities and roaming

- STA → AP: AssociateRequest frame
- AP → STA: AssociationResponse frame
- New AP informs old AP via DS
- Only after the association is completed, a station can transmit and receive data frames

IEEE 802.11 / 802.11b

Physical Layer

Three different access techniques:

- Infrared (IR)
- Frequency hopping spread spectrum (FHSS)
- Direct sequence spread spectrum (DSSS)

Infrared

- Works in the regular IR LED range, i.e. 850-950 nm
- Used indoor only
- Employes diffusive transmissions, nodes can receive both scattered and line-of-sight signals
- 2 Mbps obtained through 4-pulse position modulation (4-PPM), i.e., 2 information bits encoded with 4 bits
- Max output power: 2W
- Not really used IrDA is more common and cheaper

Spread Spectrum

- Idea: spread signal over wider frequency band than required
- Frequency Hopping: transmit over random sequence of frequencies
- Direct Sequence

random sequence (known to both sender and receiver), called **chipping code**

FHSS

- Not really used anymore
- Frequency band: ISM @ 2.4 GHz
- In the U.S., the FCC has specified 79 ISM frequency channels with width equal to 1 MHz. Central frequency is @ 2.402 GHz
- 3 channels each corresponding to 1Mbps with GFSK modulation
- 20 ms dwell time \Rightarrow 50 hop/s

DSSS (1)

- Radiated power is limited
 - Typical values: 85 mW
 - Maximum EIRP: 100mW EU, 1W USA
- Frequency band: ISM bands @ 2.4 GHz
- Band divided into 11 (USA) / 13(EU) overlapping channels
- 3 non overlapping channels, each 11MHz wide and with spacing 25MHz

IEEE 802.11 (Radio) Evolution

	802.11	802.11b (Wi-Fi)
Standard approval	July 1997	Sep. 1999
Bandwidth	83.5 MHz	83.5 MHz
Frequency of operation	2.4-2.4835 <i>G</i> Hz	2.4-2.4835 <i>G</i> Hz
Number of non- overlapping channels	3 Indoor/Outdoor	3 Indoor/Outdoor
Data rate per channel	1,2 Mbps	1,2,5.5,11 Mbps
Physical layer	FHSS, DSSS	DSSS

IEEE 802.11 MAC Protocol

Performs the following functions:

- Resource allocation
- Data segmentation and reassemby
- MAC Protocol Data Unit (MPDU) address
- MPDU (frame) format
- Error control

MAC Frames

Three frame types are defined

- 1. Control: positive ACK, handshaking for accessing the channel (RTS, CTS)
- 2. Data Transfer: information to be transmitted over the channel
- 3. Management: connection establishment/release, synchronization, authentication. Exchanged as data frames but are not reported to the higher layer

Data Transfer

- Asynchronous data transfer for delay-tolerant traffic (like file transfer)
 - DCF (Distributed Coordination Function)
- Synchronous data transfer for real-time traffic (like audio and video)
 - PCF (Point Coordination Function): based on the polling of the stations and controlled by the AP (PC)
 - Its implementation is optional (not really implemented)

Time Slot

- Time is divided into intervals, called slots
- A slot is the system unit time and its duration depends on the implementation of the physical layer
 - 802.11b: **20µs**
- Stations are synchronized with the AP in the infrastructure mode and among each other in the ad hoc mode ⇒ the system is synchronous
- Synchornization maintained through Beacon frames

IFS

- Interframe space (IFS)
 - time interval between frame transmissions
 - used to establish priority in accessing the channel
- 4 types of IFS:
 - Short IFS (SIFS)
 - Point coordination IFS (PIFS) >SIFS
 - Distributed IFS (DIFS) >PIFS
 - Extended IFS (EIFS) > DIFS
- Duration depends on physical level implementation

Short IFS (SIFS)

- To separate transmissions belonging to the same dialogue
- Associated to the highest priority
- Its duration depends on:
 - Propagation time over the channel
 - Time to convey the information from the PHY to the MAC layer
 - Radio switch time from TX to RX mode
- 802.11b: 10µs

Point Coordination IFS (PIFS)

 Used to give priority access to Point Coordinator (PC)

 Only a PC can access the channel between SIFS and DIFS

PIFS=SIFS + 1 time slot

Distributed IFS (DIFS)

 Used by stations waiting for a free channel to contend

Set to: PIFS + 1 time slot

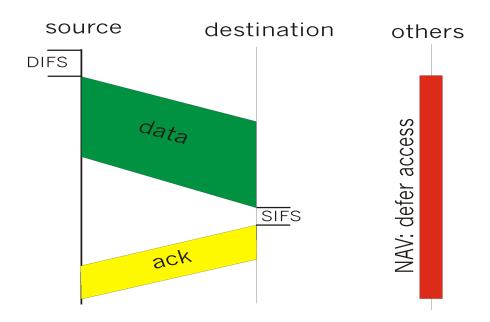
Extended IFS (EIFS)

- Used by every station when the PHY layer notifies the MAC layer that a transmission has not been correctly received
- Avoids that stations with bad channels disrupt other stations' performance
- Forces fairness in the access is one station does not receive an ACK (e.g. hidden terminal)
- Reduce the priority of the first retransmission (indeed make it equal to all others)
- Set to: DIFS + 1 ACK slot

DCF Access Scheme

Basic Characteristics

- Its implementation is mandatory
- DCF is based on the Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) scheme:
 - stations that have data to transmit contend for accessing the channel
 - a station has to repeat the contention procedure every time it has a new data frame to transmit


IEEE 802.11 MAC Protocol Overview: CSMA/CA

802.11 CSMA: sender

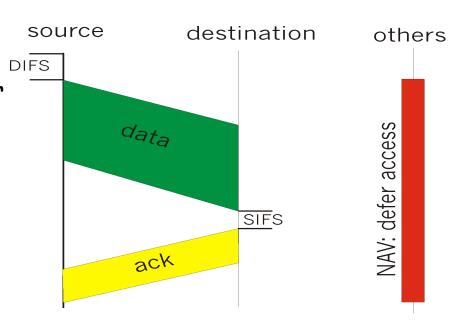
 if sense channel idle for DISF sec.

then transmit entire frame (no collision detection)

-if sense channel busy then random access over a contention window CWmin (CA)

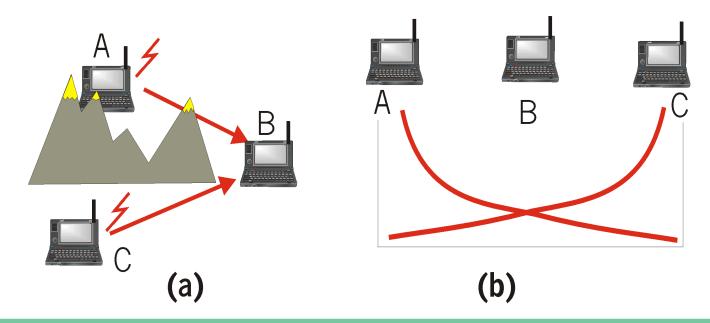
802.11 CSMA receiver:

if received OK


return ACK after SIFS

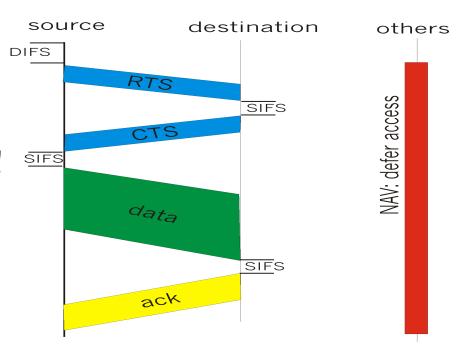
IEEE 802.11 MAC Protocol Overview

802.11 CSMA Protocol: others


- NAV: Network Allocation Vector
 - 802.11 frame has transmission time field
 - others (hearing data) defer access for NAV time units
 - NAV is contained in the header of frames
 - Allows reducing energy consumption
 - Helps reducing hidden terminals problems

Hidden Terminal Effect

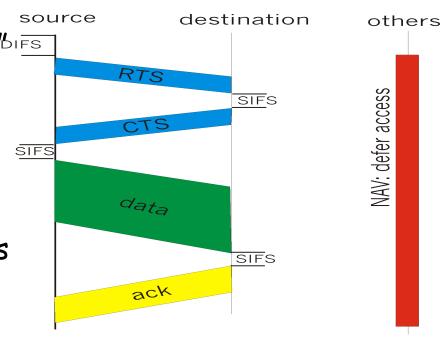
- hidden terminals: A, C cannot hear each other
 - obstacles, signal attenuation
 - collisions at B
- goal: avoid collisions at B
- · CSMA/CA with handshaking


IEEE 802.11 MAC Protocol Overview: Handshaking

CSMA/CA: explicit channel reservation

- sender: send short RTS: □ FS request to send

- receiver: reply with short CTS: clear to send


- CTS reserves channel for sender, notifying (possibly hidden) stations
- avoid hidden station collisions

IEEE 802.11 MAC Protocol Overview: Handshaking

- RTS and CTS are short:
 - collisions of shorter so duration, hence less "costly"
 - the final result is similar to collision detection
- · DCF allows:
 - CSMA/CA
 - CSMA/CA with reservations

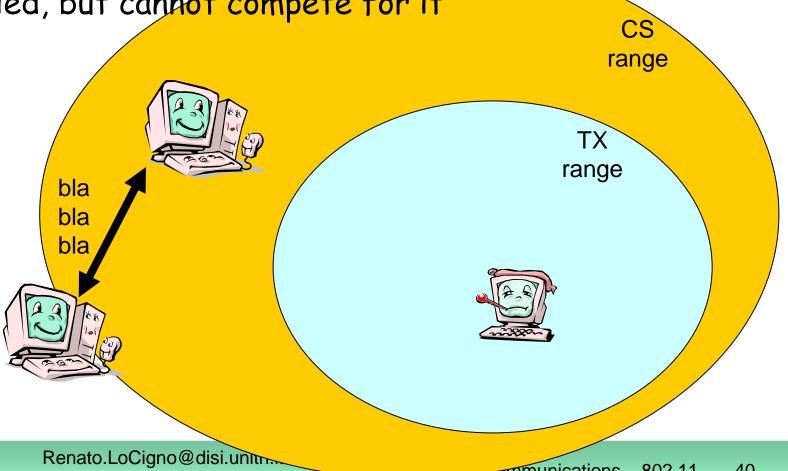
The DCF Access Scheme

Basic

- the simplest scheme
- used when the data frames to be transmitted have a fairly short duration

With handshaking

- Uses additional control frames for channel access
- Designed to solve the problems of hidden terminals
- Provides higher reliability in data transmission



The exposed terminal problem

Sensing range is normally larger than receiving range

Terminals may be "exposed" in that they sense the channel

occupied, but cannot compete for it

DCF The Basic Access Mode

Carrier Sensing

- Used to determine whether the channel is busy or idle
- Performed at the physical layer (physical carrier sensing) and at the MAC layer (virtual carrier sensing)
 - Physical carrier sensing: detection of nearby energy sources
 - Virtual carrier sensing: the frame header indicates the remaining duration of the current Channel Access Phase (till ACK is received)

Network Allocation Vector (NAV)

- Used by the stations nearby the transmitter to store the duration of the frame that is occupying the channel
- The channel will become idle when the NAV expires
- Upon the NAV expiration, stations that have data to transmit listen to the channel again

Using DIFS and SIFS

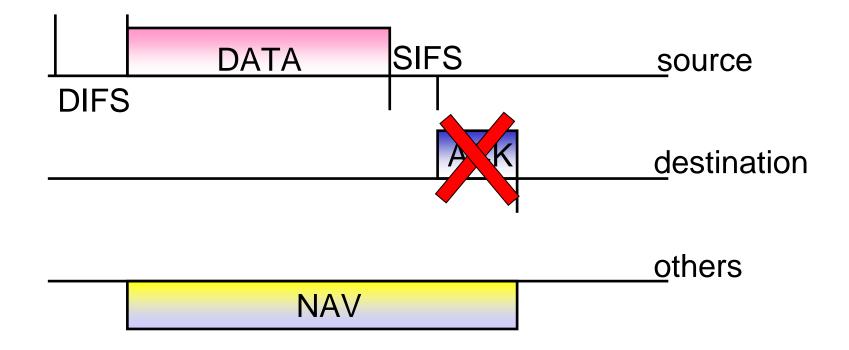
• Transmitter:

- senses the channel
- if the channel is idle, it waits a time equal to DIFS
- if the channel remains idle for DIFS, it transmits its MPDU

Using DIFS and SIFS

Receiver:

- computes the checksum thus verifying whether the transmission is correct
- if so, it sends an ACK after a time equal to SIFS
- it should always transmit an ACK with a rate less than or equal to the one used by the transmitter and no larger than 2Mbit/s


Using DIFS and SIFS

Neighbors:

- set their NAV to the value indicated in the transmitted MPDU
- NAV set to: the MPDU tx time + 1 SIFS + ACK time

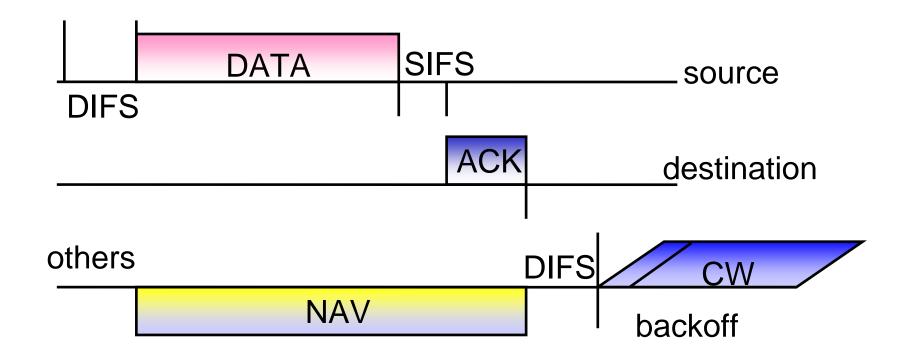
MPDU Transmission

Frame Retransmissions

 A frame transmission may fail because of collision or errors on the radio channel

 A failed transmission is re-attempted till a max no. of retransmissions is reached

ARQ scheme: Stop&Wait


Collision Avoidance (CA)

Backoff procedure

- If a station senses the channel busy, it waits for the channel becoming idle
- As soon as the channel is idle for DIFS, the station
 - computes the backoff time interval
 - sets the backoff counter to this value
- The station will be able to transmit when its backoff counter reaches 0

MPDU Transmission

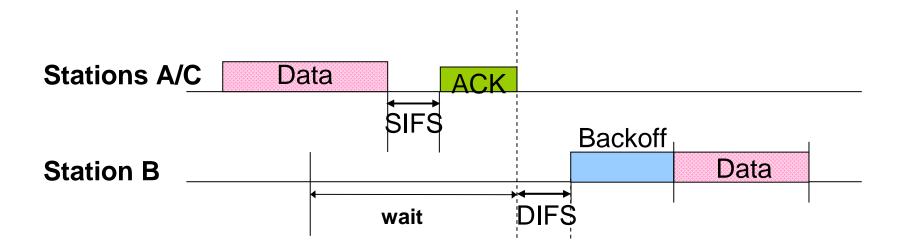
CW=Contention Window

Backoff Value

- Integer value corresponding to a number of time slots
- The number of slots is a r.v. uniformly distributed in [0,CW-1]
- CW is the Contention Window and at each transmission attempt is updated as:
 - For i=1, CW₁=CW_{min}
 - For i>1, CW_i=2CW_{i-1} with i>1 being the no. of consecutive attempts for transmitting the MPDU
 - For any i, CW_i ≤CW_{max}

Backoff Decrease

- While the channel is busy, the backoff counter is frozen
- While the channel is idle, and available for transmissions the station decreases the backoff value until
 - the channel becomes busy or
 - the backoff counter reaches 0


Accessing the Channel

 If more than one station decrease their counter to 0 at the same time → collision

 Colliding stations have to recompute a new backoff value

Basic DCF: An Example

Data Fragmentation (1)

- A MSDU is fragmented into more than one frame (MPDU) when its size is larger than a certain fragmentation threshold
 - In the case of failure, less bandwidth is wasted
- All MPDUs have same size except for the last MPDU that may be smaller than the fragmentation threshold
- PHY header is inserted in every fragment → convenient if the fragmentation threshold is not too little

Data Fragmentation (2)

- MPDUs originated from the same MSDU are transmitted at distance of SIFS + ACK + SIFS
- The transmitter releases the channel when
 - the transmission of all MPDUs belonging to a MSDU is completed
 - the ACK associated to an MPDU is lost

Data Fragmentation (3)

- Backoff counter is increased for each fragment retransmission belonging to the same frame
- The receiver reassembles the MPDUs into the original MSDU that is then passed to the higher layers
- Broadcast and multicast data units are never fragmented

Recontending for the Channel

- A station recontends for the channel when
 - it has completed the transmission of an MPDU but still has data to transmit
 - a MPDU transmission fails and the MPDU must be retransmitted

 Before recontending the channel after a successful transmission, a station must perform a backoff procedure with CWmin

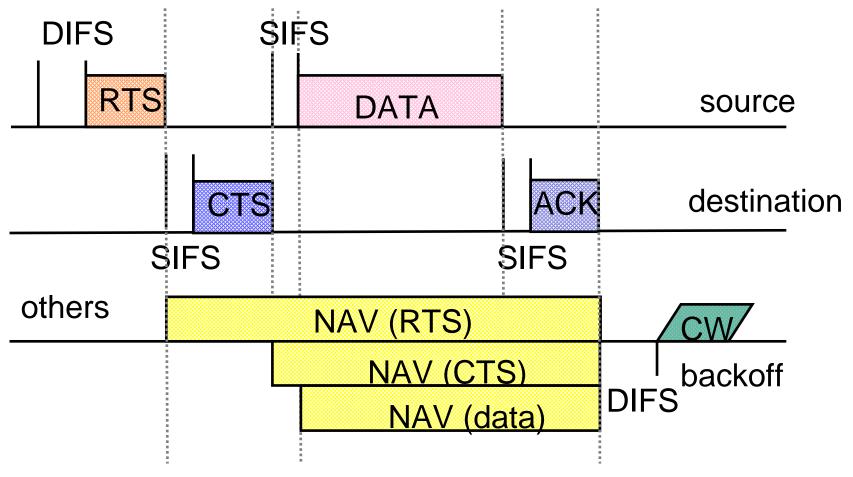
DCF Access with handshaking

Access with Handshake

- Used to reserve the channel
- Why?
 - Hidden stations
 - Colliding stations keep transmitting their MPDU;
 the larger the MPDU involved in the collision, the more bandwidth is wasted
 - Need to avoid collisions, especially when frame is large
 - Particularly useful when a large no. of STAs contend for the channel

RTS/CTS

- Handshaking procedure uses the Request to send (RTS) and Clear to send (CTS) control frames
- RTS / CTS should be always transmitted
 @1Mbps (they are only headers)
- Access with handshaking is used for frames larger than an RTS_Threshold



DCF with Handshaking

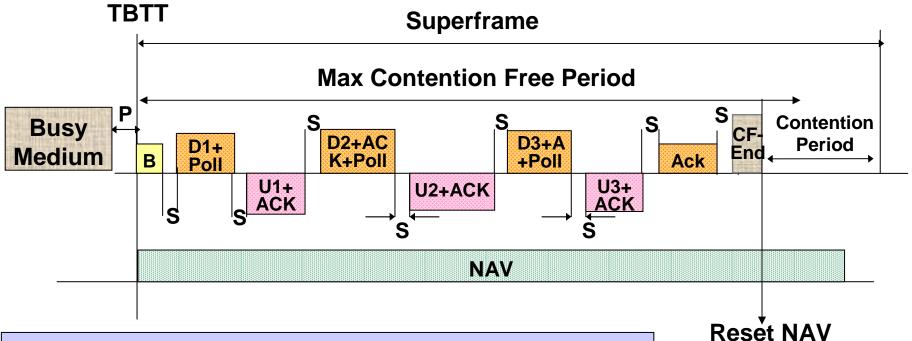
- Transmitter:
 - send a RTS (20 bytes long) to the destination
- Neighbors:
 - read the duration field in RTS and set their NAV
- Receiver:
 - acknowledge the RTS reception after SIFS by sending a CTS (14 bytes long)
- Neighbors:
 - read the duration field in CTS and update their NAV
- Transmitter:
 - start transmitting upon CTS reception

MPDU Transmission & NAV

PCF Centralized access scheme

Basic Characteristics

- Used for services with QoS requirements, it provides a contention-free access to the channel
- Needs a Point Coordination (PC) that polls the stations → it can be implemented in networks with infrastructure only (AP=PC)
- Stations enabled to operate under the PCF mode are said to be CF-aware (CF=Contention Free)



PCF

- Stations declare their participation in the CF phase in the Association Request
- PC builds the polling list based on the received requests
- Polling list is static
- Implementation of the polling list and tables are left to the system operator

Superframe and PCF Protocol

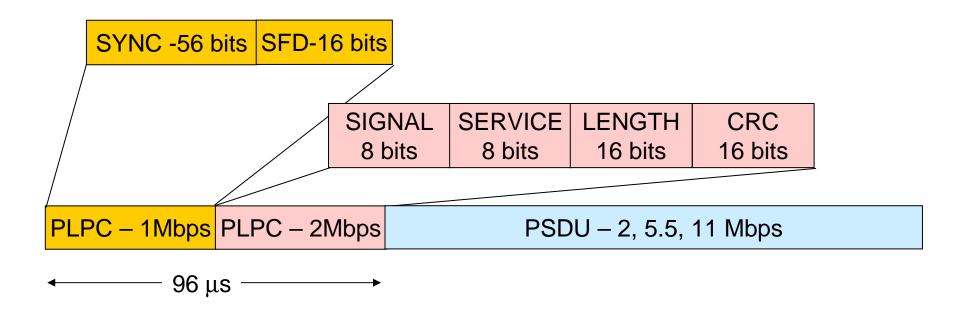
- TBTT: Target Beacon Transmission Time
- D1, D2: frames sent by PC
- U1, U2, U3: frames sent by polled station
- B: beacon frame (sent by AP)
- CFP repetition interval

D=CF-Downlink

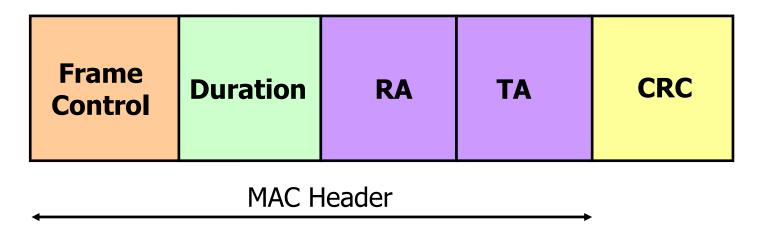
U=CF-UPlink

S=SIFS

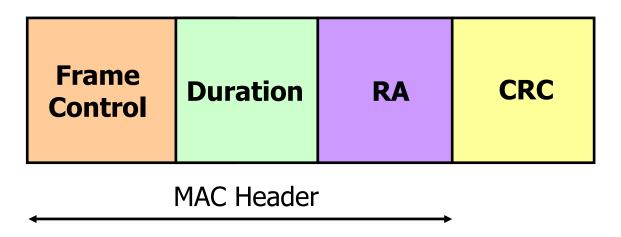
P=PIFS



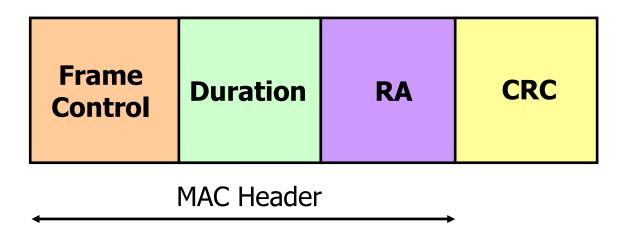
Examples of frame format


Generic DSSS packet

SFD – Start Frame Delimiter
PLPC – Physical Layer Convergence Protocol


Example: RTS Frame

- **Duration** (in μ s): Time required to transmit next (data) frame + CTS + ACK + 3 SIFs
- RA: Address of the intended immediate recipient
- TA: Address of the station transmitting this frame


Example: CTS Frame

- **Duration** (in μ s): Duration value of previous RTS frame -1 CTS time -1 SIFS
- RA: The TA field in the RTS frame

Example: ACK Frame

- Duration: set to 0 if More Fragments bit was 0, otherwise equal to the duration of previous frame – 1 ACK – 1 SIFS
- RA: copied from the Address 2 field of previous frame

Some Numerical Values...

- PHY_{HDR}: 16 bytes, transmitted @ 1 Mbps
- MAC_{HDR}: 34 bytes, transmitted @ 1 Mbps
 - If slot=20µs, PHY_{HDR}+ MAC_{HDR}=20 slots
- ACK=PHY_{HDR}+14 bytes , transmitted @ 1 Mbps
 - If slot=20µs, ACK=12 slots

Detailed MAC Format (bytes)

Frame	Duration	Address1	Address2 (destination)	Address3
Control	ID	(source)		(rx node)
2	2	6	6	6

Sequence Control	Address4 (tx node)	Data	FCS
2	6	0 - 2,312	4

MAC Format fields

Field	Bits	Notes/Description
Frame Control	15 - 14	Protocol version. Currently 0
	13 - 12	Туре
	11 - 8	Subtype
	7	To DS. 1 = to the distribution system.
	6	From DS. 1 = exit from the Distribution System.
	5	More Frag. 1 = more fragment frames to follow (last or unfragmented frame = 0)
	4	Retry. 1 = this is a re-transmission.
	3	Power Mgt. 1 = station in power save mode, 1 = active mode.
	2	More Data. $1 =$ additional frames buffered for the destination address (address x).
	1	WEP. 1 = data processed with WEP algorithm. 0 = no WEP.
	0	Order. 1 = frames must be strictly ordered.

MAC Format fields

Field	Bits	Notes/Description
Duration ID	15 - 0	For data frames = duration of frame. For Control Frames the associated identity of the transmitting station.
Address 1	47 - 0	Source address (6 bytes).
Address 2	47 - 0	Destination address (6 bytes).
Address 3	47 - 0	Receiving station address (destination wireless station)
Sequence Control	15 - 0	
Address 4	47 - 0	Transmitting wireless station.
Frame Body		0 - 2312 octets (bytes).
FCS	31 - 0	Frame Check Sequence (32 bit CRC). defined in P802.11.

IEEE 802.11 (Radio) Evolution

	802.11b (Wi-Fi)	802.11a	802.11 <i>g</i>
Standard approval	Sep. 1999	Sep. 1999	Sep. 1999
Bandwidth	83.5 MHz	300 MHz	83.5 MHz
Frequency of operation	2.4-2.4835 <i>G</i> Hz	5.15-5.35 <i>G</i> Hz 5.725-5.825 <i>G</i> Hz	2.4-2.4835 <i>G</i> Hz
Number of non-overlapping channels	3 Indoor/Outdoor	4 Indoor 4 Indoor/Outdoor	4 Indoor 4 Indoor/Outdoor
Data rate per channel	1,2,5.5,11 Mbps	6,9,12,18,24,36,48 54 Mbps	1,2,5.5,11 // 6,9,12,18,24,36,48, 54 Mbps
Physical layer	DSSS	OFDM	DSSS // OFDM

802.11g PHY

- Full backward compatibility with 802.11b
- Supports the 802.11b specified data rates of 1, 2, 5.5 and 11 Mbps
- Adds further data rates of 6, 9, 12, 18, 24, 36, 48 and 54 Mbps using OFDM
- Only Tx and Rx of OFDM @ 6,12 and 24 Mbps is mandatory
- OFDM uses 52 sub-carriers are modulated using BPSK, QPSK, 16-QAM or 64-QAM
- Forward Error Correction (convolutional coding) is used with a coding rate of $\frac{1}{2}$, 2/3 or $\frac{3}{4}$

802.11g PHY

- Improved data rate is paid for with a smaller transmission range
- Improved data rates apply only to the payload: useless with small packets (60-80% of Internet packets are < than 100 bytes!)
- The overall performance is heavily influenced by the "worst channel syndrome"
- 802.11 MAC shares the channel based on access rounds not time

