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Abstract

This report describes the first experimental activity done for the course
of Nomadic Communications. We can divide it in three parts: while the first
part is introductory, presenting the work and the testbed configuration used
to take the measurements, the remaining two parts are about the actual
experimental results. In particoular, the second part is about the plain
802.11b and g throughput, and the third part analyzes the throughput in
relation with various fragmentation settings. Both these parts will try to
approach the problem first from a theoretical point of view and then with
the analysis of the actual measured values.

1



Contents

1 Introduction 2
1.1 Testbed Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Access point configuration . . . . . . . . . . . . . . . . . . . . . . . 5

2 Study on speed performances 7
2.1 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 802.11b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 802.11g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Measurements analysis . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 802.11b: case 1Mb/s . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 802.11b: case 5.5Mb/s . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 802.11b: case 11Mb/s . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 802.11b: case 24Mb/s and 54Mb/s . . . . . . . . . . . . . . 22

3 Study on fragmentation levels 23
3.1 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 5.5Mb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 24Mb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Measurements analysis . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 802.11b - 5.5Mb/s . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 802.11g - 24Mb/s . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Conclusions 30

Bibliography 31

A Additional Material 32

1 Introduction

The goal of the experimental activity described here is to understand behaviour
and capabilities of 802.11b/g devices in a “real world“ scenario, and to compare
them with theoretical calculations done based on what we learned in class and
from the 2007 IEEE 802.11 standard.

1.1 Testbed Setup

All the measurements have been done in the faculty in the rooms 106 and 201,
using mainly the CISCA provided equipment. For our group this consisted in:
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• two laptops with identical hardware and with Ubuntu Linux installed. More
specifically, the two laptops are equipped with the Intel PRO/Wireless 2200BG
integrated wireless card, of course capable of supporting the b and g com-
munication protocols, and also the monitor operational mode.

• a Backtrack Linux live cd1.

• a Linksys WAP54G access point, which was shared with another group.
Two additional access points were used by the other groups for their own
measurements.

• an additional laptop, also running Ubuntu Linux, performing as a server for
the benchmarking tools and dhcp service. This pc was shared among all the
groups.

The system configuration is organized in the following way. The server, with a
statically assigned ip address 192.168.10.30, communicates via ethernet connec-
tion with the three access points. All the computers involved in the test can then
communicate with the server via 802.11b or g wireless connections served by the
access points (stations and APs are in the same room, approximately 4/5 meters
away). In order to avoid the groups to interfere with each other as much as possi-
ble, the access points are configured to use the three non overlapping frequencies
allowed by 802.11: the Linksys we use is set on channel 1 (2.412MHz), while the
other two are set on channel 6 (2.437Mhz) and 11 (2.462Mhz).
The laptop acting as server has basically only two tasks: running the DHCP ser-
vice for assigning the testing laptops’ IP addresses and running the server side of
the network benchmarking tool we used.

On the first testing laptop, the benchmarking tool chose for measuring the
connection throughput is netperf2, with the following command line executed on
the client:

netperf -H192.168.10.30 -tUDP_STREAM -l30 -fK

where:

-H192.168.10.30 indicates the server IP

-tUDP STREAM indicates to use an UDP connection (default is TCP)

-l30 indicates the length in seconds for each test

-fK sets output unit in KByte/s

1homepage: http://www.backtrack-linux.org/
2homepage at http://www.netperf.org/netperf/
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UDP was chose over TCP mainly because its behaviour is simpler to understand
when looking through the packet streams, although less reliable. In fact, the
following is what the netperf manual says about it:

UDP is an unreliable protocol. It is important that you examine the
results carefully as the reported send rate can be much higher than
the actual receive rate. Great care should be taken when reporting
UDP STREAM test results to make sure they are not misleading. For
example, one should always report both send and receive rates together
for a UDP STREAM test. If you are going to report a single number,
you should report the receive rate.

We will consider only the performance from the point of view of the receiver:
in the experiments reported here, we rarely see cases in which the sent data are
different from the received data. As a side note, we can say that this frequently
happened in a few experiments done with an ongoing bluetooth communication
acting as interference source. However those experiments have not been further
investigated, nor they are part of the content of this paper.

To setup the the benchmarking laptop we associate with the NCL essid and
request an IP address with a dhcp client. Through all the experiments we used
channel 1 (2.412GHz). At the beginning and end of the 30 tests series we save
the output of the iwconfig command to store some statistics. This is the typical
output:

eth3 IEEE 802.11g ESSID:"NCL"

Mode:Managed Frequency:2.412 GHz Access Point: 00:0F:66:11:D2:C3

Bit Rate=1 Mb/s Tx-Power=20 dBm Sensitivity=8/0

Retry limit:7 RTS thr:off Fragment thr:off

Power Management:off

Link Quality=72/100 Signal level=-56 dBm Noise level=-79 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:29 Missed beacon:15

One especially interesting is the link quality measurement. It is basically a numeric
score based on the quality of a number of parameters, its way of operation being
at discretion of the driver developer. By looking at the driver’s source code and
its comments, the value is recomputed every 3 seconds taking into account the
following parameters:

* Intel R© PRO/Wireless 2200BG Driver

* Link Quality calculation calculate quality based on the following:

* Missed beacon: 100% = 0, 0% = 70% missed

* Rate: 60% = 1Mbs, 100% = Max

* Rx and Tx errors represent a straight % of total Rx/Tx

* RSSI: 100% = > -50, 0% = < -80

* Rx errors: 100% = 0, 0% = 50% missed

*

* The lowest computed quality is used.
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Now, while one laptop uses netperf to generate and measure network traffic, the
second “sniffs” the traveling network packets. The benefit in doing this is that by
carefully checking some message exchanges we can confirm that the configuration
is what actually intended, rather than uncover anomalies in the environment that
might (easily) take place. Unfortunately, it is impractical to capture all the packets
exchanged during the tests, given the big quantity of data exchanged within tens
of minutes compared to the low hardware capabilities of the machines at our
disposal. So we suffer the limitation that, given how we did capture the data, it is
not possible for us to review what exactly happened in each experiment in order
to explain a peculiar result.
For this activity, an invaluable tool we extensively used is wireshark3. It gives us a
comfortable interface that allows us to capture the “on wire“ packets and examine
and interpret their content. This includes MAC and LLC level headers (or even
kernel level data like the contents of the radiotap sublayer in Linux), all this data
would otherwise be discarded when passing each layer’s payload to the upper one.
However, while using the tool, we came across a tricky behaviour that should be
kept in mind when snooping through the packets. For example, we had an hard
time explaining ourselves why the FCS part of the 802.11 MAC header was never
present in the packets: it turns out the checksum is always removed by the OS’s
raw packet capture mechanism. Also the PHY header cannot be captured for
similar reasons.

1.2 Access point configuration

For all the test cases described in this document, the access point configuration is
always kept to the default settings. All the configuration (that is, data rate and
fragmentation threshold) is actually done on the client. This is because it is the
client who is sending the data to the server, so setting the fragmentation level on
the server would make no difference in our experiments (as the parameter configu-
ration is completely asymmetrical like, for example, the RTS/CTS threshold). In
the default configuration the access point is set to use the mixed mode behaviour
that should allow it to accept both 802.11b and 802.11g NIC cards at the same
time. This is not actually a wanted configuration, as we would have preferred to
choose from a ”b” and ”pure g“ modes given the rate we wanted to test. Unfor-
tunately, for some reasons it was not possible for the testing laptop to associate
to the access point with such configurations, unless the maximum speed allowed
(11Mb/s for b, 54Mb/s for g) was used. For this reason we decided not to add
any more confusion in the experiments and always leave to the mixed mode on.
Moreover, by examining the wireshark captures, it looks like when >11Mb/s rates

3homepage: http://www.wireshark.org/
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are used the AP behaves like a ”pure g“ anyway (probably it automatically scales
to maximum speed whenever no other slower NIC card is associated).

Figure 1: Advanced wireless settings tab for the Linksys AP

In figure 1 we show the advanced wireless settings tab of the Linksys
access point. This is the configuration used in all the tests described in this report:

Authentication type we set it to open system, so that no authentication is
required to perform association to the AP.

Basic Rates this parameter has no importance to us since it affects the data rate
speeds advertised to the other wireless devices.

Transmission Rates sets the data rate used to send the data. We set it to
auto, so that it uses the maximum supported rate for each of the connected
stations.

CTS Protection Mode This has been left disabled. This option will enable the
request to send, clear to send handshake mechanism when transmitting any
data frame to 802.11g devices. This is intended as a protection for g devices
that cannot correctly receive the data when many b devices are also present,
since they may ignore OFDM signals.
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Frame Burst Mode This option is supposed to increase performances in some
cases, but it is not clear to us how it actually operates and for this reason it
has been kept off.

Antenna Selection selects which antenna is used to transmit the data. The
default is Diversity, which should enhance perfomances.

Beacon Interval the beacon sending interval is set to 100ms.

Fragmentation Threshold the fragmentation is set to the maximum segment
size, which disables the fragmentation of the packets on the AP side.

RTS Threshold this option will enable the request to send, clear to send. We
kept is set to the maximum segment size, so to disable it on the AP side.

2 Study on speed performances

2.1 Theoretical analysis

Since we want to analize the various experimental result that we have obtained, we
have to compare them to theoretical values: these values represents the ”maximal”
values of throughput that should be encountered in a ideal wireless connection. In
general the theoretical values are obtained using the following formula:

Data Transmitted (bits)

Duration of the Transmition (µs)

A general transmission procedure of the 802.11 protocol is shown in figure 2.

Figure 2: 802.11 transmission procedure

Since the details change between b and g mode (and also between b speeds), the
following theoretical analysis will be divided in two sections. All the following
calculations are created starting from what is specified in [1] (the same goes for
the figures).
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2.1.1 802.11b

The first part to consider, in this theoretical analysis, is the DIFS (Distributed
coordinator function Inter Frame Space). It is composed by:

DIFS = SIFS + 2 × Time Slot

Since in 802.11b the SIFS (Short InterFrame Space) has a duration of 10µs and
the Time Slot is 20µs long, the duration of the DIFS is:

TDIFS = TSIFS + 2 × TT imeSlot = 10µs + 2 × 20µs = 50µs

After the DIFS there is the Backoff Procedure. This procedure is used to try to
avoid collisions. In our analysis it is simply a time, depending from the Time Slot
duration, during which the station wait before transmitting data. The procedure
starts from the selection of a random number between 0 and the value of the
Contention Window (CW) −1. The Contention Window start from a value of
32 (CWMIN) and it is doubled at every collision (in reality, since it is impossible
to detect a collision given the nature of the transmission, the value is doubled if
the transmission is incomplete) unless it reaches the limit value of 1024 (CWMAX).
The Contention Window’s size is decremented only if the transmission is completed
succesfully, in which case the value returns 32. The generated number becomes
the number of Time Slot that the station waits before starting the transmission. If
the random generator is well implemented and we consider an ideal channel (with
no collision at all), the random number generated that we should observe will have
to be an average of 15.5 ((0 + 31)/2 = 15.5). The Backoff Procedure should last
for:

TBackoff = 15.5 × TT imeSlot = 15.5 × 20µs = 310µs

Subsequently there is the Physical Header (PHY): it is divided into two parts,
PLCPPreamble and PLCPHeader wich are different in lenght (bits) and transmission
rate, based on the adopted transmission mode. The two possible transmission
mode, in 802.11b are: DSSS (Direct Sequence Spread Spectrum, used in 1 Mb/s
transmissions) and HR/DSSS (High Rate Direct Sequence Spread Spectrum, used
in 2, 5.5 and 11 Mb/s). In the DSSS transmission mode the PLCPPreamble is
composed of 144bits and it is sent a 1Mb/s while the PLCPHeader is 48bits long
always sent at 1Mb/s. In HR/DSSS we have the PLCPPreamble which is formed by
72bits sent at 1Mb/s while the 48bits of the PLCPHeader are sent at 2Mb/s.

TPHYDSSS
=

144bits

1Mb/s
+

48bits

1Mb/s
= 192µs
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TPHYHR/DSSS
=

72bits

1Mb/s
+

48bits

2Mb/s
= 96µs

After this is to be considered the MAC level Envelope, consisting of the MAC
Header and the FCS (Fragment Control Sequence) set after the MSDU (Mac level
Service Data Unit). The MAC Header is composed of 24Bytes divided into various
fields. The FCS is composed of 4Bytes. Every part of the MAC Envelope is sent
at the Data Speed set on the Wireless card of our Laptop: in our case, for 802.11b,
we used 1Mb/s, 5.5Mb/s and 11Mb/s:

TMAC@1Mb/s =
(24 + 4) × 8 bits

1Mb/s
= 224µs
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TMAC@5.5Mb/s =
(24 + 4) × 8 bits

5.5Mb/s
= 40.72µs

TMAC@11Mb/s =
(24 + 4) × 8 bits

11Mb/s
= 20.36µs

The MAC MSDU is composed of: LLC Header, IP Header and the data, enveloped
at UDP level, created by Netperf. Since Netperf create an UDP Stream of data,
the calculus of the transmission time is a bit cumbersome and so left alone. The
time spent for the sending of the LLC Header and IP Header is:

TLLC+IP@1Mb/s =
(8 + 20) × 8 bits

1Mb/s
= 224µs

TLLC+IP@5.5Mb/s =
(8 + 20) × 8 bits

5.5Mb/s
= 40.72µs

TLLC+IP@11Mb/s =
(8 + 20) × 8 bits

11Mb/s
= 20.36µs

For the calculus of the time necessary to transmit the Payload (the Data Unit at IP
level) created by Netperf, it is necessary to say that Netperf create an unique UDP
packet with a payload of 65507Bytes, then the UDP Header is added (8Bytes). The
resultant packet (65515Bytes) is then split in a number of IP packets: a total of 44
packets with a payload of 1480Bytes and a final packet with a payload 395Bytes.

Total Payload = 44 × 1480Bytes + 395Bytes = 65515Bytes

Since we want to confront the theoretical result with the tests’ result, which are
relative to the thrughput at the application level, it is more accurate to calculate
the theoretical level of thrughput on the entire stream of packets. In our case we
have:

TIPPayload@1Mb/s =
(44 × 1480Bytes + 395Bytes) × 8

1Mb/s
=

65515Bytes × 8

1Mb/s
=

524120bits

1Mb/s
= 524120µs

TIPPayload@5.5Mb/s =
(44 × 1480Bytes + 395Bytes) × 8

5.5Mb/s
=

65515Bytes × 8

5.5Mb/s
=

524120bits

5.5Mb/s
= 95294.54µs

TIPPayload@11Mb/s =
(44 × 1480Bytes + 395Bytes) × 8

11Mb/s
=
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65515Bytes × 8

11Mb/s
=

524120bits

11Mb/s
= 47647.27µs

Now the Sender has finished its transmission and the Server send back an Ack.
This is done after a SIFS time interval (10µs). The Ack is composed of:

ACK = PHYHeader + ShortMAC + FCS

As said in precedence the Physical Header is different in dimension and in trans-
mission speed, in relation to the transmission mode used. Also the MAC level of
the Ack is different from before: infact it is composed of only 10Bytes. There are
no data but the FCS is present and it is composed, as for the DATA frame, of
4Bytes.

TACK@1Mb/s = TPHYDSSS
+

(10 + 4)Bytes × 8

1Mb/s
= 304µs

TACK@5.5Mb/s = TPHYHR/DSSS
+

(10 + 4)Bytes × 8

5.5Mb/s
= 116.36µs

TACK@11Mb/s = TPHYHR/DSSS
+

(10 + 4)Bytes × 8

11Mb/s
= 106.18µs

Now that we have all the transmission times of the various parts that compose the
total transmission, we have only to sum them to have the total transmission time:

Transmision T ime = 45 × (TDIFS + TBackoff + TPHYHeader
+

+ TMACEnvelope + TLLC+IP + TSIFS + TACK) + TIPPayload

(This calculus is done considering the entire stream of 45 packets)

Transmission T ime @ 1Mb/s = 583250µs

Transmission T ime @ 5.5Mb/s = 125166.36µs

Transmission T ime @ 11Mb/s = 75288.18µs

Now for the calculus of the Thrugput at Application level it is necessary to know
the total bits that compose our transmission: like said in precedence we have a
total UDP Payload of 65507Bytes

65507 × 8 = 524056 bits

Then the Thrughput at the various speeds is:

Thrughput @ 1Mb/s =
524056 bits

583250µs
' 0.89851 Mb/s
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Thrughput @ 5.5Mb/s =
524056 bits

125166.36µs
' 4.18688 Mb/s

Thrughput @ 11Mb/s =
524056 bits

75288.18µs
' 6.96622 Mb/s

Table 1 shows a brief recapitulation of what we have done in the previous section:

Trans. Speed 1 5.5 11
Difs 50µs

Time Slot 20µs
Backoff 310µs
PLCP 192µs 96µs
MAC 224µs 40.72µs 20.36µs

LLC + IP 224µs 40.72µs 20.36µs
ACK 304µs 116.36µs 106.18µs

IP Payload 524120µs 95294.54µs 47647.27µs
Trans. Time 583250µs 125166.36µs 75288.18µs
Thrughput 0.89851Mb/s 4.18688Mb/s 6.96622Mb/s

Table 1: Times and Throughput at the various speeds considered for the 802.11b
standard

2.1.2 802.11g

Like in the b case, the first thing to consider is the DIFS. In the g standard, infact,
it is different from what analized for the b: the SIFS is slightly longer (16µs), while
the Time Slots are shorter (9µs)

TDIFS = TSIFS + 2 × TT imeSlot = 16µs + 2 × 9µs = 34µs

Like before, just after the DIFS, there is the time taken by the Backoff procedure.
Again we are going to consider an ”ideal” Backoff procedure. It is interesting to
note that, in g mode, the CWMIN is only 16 (so we have an ’average’ of 7.5)

TBackoff = 7.5 × TT imeSlot = 15.5 × 9µs = 67.5µs

Then we have the Physical Envelope. In the g case the transmission mode is the
ERP-OFDM (Extended Rate PHY - Ortogonal Frequency Division Multiplexing):
the Physical Envelope is composed by a Preamble of 12 Symbols (16µs), a Header
of 24bits, a Service of 16bits, a Tail of 6bits and, finally, a variable number of bits
that are called Pad bits. The first two parts are sent at a speed of 6Mb/s, while
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the other three are sent at the Data Rate. For simplicity we will consider the Pad
bits later.

TPHYERP−OFDM@24Mb/s = 16µs +
24 bits

6Mb/s
+

16 + 6 bits

24Mb/s
= 20.916µs

TPHYERP−OFDM@54Mb/s = 16µs +
24 bits

6Mb/s
+

16 + 6 bits

54Mb/s
= 20.407µs

The Pad bits depend by the dimension of the OFDM symbol, which in this case
is different for different speeds, and by the dimension of the MAC Packets. In
our case we have 2 different dimension of MAC pakets: the first is composed of
24Bytes of MAC Header, 8Bytes of LLC Header, 20Bytes of IP Header, 1480Bytes
of Data and 4Bytes of FCS, for a total of 1536Bytes, while the second has only
395Bytes of Data, for a total of 451Bytes. In the calculus we have also to consider
the Service and Tail bits (a total of 22). At the end we have:

LongPacket = 22 + ( 1536 × 8 ) = 12310 bits

ShortPacket = 22 + ( 451 × 8 ) = 3630 bits

The formula to calculate the Pad bits is the sequent:

NSymbols =

⌈
Packet bits

Symbol Dimension

⌉

NDATA = NSymbols × Symbol Dimension

Pad bits = NDATA − Packet bits

So for our packets we have Padding bits as showed in table 2: As done for the b
mode, now we will calculate the necessary time to transmitt MAC Header, FCS,
LLC Header and IP Header:

TMAC+FCS+LLC+IP@24Mb/s =
(24 + 4 + 8 + 20) × 8 bits

24Mb/s
= 18.6µs
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Speed Symbol Dimension Pad Long Packet Pad Short Packet
24 Mb/s 96 bits 74 bits 18 bits
54 Mb/s 216 bits 2 bits 42 bits

Table 2: Padding bits at the various speeds

TMAC+FCS+LLC+IP@54Mb/s =
(24 + 4 + 8 + 20) × 8 bits

54Mb/s
= 8.296µs

Then we have the Stream of packets that compose the IP Payload, as described
in precedence for the b mode:

TIPPayload@24Mb/s =
(44 × 1480Bytes + 395Bytes) × 8

24Mb/s
=

65515Bytes × 8

24Mb/s
=

524120bits

24Mb/s
= 21838.3µs

TIPPayload@54Mb/s =
(44 × 1480Bytes + 395Bytes) × 8

54Mb/s
=

65515Bytes × 8

54Mb/s
=

524120bits

54Mb/s
= 9705.925µs

And finally, after a DIFS of 16µs, there is the Ack: it is sent at the major commune
speed between the mandatory speeds of the g mode. In our case the Ack is always
sent at 24Mb/s. Like for the Data packet, it is followed by a variable number of
Pad bits: since the 24Mb/s we have a constant of 82 bits.

TACK = TPHYPreamble
+ TPHYHeader

+
((10 + 4)Bytes × 8) + 82

24Mb/s
=

= 16µs +
24 bits

6Mb/s
+

194 bits

24Mb/s
= 28.083µs

So now we can calculate the total transmission times

Transmission T ime @ 24Mb/s = 30307.25µs

Transmission T ime @ 54Mb/s = 17551.25µs

and the relatives thrughput

Thrughput @ 24Mb/s =
524056 bits

30307.25µs
' 17.29144 Mb/s

Thrughput @ 54Mb/s =
524056 bits

17551.25µs
' 29.85861 Mb/s

Table 3 shows a brief recapitulation of what we have done in the previous section:
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Trans. Speed 24 54
Difs 34µs

Time Slot 9µs
Backoff 67.5µs

PHYERP−OFDM 20.916µs 20.407µs
MAC + FCS + LLC + IP 18.6µs 8.296µs

ACK + PADACK 28.083µs
IP Payload 21838.3µs 9705.925µs

Trans. Time 30307.25µs 17551.25µs
Thrughput 17.29144Mb/s 29.85861Mb/s

Table 3: Times and Throughput at the various speeds considered for the 802.11g
standard

2.2 Measurements analysis

In the following part of the section we will analyze the data gathered with the
“hands on” tests. As already anticipated, these benchmarks have been done using
the netperf tool, each being the result of a 30 seconds long test. The rates we
used are: 1, 5.5, 11, 24 and 54 Megabit per second. We tried to test the 6Mb/s
and the 12Mb/s rates too, but they did fail to correctly function in our testbed
for unknown reasons: the behaviour observed is that the iwconfig tool seems to
set these two rates as normal but, the moment the first packet is sent from the
station, the NIC reverts back to the last ”accepted” rate.

In table 4 we show the statistics gathered. It is easy to see than the actual mea-
sured values are lower than the expected rates as seen in the theoretical analysis.

Speed Observed Observed Standard Conf Interval

Rate Average MAX MIN Deviation 90% 95%

1Mb/s 0.707 0.733 0.666 0.019 0.007 0.008
5.5Mb/s 3.583 3.915 2.949 0.266 0.093 0.111
11Mb/s 5.711 5.981 5.298 0.163 0.057 0.068
24Mb/s 13.887 15.182 13.033 0.493 0.173 0.206
54Mb/s 21.302 23.256 17.675 1.538 0.539 0.643

Table 4: Aggregates of the experiments results. For each speed rate: average of
all tests, maximum and minimum resulted value for each test, standard deviation,
confidence interval at 90% and 95%

In table 5 we combine the measured data with some of the data resulting from
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the theoretical computations. In particoular we can compare for each rate the
measured average with the theoretical one and obtain the difference in percentage.
This is intended as a measure of the quality of the network conditions during
our measurements and not the efficiency of the different protocols, since protocol
overhead is always taken into account.

Speed Theoretical Observed Theoretical vs Observed

Rate Average Average Difference

1Mb/s 0.898 0.707 21.286%
5.5Mb/s 4.187 3.583 14.417%
11Mb/s 6.966 5.711 18.018%
24Mb/s 17.291 13.887 19.687%
54Mb/s 29.858 21.302 28.657%

Table 5: For each speed rate: maximum theoretical throughput, computed theo-
retical average, measured average and difference from computed and observed in
percentage (100% is the theoretical value)

We can also note that the standard deviation, which measures the variability of
the measured values for each test, tends to increase with the speed, as emphasized
by figure 3. This tendency is not preserved only in the case when moving from
the 5.5Mb/s to 11Mb/s: we believe this is the result of exceptionally high network
instability in general, but especially during the 5.5Mb/s measurement.
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Figure 3: Average of all the tests average throughput for all rates. The error lines
represent the standard deviation for each tested rate

2.2.1 802.11b: case 1Mb/s

In figure 4 we show the results for the 1Mb/s experiment. While the resulting
standard deviation is low compared to other measurements, these test still suffer
from a generically bad network condition. As this cannot be due to excessive
distance of the stations from the access points we can guess that this is the result
of interferences or channel’s contention. In fact we should stress the fact that the
faculty’s environment is more often than not afflicted by very high wireless traffic.
This is also confirmed by the link quality measured by the testing station’s drivers.
At the beginning of the measurement, iwconfig was showing the following output:

eth3 IEEE 802.11g ESSID:"NCL"

Mode:Managed Frequency:2.412 GHz Access Point: 00:0F:66:11:D2:C3

Bit Rate=1 Mb/s Tx-Power=20 dBm Sensitivity=8/0

Retry limit:7 RTS thr:off Fragment thr:off

Power Management:off

Link Quality=72/100 Signal level=-56 dBm Noise level=-79 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:29 Missed beacon:15
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Figure 4: Line chart of the 22 measurements for the 1Mb/s data rate case with
mean, upper and lower interval for 95% confidence

Instead, this is the output at the end of the measurement:

Link Quality=42/100 Signal level=-31 dBm Noise level=-83 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:29 Missed beacon:71

In general, it is not unusual to see link quality greatly varying during brief time
intervals.

There are other elements that may suggest that communication on channel 1
was not very smooth during at least a part of the experiment time: by analyzing the
packets captured with wireshark in monitor mode, we can extrapolate how many
packets ”on wire” were belonging to the netperf dialogue, and how many how those
were retransmitted. By computing the ratio packets netperf dialogue/total packets
and the ratio packets netperf dialogue retransmitted/packets netperf dialogue we
can at least have an idea of how much traffic and how good the quality was during
the capture time. How big is the part of experiment being captured depends on
the rate of the transmission, since we are pretty much restricted in how many
packets the monitoring station can handle. This is both in terms of primary
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and secondary memory: for each experiment we captured a number of packets
around 100.000, more than means to put the machine under excessive load. The
ideal solution would have been to have a program that could gather these simple
statistics on the fly or save the packets while discarding the actual content, like
tcpdump: unfortunately this occurred to us too late.

captured packets on wire 70448
captured dialogue time 728

netperf packets
65555

AP ←→ station

ratio
0.931

dialogue/total packets

netperf retransmitted packets
11991

AP ←→ station

ratio
0.183

retransmissions/netperf dialogue

Table 6: Packet analysis for the 1Mb/s case

In table 6 we analyze the packet for approximatively 12 minutes: as we have
22 tests of 30 seconds each, this is the only case in which we basically cover all the
runs. The first ratio tells us that about 93% of the capured packet were in fact part
of our benchmark. By looking at the other packets in wireshark, we can tell that
they were mostly beacons from various other access points. Having a 93% is in our
opinion quite a good value, so we tend to dismiss the heavy channel contention
hypothesis. Instead, looking at the second value tells us that we had about 18% of
retransmitted packets. In our opinion this is not a good value, and our sensation
is confirmed by looking at the other captures (although we have to keep in mind
that sampled population are decreasing with the increase of the rates): in all the
other cases the highest retransmission value is 6.8%, a much lower value. So at
this point the only explanation we can give is that there were some interferences
in adjacent channels, or even by non 802.11 devices

2.2.2 802.11b: case 5.5Mb/s

Figure 5’s line chart shows the experiments’ trend with 5.5Mb/s data rate. This is
one of the tests with relatively high deviations from the mean, which is also quite
clear from the image.

The last four results are peculiarly low compared to the others: unfortunately,
we do not have the tools to further investigate the reasons. Judging from the
persistence of the trend (given that each test lasts 30 seconds, the conditions
causing it must have been there for two minutes) it is probably due to some other
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Figure 5: Line chart of the 22 measurements for the 5.5Mb/s rate case with mean
and upper and lower interval for 95% confidence

station transmitting on the same channel of in one overlapping it. Especially the
first hypothesis seems to be supported by the link quality parameter, outputted
right after the end of the last measurement, which is quite high:

Link Quality=89/100 Signal level=-35 dBm Noise level=-84 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:29 Missed beacon:27

Like in the previous case, in table 8 we show an analysis on the captured packets.
With this speed the analysis is less precise, since the portion of captured packets
is way less (less than half of the toal experiment). By looking at these values,
it would seem like we have good channel conditions, and this could explain the
overall good performance, if our ”theoretical vs observed” value is compared to
other rates. Unfortunately the captured packets are of the first part of the series
of tests and not of the last, the one which presents the noticeable ”slope”.
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theoretical average throughput 4.187
observed minimum throughput 2.949
observed maximum throughput 3.915
observed average throughput 3.583
standard deviation 0.266
confidence interval 90% and 95% 0.093 0.111
theoretical vs observed difference 14.417%

Table 7: Statistics gathered for the 5.5Mb/s case. All values are in Mb/s.

captured packets on wire 100428
captured dialogue time 234

netperf packets
98820

AP ←→ station

ratio
0.984

dialogue/total packets

netperf retransmitted packets
2304

AP ←→ station

ratio
0.023

retransmissions/netperf dialogue

Table 8: Packet analysis for the 5.5Mb/s case

2.2.3 802.11b: case 11Mb/s

In figure 6 we show the results for the 11Mb/s experiment. We present again the
measured data, summarized for this case in table 9. This is one of the tests with
relatively high deviations from the mean, which is also quite clear from the image,
by looking at the confidence interval. All in all there is not much left to say. We
will not show the analysis done on packets, since is not even two minutes long.

theoretical average throughput 6.966
observed minimum throughput 5.298
observed maximum throughput 5.981
observed average throughput 5.711
standard deviation 0.163
confidence interval 90% and 95% 0.057 0.068
theoretical vs observed difference 18.018%

Table 9: Statistics gathered for the 11Mb/s case. All values are in Mb/s.
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Figure 6: Line chart of the 22 measurements for the 11Mb/s rate case with mean
and upper and lower interval for 95% confidence

2.2.4 802.11b: case 24Mb/s and 54Mb/s

These two tests will not be analyzed since we cannot provide any factual data
suitable of supporting meaningful explanations. All we can say is that as always
the test are plagued by high instability of the measurements. A noteworthy fact
is that, if we assume our theoretical value reliable, the spread from observed value
and theoretical value is increasing faster than with the other rates (see table 5).
In the appendix we provide anyway the charts for these two testing configurations
(figures 10 and 11).
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3 Study on fragmentation levels

3.1 Theoretical analysis

As done in precedence, to study the performances obtained using Fragmentation,
first we have to consider a theoretical analysis. We have chosen to analyze the
performances with fragmentation of only two transmission speeds: 5.5Mb/s for
the b transmission mode and 24Mb/s for the g. For the fragmentation threshold
we have decided to consider 3 different values: 800, 600 and 410 (we have to
remember a particular of the stream of packets which is composed of 44 ”Long”
Packets of 1480Bytes and a ”Short” Packet of 395Bytes so we have that these 3
fragmentation values split the Long Packet of our UDP Stream in, respectively, 2,
3 and 4 fragments, while only the 410 threshold interact with the Short Packet,
splitting it in two). So for the various fragmentation thresholds we have a number
of fragments that is:

• for the Fragmentation Threshold of 800, the number of fragment is:
NFrag@800 = 2 × Long Packet (44) + Short Packet = 89
the number of fragment per packet is: 2 for each Long Packet and
1 for each Short Packet

• for the Fragmentation Threshold of 600, the number of fragment is:
NFrag@600 = 3 × Long Packet (44) + Short Packet = 133
the number of fragment per packet is: 3 for each Long Packet and
1 for each Short Packet

• for the Fragmentation Threshold of 410, the number of fragment is:
NFrag@410 = 4 × Long Packet (44) + 2 × Short Packet = 178
the number of fragment per packet is: 4 for each Long Packet and
2 for each Short Packet

Figure 7: 802.11 fragmentation procedure

3.1.1 5.5Mb/s

For the calculus of the Throughput, we will follow the figure 7, utilizing the pre-
viously calculated times of transmission (see Sec2.1.1), with the following consid-
erations: each of the varius parts will be counted in respect with their frequences.
This means that, in general, we will count each part of the stream as follow:
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• DIFS × NPacket

• Backoff × NPacket

• PhysicalHeader (DataFragment) × NFrag

• MACHeader (DataFragment) × NFrag

• FCS (DataFragment) × NFrag

• LLC × NFrag

• IP × NFrag

• SIFS × (Long Packet × ((2 × NFragLongPacket) − 1) +
Short Packet × ((2 × NFragShortPacket) − 1))

• PhysicalHeader (ACK) × NFrag

• MACHeader (ACK) × NFrag

• FCS (ACK) × NFrag

• the complete stream of packet with the UDP Header (65515 Bytes), as anal-
ized in precedence

where NPacket is the number of packets (45) and NFrag is, instead, the number of
fragments (the number changes for each fragmentation threshold) that compose
our stream (NFragLongPacket and NFragShortPacket are, respectivelly, the number of
fragments into wich are divided the Long and Short packets).
Table 10 shows the various frequencies for each part of the stream in relation at
the different fragmentation threshold:

Frequencies
Fragmentation DIFS Backof Pyh + MAC + FCS SIFS Phy + MAC

Threshold + LLC + IP Data + FCS ACK
800 45 45 89 133 89
600 45 45 133 221 133
410 45 45 178 311 178

Table 10: Frequencies of the various part that composes the UDP stream at each
of the fragmentation threshold

Given the frequencies of the various parts of the stream is easy, with the data
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calculated in Sec2.1.1, to obtain the transmission times, and then the throughputs
relatives to the fragmentation threshold:

Transmission T ime @ 800 = 138974.36µs

Transmission T ime @ 600 = 152782.36µs

Transmission T ime @ 410 = 166904.18µs

Thrughput @ 800 =
524056 bits

138974.36µs
' 3.77088 Mb/s

Thrughput @ 600 =
524056 bits

152782.36µs
' 3.43008 Mb/s

Thrughput @ 410 =
524056 bits

166904.18µs
' 3.13986 Mb/s

3.1.2 24Mb/s

As done for the 5.5Mb/s, now we will calculate the theoretical throughput for the
g mode at speed 24Mb/s. Again each part of the stream will be calculated in
relation to its frequency: the same frequencies calculated for the 5.5Mb/s case are
valid also for the 24Mb/s case (10) with the adding of Services, Tail and Padding
bits for each fragment. While Services and Tail bits are fixed (22 bits in total),
we have to recalculate Pad bits for each fragment (the Pad bits of the ACK are
always 82).
Table 11 shows the dimensions of the various fragments, their frequencies and the
dimension of their Pad bits:

Fragmentation 800 Fragmentation 600 Fragmentation 410
Fragments 776 732 423 576 356 423 348 356 423

(Bytes)
Frequencies 44 44 1 88 44 1 133 44 1

Pad bits 74 42 18 42 74 18 42 74 18

Table 11: Dimensions of the padding bits for each fragment encountered during
the analysis

To better comprehend table 11 consider the following: at fragmentation threshold
800, the Long packet is divided into 2 fragments of respectively 776 and 732 Bytes,
while the Short packet is left untouched (432 Bytes); at 600 the Long packet is
divided into 3 fragments of respectively 576, 576 and 356 Bytes, while the Short
packet is left, again, untouched; at 410 the Long packet is divided into 4 fragments
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of respectively 384, 384, 384 and 356 Bytes, while the Short packet is divided into
2 fragments of respectively 384 and 39 Bytes.
Using frequencies found in Sec3.1.1, transmission times for the singles parts as in
Sec2.1.2 and the Pad bits as in table 11, is possible to calculate the transmissions
times and relatives throughput for each of the fragmentation threshold:

Transmission T ime @ 800 = 34769.853µs

Transmission T ime @ 600 = 39231.916µs

Transmission T ime @ 410 = 43795.6µs

Thrughput @ 800 =
524056 bits

34769.853µs
' 15.07225 Mb/s

Thrughput @ 600 =
524056 bits

39231.916µs
' 13.35790 Mb/s

Thrughput @ 410 =
524056 bits

43795.6µs
' 11.96593 Mb/s

3.2 Measurements analysis

Fragmentation should help in situations where the transmission is disrupted by
short ”impulses” of rumor, allowing in this case for the retransmission of only
part of the original packet. Conversely, it should slightly degrade performances
in basically all other cases. In our situation a high amount of interference is
dominating the test environment, such that the fragmentation’s result show a
noticeable degrade in performances, increasing with the number of fragments.

3.2.1 802.11b - 5.5Mb/s

Table 12 shows some data obtained with the various tests done with different
fragmentation thresholds, while figure 8 show the comparison between theoretical
and measured averages at the various fragmentation threshold:
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Frag Frag Frag
800 600 410

Average (Theor) 3.77088 3.43008 3.13986
Average (Measu) 2.84796 2.08088 2.01980

Efficiency (Measu) 75.525% 60.666% 64.328%
Standard Deviation 0.18669 0.33669 0.25487

Min (Measu) 2.44891 1.64922 1.26609
Max (Measu) 3.13195 2.68211 2.33227

Table 12: Parameters taken from theoretical and measured data, relative to the
fragmentation threshold at 5.5Mb/s datarate
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Figure 8: comparison of theoretical and measured throughput relative to the frag-
mentation threshold for 5.5Mb/s datarate
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3.2.2 802.11g - 24Mb/s

Analizing the data for the 24Mb/s case, we can observe that some tests are lower
than the others due to significant performance losses. In the attempt to have a fair
idea about the performance impact of fragmentation we removed these discordant
entries. Table 13 shows tests data both raw (including all the actual measured
entries) and refined (after removing the lower values), Table 14 shows statistics
over the data and figure 9 shows the difference between theoretical and measured
averages, also in both the case of raw and refined data:

Frag 800 Frag 600 Frag 410
Raw Refined Raw Refined Raw Refined

11.811 11.811 10.045 10.045 2.016 0
11.157 11.157 9.775 9.775 9.826 9.826
12.590 12.590 9.843 9.843 3.224 0
9.365 0 10.287 10.287 4.060 0
9.519 0 10.542 10.542 5.357 0
8.598 0 9.877 9.877 9.638 9.638
9.826 0 9.843 9.843 9.860 9.860
11.498 11.498 10.406 10.406 10.116 10.116
11.344 11.344 1.482 0 9.672 9.672
11.208 11.208 10.798 10.798 9.672 9.672
12.010 12.010 10.611 10.611 9.724 9.724
11.122 11.122 10.747 10.747 10.031 10.031
11.890 11.890 10.730 10.730 9.553 9.553
11.532 11.532 10.474 10.474 9.536 9.536
11.788 11.788 10.338 10.338 10.082 10.082
11.430 11.430 5.049 0 9.604 9.604
12.248 12.248 7.950 0 9.792 9.792
10.952 10.952 10.645 10.645 9.280 9.280
11.890 11.890 6.772 0 8.768 8.768
11.242 11.242 7.642 0 9.347 9.347
11.805 11.805 10.696 10.696 8.888 8.888
9.877 0 10.406 10.406 8.683 8.683

Table 13: Measured througput in Mb/s for the tests with fragmentation at 24Mb/s
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Frag 800 Frag 600 Frag 410
Raw Refined Raw Refined Raw Refined

Avg (T) 15.07225 13.35790 11.96593
Avg (M) 11.12276 11.61856 9.33272 10.35668 8.48770 9.55960
Effic (M) 73.796% 77.086% 69.867% 77.532% 70.932% 79.890%
Std. Dev. 1.01213 0.42621 2.19092 0.34309 2.36192 0.41161
Min (M) 8.59768 10.95192 1.84240 9.77488 2.01578 8.68304
Max (M) 12.58960 10.79832 10.11600

Table 14: Parameters taken from theoretical, measured and a refined subset of the
measured data, relative to the fragmentation threshold at 24Mb/s datarate
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Figure 9: comparison of theoretical, measured and refined throughput in relation
to the fragmentation threshold for speed 24Mb/s
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4 Conclusions

During this laboratory experience we examined the protocol behaviour by ”play-
ing” with speed rates and fragmentation. Unfortunately, by looking at the ex-
periments results, it is clear that doing a thorough analysis is very difficult given
the condition of the network in the faculty and even the great complexity of the
protocol. Nonetheless we can still try to draw some conclusions on some general
properties on how the protocol works in a real world deployment. First of all it is
immediate to notice that, every time we increase the data rate, we assist to a cor-
responding increase in the delta between the actual and nominal data throughput.
This is immediate by taking the 54Mb/s datarate case, where the actual output is
just about half that value. This can be explained with the fact that the protocol
needs to maintain compatibility with all (compulsory) data rates, which translates
to inter frame spaces and data rate speeds for some packets (or even part of them)
sent at a common maximum for every standard. To add more complexity, we can
point out that the maximum one can reach varies given the network conditions,
like for example the NIC cards capabilities of the other stations connected to the
same BSSID, in addition to the amount of traffic and other interferences.

Things can get even more problematic when taking into consideration the ob-
served throughput. The measurements done are very inconsistent but, if taken on
average, always significantly under the theoretic average we computed. Given this
inconsistency it is difficult to judge whether our theoretical values are too high
or the channel were simply too much disturbed during the tests. One thing that
seems to stand out is that, in general, the gap tends to increase with the used data
rate (if we do not take into account the 1Mb/s case), topping at 28.657% in the
54Mb/s case.

In the process of preparing the report, we did rely on the wireshark tool in
order to try explain some of the results we obtained. Although it is an excellent
tool, during this time we noticed that it needs too much resources to handle the
huge quantity of data that we had to examine, forcing us to take small samples
instead. For these reasons it occurred to us that we should have used a tool that
could handle higher quantity of packets, also by discarding most of the payload,
like tcpdump. Unfortunately we could not repeat the experiments at that point.
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A Additional Material
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Figure 10: Line chart of the 22 measurements for the 24Mb/s
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Figure 11: Line chart of the 22 measurements for the 54Mb/s
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