
Nomadic Communications

Labs

Alessandro Villani
avillani@science.unitn.it

Ad-Hoc

And

Wireless Mesh Network

Routing Protocol & Mesh Network

� Wireless mesh networks bring greater
flexibility, increased reliability, and
improved performance over conventional
wireless LANs

� The main characteristic of wireless mesh

networking is the communication between
nodes over multiple wireless hops on a
meshed network graph

A Mesh – Ad-hoc network
� Ad-Hoc can be meshed

�non single broadcast channel
�multi-hop require routing

Routing Protocol & Mesh Network

� Efficient routing protocols provide paths
through the wireless mesh and react to
dynamic changes in the topology, so that
mesh nodes can communicate with each

other even if they are not in direct wireless
range

� Intermediate nodes on the path will forward
the packets to the destination

Routing Protocol & Mesh Network

� IEEE created the 802.11s working group to
develop a standard for mesh network

� In the meantime there are a lot of network
protocol currently available. Some of them
are:

� AODV

� OLSR

� B.A.T.M.A.N.

� BABEL

� OLSR is the main candidate to be included
in 802.11s standard

Routing Protocol

� There are three type of routing protocols:

� Reactive: we search a path between nodes
when there is a data to send. No wasting of
network bandwidth, best suited for network
where the data path change very fast

� Proactive: actively establish and maintain data
path both if a data has to be sent or not. Lower
latency, but require a higher number of packets
to be exchanged

� Hybrid: the protocol use reactive and proactive
routing in different situation. The hybrid
protocols are more complex to implement.

OLSR

Routing Protocol: OLSR

� OLSR: Optimised Link State Routing

� OLSR is a routing protocol for mobile ad-hoc
networks

� Information are available at URL:

� http://www.olsr.org/

� OLSR is defined in the RFC 3626:

� http://www.ietf.org/rfc/rfc3626.txt

Routing Protocol: OLSR

� Proactive, link-state routing protocol

� Based on the notion of Dynamic MultiPoint
Relay (MPR)

� Each node N selects from its neighbors an
MPR(N) set such that all two-hop

neighbors of N are covered by (one-hop
neighbors) of MPR(N)

� The idea is to:

� Reduce flooding overhead

� Provide optimal flooding distances

Routing Protocol: OLSR

� As an examples:

� Left image: standard flooding

� Right image: only MPR nodes (light blue)
forward the messages

Routing Protocol: OLSR

� Look at the configuration files:

/etc/olsrd.conf

� Verify the configuration:

� Change the debug level

� Change the interface name

� Set the IP Version you plan to use (4)

Routing Protocol: OLSR

� To run OLSRD on our laptop, define a
script like the following:

#!/bin/sh

ifconfig eth1 down

iwconfig eth1 mode ad-hoc channel 11 essid

"TEST-OLSR"

ip link set up dev eth1

ifconfig eth1 192.168.13.32 netmask

255.255.255.0 broadcast 192.168.13.255

/usr/sbin/olsrd -d 9

� Don’t forget:

� Use different IP addresses on all the client of
your ad-hoc network

Routing Protocol: OLSR

� You should obtain someting like:
*** olsr.org - 0.5.6-r4 ***

Build date: 2009-06-02 00:57:55 on vernadsky

http://www.olsr.org

Parsing file: "/etc/olsrd.conf"

*** olsrd configuration ***

Debug Level : 9

IpVersion : 4

No interfaces : ALLOWED

TOS : 0x10

OlsrPort : 0x2ba

RtTable : 0xfe

RtTableDefault : 0x00

Willingness : 7

IPC connections : 0

Host 127.0.0.1

Pollrate : 0.10

NIC ChangPollrate: 2.50

TC redundancy : 2

MPR coverage : 5

LQ level : 2

LQ fish eye : 1

LQ Dijkstra limit: 3, 3.00

LQ aging factor : 0.100000

LQ algorithm name: default

NAT threshold : 1.000000

Routing Protocol: OLSR

� You should obtain someting like:
Clear screen : no

Interfaces:

dev: "wlan0"

IPv4 broadcast : 255.255.255.255

Mode : mesh

IPv6 addrtype : global

IPv6 multicast site/glbl : ff05::15/ff0e::1

HELLO emission/validity : 6.00/600.00

TC emission/validity : 0.50/300.00

MID emission/validity : 10.00/300.00

HNA emission/validity : 10.00/300.00

Autodetetc changes : yes

Not using hysteresis

BATMAN

Routing Protocol: BATMAN

� BATMAN: Better Approach To Mobile Ad hoc
Network

� BATMAN is a routing protocol for multi-hop
ad-hoc mesh networks

� Information are available at URL:

� http://www.open-mesh.net/

Routing Protocol: BATMAN

� Proactive routing protocol

� Decentralized knowledge of routing
information:

� No single node has the route to all destinations

� Each node only maintains the general direction
toward the destination and relays the data to
the best next-hop neighbor

Routing Protocol: BATMAN

� To establish the general direction toward a
destination:

� Better link will provide faster and more reliable
communication

� Every node periodically sends out broadcast
message (Originator Messages) to advertise its
existence

Routing Protocol: BATMAN

� Look at the configuration files:

/etc/default/batmand

� Verify the configuration:

� Change the debug level

� Change the interface name

Routing Protocol: BATMAN

� To run BATMAN on our laptop, define a
script like the following:

#!/bin/sh

ifconfig eth1 down

iwconfig eth1 mode ad-hoc channel 11 essid

"TEST-BATMAN"

ip link set up dev eth1

ifconfig eth1 192.168.13.33 netmask

255.255.255.0 broadcast 192.168.13.255

batmand -d 4 eth1

� Don’t forget:

� Use different IP addresses on all the client of
your ad-hoc network

Routing Protocol: BATMAN

� You should obtain someting like:
Interface activated: eth1

Using interface eth1 with address 192.168.13.32 and broadcast address 192.168.13.255

B.A.T.M.A.N. 0.3.2 (compatibility version 5)

debug level: 4

[0] schedule_own_packet(): eth1

[0]

[880] Received BATMAN packet via NB: 192.168.13.33, IF: eth1 192.168.13.32 (from OG:

192.168.13.33, via old OG: 192.168.13.33, seqno 5, tq 255, TTL 50, V 5, IDF 0)

[880] Creating new originator: 192.168.13.33

[880] updating last_seqno: old 0, new 5

[880] Creating new last-hop neighbour of originator

[880] bidirectional: orig = 192.168.13.33 neigh = 192.168.13.33 => own_bcast = 0,

real recv = 0, local tq: 0, asym_penalty: 0, total tq: 0

[880] schedule_forward_packet():

[880] forwarding: tq_orig: 0, tq_avg: 0, tq_forw: 0, ttl_orig: 49, ttl_forw: 49

[880] Forward packet: rebroadcast neighbour packet with direct link flag

[880]

[950]

[960] Forwarding packet (originator 192.168.13.33, seqno 5, TQ 0, TTL 49, IDF on) on

interface eth1

[960]

[960] Received BATMAN packet via NB: 192.168.13.32, IF: eth1 192.168.13.32 (from OG:

192.168.13.33, via old OG: 192.168.13.33, seqno 5, tq 0, TTL 49, V 5, IDF 1)

[960] Drop packet: received my own broadcast (sender: 192.168.13.32)

[960]

[1090]

Routing Protocol: BATMAN

� You should obtain someting like:
[1100] Sending own packet (originator 192.168.13.32, seqno 1, TQ 255, TTL 50, IDF off)

on interface eth1

[1100] schedule_own_packet(): eth1

[1100] count own bcast (schedule_own_packet): old = 0, [1100] new = 0

[1100] ------------------ DEBUG ------------------

[1100] Forward list

[1100] 192.168.13.32 at 2171

[1100] Originator list

[1110] Originator (#/255) Nexthop [outgoingIF]: Potential nexthops

[1110] No batman nodes in range ...

[1110] -- END DEBUG

[1110]

[1110] Received BATMAN packet via NB: 192.168.13.32, IF: eth1 192.168.13.32 (from OG:

192.168.13.32, via old OG: 192.168.13.32, seqno 1, tq 255, TTL 50, V 5, IDF 0)

[1110] Drop packet: received my own broadcast (sender: 192.168.13.32)

[1110]

[1210] Received BATMAN packet via NB: 192.168.13.33, IF: eth1 192.168.13.32 (from OG:

192.168.13.32, via old OG: 192.168.13.32, seqno 1, tq 0, TTL 49, V 5, IDF 1)

[1210] count own bcast (is_my_orig): old = 0, [1210] new = 1

[1210] Drop packet: originator packet from myself (via neighbour)

[1210]

[1790] Received BATMAN packet via NB: 192.168.13.33, IF: eth1 192.168.13.32 (from OG:

192.168.13.33, via old OG: 192.168.13.33, seqno 6, tq 255, TTL 50, V 5, IDF 0)

[1790] updating last_seqno: old 5, new 6

[1790] bidirectional: orig = 192.168.13.33 neigh = 192.168.13.33 => own_bcast = 1,

real recv = 1, local tq: 255, asym_penalty: 12, total tq: 12

Routing Protocol: BATMAN

� You should obtain someting like:
[1790] update_originator(): Searching and updating originator entry of received packet,

[1790] Updating existing last-hop neighbour of originator

[1790] update_routes()

[1790] Route to 192.168.13.33 via 192.168.13.33

[1790] Adding new route

[1790] Adding route to 192.168.13.33 via 0.0.0.0 (table 66 - eth1)

[1790] schedule_forward_packet():

[1790] forwarding: tq_orig: 12, tq_avg: 12, tq_forw: 11, ttl_orig: 49, ttl_forw: 49

[1790] Forward packet: rebroadcast neighbour packet with direct link flag

[1790]

[1860]

[1870] Forwarding packet (originator 192.168.13.33, seqno 6, TQ 10, TTL 49, IDF on) on

interface eth1

[1870]

[1870] Received BATMAN packet via NB: 192.168.13.32, IF: eth1 192.168.13.32 (from OG:

192.168.13.33, via old OG: 192.168.13.33, seqno 6, tq 10, TTL 49, V 5, IDF 1)

[1870] Drop packet: received my own broadcast (sender: 192.168.13.32)

[1870]

[2170]

[2170] ------------------ DEBUG ------------------

[2170] Forward list

[2170] 192.168.13.32 at 2171

[2170] Originator list

[2170] Originator (#/255) Nexthop [outgoingIF]: Potential nexthops

[2170] 192.168.13.33 (12) 192.168.13.33 [eth1], last_valid: 1790:

[2170] 192.168.13.33 (12)

[2170] -- END DEBUG

[2170]

Routing Protocol: BATMAN

� You should obtain someting like:
[2180]

[2190] Sending own packet (originator 192.168.13.32, seqno 2, TQ 255, TTL 50, IDF off)

on interface eth1

[2190] schedule_own_packet(): eth1

[2190] count own bcast (schedule_own_packet): old = 1, [2190] new = 1

[2190]

[2190] Received BATMAN packet via NB: 192.168.13.32, IF: eth1 192.168.13.32 (from OG:

192.168.13.32, via old OG: 192.168.13.32, seqno 2, tq 255, TTL 50, V 5, IDF 0)

[2190] Drop packet: received my own broadcast (sender: 192.168.13.32)

[2190]

[2280] Received BATMAN packet via NB: 192.168.13.33, IF: eth1 192.168.13.32 (from OG:

192.168.13.32, via old OG: 192.168.13.32, seqno 2, tq 10, TTL 49, V 5, IDF 1)

[2280] count own bcast (is_my_orig): old = 1, [2280] new = 2

[2280] Drop packet: originator packet from myself (via neighbour)

[2280]

[2870] Received BATMAN packet via NB: 192.168.13.33, IF: eth1 192.168.13.32 (from OG:

192.168.13.33, via old OG: 192.168.13.33, seqno 7, tq 255, TTL 50, V 5, IDF 0)

[2870] updating last_seqno: old 6, new 7

[2870] bidirectional: orig = 192.168.13.33 neigh = 192.168.13.33 => own_bcast = 2,

real recv = 2, local tq: 255, asym_penalty: 24, total tq: 24

[2870] update_originator(): Searching and updating originator entry of received packet,

[2870] Updating existing last-hop neighbour of originator

[2870] update_routes()

[2870] schedule_forward_packet():

[2870] forwarding: tq_orig: 24, tq_avg: 18, tq_forw: 23, ttl_orig: 49, ttl_forw: 49

[2870] Forward packet: rebroadcast neighbour packet with direct link flag

[2870]

BABEL

Routing Protocol: Babel

� BABEL is proactive routing protocol

� It is based on a loop-free Distance Vector
Algorithm

� Information are available at URL:

� http://www.pps.jussieu.fr/~jch/software/babel/

� An IETF draft of the protocol is available at
URL:

� https://datatracker.ietf.org/doc/draft-
chroboczek-babel-routing-protocol/

Routing Protocol: BABEL

� Babel uses history-sensitive route
selection:

� If there are more than one route, the selected
one is the already established path

� Babel execute a reactive update and force
a request for routing information when it
detects a link failure from one of its
neighbors

Routing Protocol: BABEL

� Look at the configuration files:

/etc/babeld.conf

� Verify the configuration, put something

like:
interface eth1 wired false

Routing Protocol: BABEL

� To run BABEL on our laptop, define a
script like the following:

#!/bin/sh

iwconfig eth1 mode ad-hoc channel 11 essid

“TEST-BABEL"

ip link set up dev eth1

ifconfig eth1 192.168.13.32 netmask

255.255.255.0 broadcast 192.168.13.255

babeld -d 5 eth1

� Don’t forget:

� Use different IP addresses on all the client of
your ad-hoc network

Routing Protocol: BABEL

� You should obtain someting like:
Adding network eth1.

Got 213:ceff:fed9:4952:8b39:c64b:2345:0 17699 1271282059 from babel-state.

Noticed ifindex change for eth1.

Noticed status change for eth1.

Netlink message: [multi] (msg -> "" 0), [multi] (msg -> "" 0),

Netlink message: [multi] (msg -> "" 0), [multi] (msg -> "found address on interface eth1(3):

fe80::213:ceff:fed9:4952

" 1),

Netlink message: [multi] (done)

Sending hello 27317 (400) to eth1.

sending request to eth1 for any.

Noticed IPv4 change for eth1.

Sending self update to eth1.

Sending update to eth1 for any.

Checking kernel routes.

Netlink message: [multi] (msg -> "found address on interface lo(1): 127.0.0.1

" 1), [multi] (msg -> "found address on interface eth1(3): 192.168.13.32

" 1),

Netlink message: [multi] (msg -> "found address on interface lo(1): ::1

" 1), [multi] (msg -> "" 0),

Netlink message: [multi] (done)

Netlink message: [multi] (msg -> "" 0), [multi] (msg -> "" 0), [multi] (msg -> "" 0), [multi]

(msg -> "" 0), [multi] (msg -> "" 0), [multi] (msg -> "" 0), [multi] (msg -> "" 0),

[multi] (msg -> "" 0),

Routing Protocol: BABEL
Netlink message: [multi] (done)

Netlink message: [multi] (msg -> "Add kernel route: dest: ::ffff:192.168.13.0/120 gw: ::

metric: 0 if: eth1 (proto: 2, type: 1)" 1), [multi] (msg -> "" 0), [multi] (msg -> "" 0),

[multi] (msg -> "" 0), [multi] (msg -> "" 0), [multi] (msg -> "" 0), [multi] (msg -> ""

0), [multi] (msg -> "" 0),

Netlink message: [multi] (done)

(flushing 12 buffered bytes on eth1)

Sending hello 27318 (400) to eth1.

(flushing 20 buffered bytes on eth1)

Sending hello 27319 (400) to eth1.

Sending self update to eth1.

Sending update to eth1 for 192.168.13.32/32.

(flushing 1 buffered updates on eth1 (3))

sending request to eth1 for any.

(flushing 60 buffered bytes on eth1)

Entering main loop.

Creating neighbour fe80::224:d6ff:fe71:a7e0 on eth1.

Sending hello 27320 (400) to eth1.

Sending ihu 65535 on eth1 to fe80::224:d6ff:fe71:a7e0.

Received hello 13577 (400) from fe80::224:d6ff:fe71:a7e0 on eth1.

(flushing 24 buffered bytes on eth1)

Sending hello 27321 (400) to eth1.

Sending ihu 1023 on eth1 to fe80::224:d6ff:fe71:a7e0.

Received ihu 65535 (1200) from fe80::224:d6ff:fe71:a7e0 on eth1 for fe80::213:ceff:fed9:4952.

Routing Protocol: BABEL
My id 02:13:ce:ff:fe:d9:49:52 seqno 17700

Neighbour fe80::224:d6ff:fe71:a7e0 dev eth1 reach 8000 rxcost 1023 txcost 65535.

192.168.13.32/32 metric 0 (exported)

Received hello 13578 (400) from fe80::224:d6ff:fe71:a7e0 on eth1.

(flushing 24 buffered bytes on eth1)

Sending hello 27322 (400) to eth1.

Sending ihu 511 on eth1 to fe80::224:d6ff:fe71:a7e0.

sending unicast request to fe80::224:d6ff:fe71:a7e0 for any.

Sending unicast ihu 511 on eth1 to fe80::224:d6ff:fe71:a7e0.

Received ihu 1023 (1200) from fe80::224:d6ff:fe71:a7e0 on eth1 for fe80::213:ceff:fed9:4952.

Received ihu 1023 (1200) from fe80::224:d6ff:fe71:a7e0 on eth1 for fe80::213:ceff:fed9:4952.

Received nh 192.168.13.33 (1) from fe80::224:d6ff:fe71:a7e0 on eth1.

Received router-id 02:24:d6:ff:fe:71:a7:e0 from fe80::224:d6ff:fe71:a7e0 on eth1.

Received update for 192.168.13.33/32 from fe80::224:d6ff:fe71:a7e0 on eth1.

kernel_route: add 192.168.13.33/128 metric 0 dev 3 nexthop 192.168.13.33

Netlink message: (ACK)

Sending update to eth1 for 192.168.13.33/32.

My id 02:13:ce:ff:fe:d9:49:52 seqno 17700

Neighbour fe80::224:d6ff:fe71:a7e0 dev eth1 reach c000 rxcost 511 txcost 1023.

192.168.13.32/32 metric 0 (exported)

192.168.13.33/32 metric 2042 refmetric 0 id 02:24:d6:ff:fe:71:a7:e0 seqno 46328 age 0 via

eth1 neigh fe80::224:d6ff:fe71:a7e0 nexthop 192.168.13.33 (installed)

The Report

The report

� Setup an Ad-Hoc network with 2/3/4/…
laptops

� Test at least two of the Multi-Hop routing
protocol

� Test the throughput using netperf/iperf and

using ping to verify the number of hop

� Try to setup a testbed with 1, 2, 3, … hops

� Verify the bandwidth for alle the possible couple
of destination (1, 2, 3, … hos)

The report

� Optional:

� In a 2/3 hop scenario stop one of the node
involved in the test and verify how long it takes
to find the new route

