
University of Trento,
Italy

Laboratory activities for the Nomadic
Communications course 2009/2010: Report 2

Marco Dalla Torre 136311 marco.dallatorre@studenti.unitn.it

Simone Raffaele 140950 simone.raffaele@studenti.unitn.it

Anno Accademico 2009/2010

mailto:marco.dallatorre@studenti.unitn.it
mailto:simone.raffaele@studenti.unitn.it

Abstract

This report describes the second experimental activity done for the
course of Nomadic Communications. We can divide it in three parts: while
the first part is introductory, presenting the work and the testbed configura-
tion used to take the measurements, the remaining two parts are about the
actual experimental results. In particular, the second part is a theoretical
approach to the experiments performed, while the third part analyzes the
experiments’ results. The objective of the experiments is to analyze the be-
haviour of the B.A.T.M.A.N. and the O.L.S.R. protocol implementations.
Both these parts will try to approach the problem first from a theoretical
point of view and then with the analysis of the actual measured values.

1

Contents

1 Introduction 3
1.1 Testbed description and setup . 3
1.2 Experiments description . 5

2 Speed Study 6
2.1 Throughput with 1 hop . 8
2.2 Throughput with 2 hops . 11
2.3 Comparison throughput with direct, 1 hop and 2 hops 12

3 Convergence Study 14
3.1 Convergence Time . 16
3.2 Convergence Time with Lossy Node 18
3.3 Convergence Results . 19

4 Conclusions 20

Bibliography 21

2

1 Introduction

The goal of the experimental activity described here is to analyze and under-
stand the behaviour and capabilities of the main implementations of two of the
most prominent 802.11 routing protocols for mesh networks, B.A.T.M.A.N. and
O.L.S.R.. The respective implementations we use are those offered at batmand [2]
and olsrd [5] projects homepages.

1.1 Testbed description and setup

All the measurements have been done in the faculty in the rooms 106, 107 and
201, using mainly the CISCA provided equipment. For our group this consisted
in:

• four laptops with identical hardware and with Ubuntu Linux installed.

• a fifth laptop, with the same hardware configuration as those just described,
running the Backtrack Linux live cd1 has been used to perform live packet
capture of the experiments using TCPDUMP[6]. These data has been ana-
lyzed by using Wireshark[7].

More specifically, the laptops are equipped with the Intel PRO/Wireless 2200BG
integrated wireless card, capable of supporting the b and g communication proto-
cols, and also the monitor operational mode.

Network set-up: The ad-hoc network is set-up by executing on each station
the commands in the next listing:

sudo ifconfig eth3 down

sudo ifconfig eth3 192.168.13.67 netmask 255.255.255.0 broadcast 192.168.13.255

sudo iwconfig eth3 mode ad-hoc essid "Noi" channel 1 rate 54M

sudo ifconfig eth3 up

In order to avoid the groups to interfere with each other as much as possible, all the
groups’ ad-hoc networks are configured to use the three non overlapping frequencies
allowed by 802.11: we used that on channel 1 (2.412MHz). The above lines of
course, differ for each station in the IP assignments. During the experiments we
kept the following statically assigned addresses configuration:

• ip address: 192.168.13.65, mac address: 00:13:ce:da:89:a3 as source

• ip address: 192.168.13.66, mac address: 00:13:ce:da:2b:fa as first hop

1homepage: http://www.backtrack-linux.org/

3

http://www.backtrack-linux.org/

• ip address: 192.168.13.68, mac address: 00:13:ce:d8:b8:ea as second hop or
alternative hop, depending on the test

• ip address: 192.168.13.67, mac address: 00:13:ce:da:94:59 as sink

Available routes set-up: Since the test stations are all in the same room sitting
next to each other, in order to test the routing protocols in a plausible configu-
ration we simulate the absence of physical communication link between pairs of
laptops by using the the iptables program suite. This is possible because the
implementations we are using all try to find out available routes through UDP
communications. Just blocking these communications works because both imple-
mentations operate by manipulating the system’s routing tables on the basis of
the discovered routes. We blocked some selected links by using the iptables
command like in the following:

iptables -F

iptables -A INPUT -s 192.168.13.67 --protocol UDP --source-port 698 -j DROP

iptables -A INPUT -s 192.168.13.68 --protocol UDP --source-port 698 -j DROP

For example, by inserting the above lines at the 192.168.13.65 station’s root ter-
minal we are telling the ip stack to ignore incoming UDP packets from the two
specified addresses (192.168.13.67 and 192.168.13.68) having source port 698 (in
this case port 698 is used by the O.L.S.R. protocol).

iptables -F

iptables -A INPUT -s 192.168.13.65 --protocol UDP --source-port 1966 -j DROP

With these lines instead we are blocking the B.A.T.M.A.N. discovery protocol
from address 192.168.13.65. As before, the resulting effect is that the blocked
network interface will not try to directly communicate with the blocking one, but
instead will try to rely on indirect paths.
With similar lines on all the test stations we can effectively set up a network where
packets are routed through multiple hops. All the computers involved in the test
can then communicate with each other through predefined 802.11 wireless paths
set up by the meshing protocols.

A brief consideration about B.A.T.M.A.N.: its newest kernel-space implemen-
tation (the batman-advanced branch) is no longer relaying on layer 3 to discover
new routes, making the trick just presented ineffective and requiring instead a
more complex solution. However, this does not affect us since the version installed
with the provided Ubuntu is the older user-space implementation. While the new
implementation brings a number of advantages (e.g. lower cpu usage and indepen-
dence from layer 3 protocols to name a few)[1], the principles behind the protocol
should roughly remain the same, so we maintain that even using the older version
can result in an up-to-date study of the protocol’s working principles.

4

Protocols set-up: As soon as the network is finally configured and running, we
start the protocols. The line for olsrd is:

/usr/sbin/olsrd -i eth3

while for batmand the line is:

/usr/sbin/batmand -d 1 eth3

Benchmarking tools: The benchmarking tools chosen for measuring the con-
nection throughput are iperf[3] and netperf[4].

1.2 Experiments description

In the experiments reported here we consider mainly two type of results:

• the performance from the point of view of the receiver given one or two hops

• the route set-up time in response to various simulated underlying topology
changes

All the experiments were performed in the university’s new IRST building. This
building is well known to be not ”wireless friendly”, being rich of both wireless
interference sources and attenuation inducing materials. Unluckily we have no
other places to use to perform the tests in.

5

2 Speed Study

In this section we measure the transfer rate through a number hops managed by the
two routing protocols. In particular we have arranged for the following topology
configurations:

• a one hop configuration, with three stations connected

A

B

C

Figure 1: 1 hop single path topology

• a one hop configuration with parallel routes, with four stations connected,
two of them being a possible path to reach the sink

D

B

C

A

Figure 2: 1 hop parallel topology

• a two hops configuration, with four stations connected

In an initial setup of the tests we did also distinguish between free and fixed
network rate (set through the iwconfig tool), only to discard this distinction
(leaving the parameter unset) for the simple reason that this setting does not

6

A B

CD

Figure 3: 2 hops topology

seem to make much sense in ad-hoc networking. This is because iwconfig only
allows us to see and change a logical representation of the connection to the ad-
hoc network. Newest tools like iw, that unfortunately we could not use, allow to
review and modify parameters for each connection to the neighboring participants.
This makes much more sense as every connection may have its totally different set
of characteristics. Both batmand and olsrd have then been tested with these
configurations, in this section we will proceed to present the results.

olsrd Single Path Parallel Path

Average Packet Loss 16.94% 2.73%
Average (Mbit/sec) 6.58 2.72

Max (Mbit/sec) 10.4 5.18
Min (Mbit/sec) 3.35 1.24

Std Deviation (with no TX error) 2.16 (3.42) 2.3 (1.52)
batmand Single Path Parallel Path

Average Packet Loss 0.01% 3.59%
Average (Mbit/sec) 3.53 4.9

Max (Mbit/sec) 7.57 8.53
Min (Mbit/sec) 1.23 1.78

Std Deviation (with no TX error) 2.3 (2.34) 2.75 (3.06)

Table 1: results of the experiments in the 1 hop configurations using olsrd and
batmand with UDP, for single and parallel paths. Average, Max and Min values
refer only to 0% data loss runs. Standard deviation values are listed both consid-
ering all the 22 tests’ average speeds and, enclosed in parenthesis, only those with
no error.

7

2.1 Throughput with 1 hop

In the following measurements we did put up a two hops configuration, in both
single and parallel path versions. The test was originally done using iperf with
the following parameters:

/usr/bin/iperf -c192.168.13.65 -b54M -i5 -t20

where, of particular interest:

• -b 54M forces to send data at 54 Megabits/second

• -i 5 sets the interval in seconds between bandwidth reports

• -t 20 sets the time in seconds to transmit for

The experiment is repeated 22 times, for a total of 440 seconds worth of transmis-
sion using olsrd. Unfortunately the results for these tests are not very meaningful:
because of UDP and the output rate we are forcing on the sender side, a lot of the
sent data are not received by the server. Additionally, the values reported at each
interval (omitted in this report) are those sent through the first link, not consid-
ering at all the data rate arriving from the hop the sink. All we can save from
those experiments are the (few) measurements for the 20 seconds test reported by
the server where no packet got lost. Results from that data are summarized in
table 1: as expected it is difficult to draw any conclusions from these tests. The
packet loss amount and the observed speed are highly variable, especially in the
single path case. The parallel path seems to be more prone to comparison. Still,
we reckon the difference in speed has more to do with disturbance on the channel
than with the routing protocol in use.

After noticing the problem caused by the presence of packet loss, we decided
then to change the experiments using a more reliable configuration, this time using
netperf in TCP mode. This is the starting command:

/usr/bin/netperf -H192.168.13.65 -l20

This time too, each experiment was 20 seconds long, but it was repeated only
10 times because of time constraints. With this configuration even if TCP adds
overhead to the communication, we are able to use the reported rates without fear
of using values belonging to an unsuccessful transmission. The resulting plots are
showed in figures 4 and 5, while a summary of the key values is present in table
2. From the values it is apparent that the rates are in general quite low compared
with some of the values obtained in the previous tests. Still, the speed is slightly
higher compared with the cases where less losses happen. The difference in speed
cannot only be explained with the replacement of UDP with TCP: other possible
causes may be that transmission speed is no more forced to 54Mbit/sec by the

8

batmand olsrd
Single Parallel Single Parallel

Average 3.26 3.22 3.31 3.39
Max 3.49 3.45 3.67 3.73
Min 2.91 2.95 2.89 2.93

Std Deviation 0.17 0.16 0.24 0.23

Table 2: Aggregates of the experiments results in the 1 hop configurations

1 2 3 4 5 6 7 8 9 10
2,6

2,7

2,8

2,9

3

3,1

3,2

3,3

3,4

3,5

3,6

OLSRD, NETPERF, TCP, 1 HOP

PARALLEL SINGLE

Experiment

Th
ro

ug
hp

ut
 M

bi
t/s

Figure 4

sending application (which could also explain the much lower standard deviation)
and that the tests were done at a different date (which could lead to a different
level of channel pollution). Other than this, we can add that it does not seem that
the routing protocol is much meaningful to the actual transmission rates. Clearly,
given how they both work by just manipulating the kernel routing table, the only
way in which they can lead to different results in throughput is by generating a
different amount of traffic. But by just looking at these values, while olsrd seems

9

1 2 3 4 5 6 7 8 9 10
2,6

2,7

2,8

2,9

3

3,1

3,2

3,3

3,4

3,5

3,6

BATMAN, NETPERF, TCP, 1 HOP

PARALLEL SINGLE

Experiment

Th
ro

ug
hp

ut
 M

bi
t/s

Figure 5

to have a bit of a lead over batmand by in the average throughput values, the
differences are small enough to not lend themselves to clear conclusions. And once
again, the high quantity of interferences can have had some influence.

10

2.2 Throughput with 2 hops

Now we present the results from the test using the 2 hops topology. Even in this
case, the tests are performed using the netperf tool. Results are shown in figure

1 2 3 4 5 6 7 8 9 10
1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

2,8

3

Throughput 2 Hops

OLSRD BATMAN

Experiment

Th
ro

ug
hp

ut
 M

bi
t/s

ec

Figure 6

6 and summarized in table 3. Like in the 1 hop case, we do not observe particular
differences by using the two routing protocols, but the O.L.S.R. implementation
seems to come out with a slight lead over batmand. These result seems to be coher-
ent with the results obtained in section 2.1, although we again want to stress the
fact that the margins are very tiny and that as always results can be heavily influ-
enced by the channel condition. For example, by eliminating the batmand lowest
value reported (1.35 Mbit/sec) we have an overall sequence of values that are much
in line with those reported by olsrd, resulting in an average of 2.05 Mbit/sec much
similar to the value of 2.1 we have with the O.L.S.R. implementation.

11

batmand olsrd

Average (Mbit/sec) 1.98 2.1
Max (Mbit/sec) 2.19 2.37
Min (Mbit/sec) 1.35 1.7
Std Deviation 0.26 0.2

Table 3: results of the experiments in the 2 hops configuration using olsrd and
batmand with netperf in TCP.

2.3 Comparison throughput with direct, 1 hop and 2 hops

In this part we briefly try to compare the scalability of the two protocols, that is, we
examine eventual performance losses related to the growth of network participants.
To do so, we reuse the values obtained by 10 runs of the netperf tool already
used in the previous sections. In figure 7 we have a graphic comparison of the

0 1 2
1

1,5

2

2,5

3

3,5

4

4,5

5

Throughput 2 Hops

OLSRD BATMAND

Experiment

Th
ro

ug
hp

ut
 M

bi
t/s

ec

Figure 7: Comparison of the O.L.S.R. and B.A.T.M.A.N. protocols implementa-
tions on average throughput using TCP at 0, 1 and 2 hops

two protocols. As it is readily apparent, the are no significant variations in the
average values to report. For the sake of completeness we reported the values on

12

table 4. Unfortunately, we could only use a maximum of four stations to do our

N hops batmand olsrd
0 4.41 degradation 4.39 degradation

1 3.26 74% 3.31 75%
2 1.98 60% 2.1 63%

Table 4: results of the experiments’ throughput average in Mbit/sec with 0, 1
and 2 hops configuration using olsrd and batmand with netperf in TCP. The
degradation columns are intended as the throughput’s degradation with respect
to the configuration immediately above

tests, while these protocols are supposed to work with a number of nodes in the
hundreds. We believe that having such a small testbed is not enough ”hard work”
for them to be push at their limit, hence having the possibility to observe what is
the better approach.

13

3 Convergence Study

In this section we will measure the responsiveness of the routing protocol in re-
action to changes to the physical topology. Such changes can be a sudden link
disappearance, some interferences that cause the link to be unusable, etc. . . Fig-
ure 8 shows the general idea beyond our study. To do the measurements we have

D

B

C

A D

B

C

A D

B

C

A

Figure 8

decided to use the following configuration of iperf:

/usr/bin/iperf -c192.168.13.65 -b54M -i1 -t30

This instruction will be repeated 10 times for each test, during which at some
point, one of the two possible data path, the one actually in use, will be forcefully
turned ”dead” by disabling the wireless card of its node. We have observed that,
following the ”death” of a node, the iperf client returns, for some time, a set of
data that shows that the transmission is not in act: these data can be a series of
0s or ”impossible” data (values above the 15 - 20 Mb/s). The data obtained from
iperf are then compared with the data registered by Wireshark (that is running
on the fifth laptop). This comparison was useful to understand that the iperf data
produced by the client laptop were actually meaningful.

For simplicity of representation we will transform the data graphs as shown in
figure 9: in the simplification each of the throughput data during the transmission
will be set at a constant value of 1, only to show that there is a transmission
in act, while the data during the time the transmission is not in act, will be set
to 0. This can be done because our interest is in the number of seconds during
which there is no transmission instead of the actual throughput. The wireshark

14

150
159

175
185

0

2

4

6

8

10

12

14

16

Convergence Test

Tests

M
b/

s

150
159

175
185

0

1

2

3

4

5

6

Convergence Test Modified

Tests

M
b/

s

150
159

175
185

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Convergence Test Modified

Tests

M
b/

s

Wireshark Convergence Test

Seconds

Packets/s

68
75

100

0

1

Convergence Test Modified

Tests

Ac
tiv

e/
In

ac
tiv

e
C

om
un

ic
at

io
n

68
75

100

0

2

4

6

8

10

12

14

16

Iperf Convergence Test

Tests

M
b/

s

Figure 9

generated graph as seen in the image presents two distinct colored lines. These
represent iperf transmissions on the two different last hop segments.

We will show the results obtained from 3 tests for each of the 2 Mesh protocols
implementations used, olsrd and batmand. During the first two tests we have done
the following: after some time from the start of the test we have turned off the
wireless card of the path used for the transmission of the stream of data, then,
when the protocol has reacted to the ”death” of the node and changed the path,
we have turned on the wireless card of the ”dead” node. By doing this we have had
the opportunity to put to ”death” another node during a single test, measuring
two data concerning the convergence time of the protocols. The third test is a
bit different. In fact we have set one of the two intermediate nodes as a ”lossy”
node: this is done with the help of iptables, limiting the number of protocol control
packets that the node accepts. These are the iptables instructions used for olsrd :

sudo iptables -A INPUT -p udp --dport 698 -m limit --limit 360/min -j ACCEPT

sudo iptables -A INPUT -p udp --dport 698 -j DROP

while the following is the one used for batmand :

sudo iptables -A INPUT -p udp --dport 1966 -m limit --limit 360/min -j ACCEPT

sudo iptables -A INPUT -p udp --dport 1966 -j DROP

15

3.1 Convergence Time

1
25

50
68

75
90

100
125

150
159

175
185

200
225

250
275

300

0

1

OLSRD Convergence Test 1

Tests

Ac
tiv

e/
In

ac
tiv

e
C

om
un

ic
at

io
n

Figure 10

Figures 10 and 11 show the tests results obtained from olsrd. In the first graphic
we have the convergence times from second 68 to 90 and from second 159 to the
185, while in the second the times are from second 68 to 100 and from second 165
to 187. This means that we have 4 measurements of: 23, 27, 32, and 22 seconds,
with a mean value of 26 seconds.

1
25

50
68

75
100

125
150

165
175

187
200

225
250

275
300

0

1

OLSRD Convergence Test 2

Tests

Ac
tiv

e/
In

ac
tiv

e
C

om
un

ic
at

io
n

Figure 11

16

1
25

31
50

70
75

100
125

144
150

175
200

225
250

275
300

0

1

BATMAN Convergence Test 1

Tests

Ac
tiv

e/
In

ac
tiv

e
C

om
un

ic
at

io
n

Figure 12

Figures 12 and 13 show, instead, the tests results obtained from batmand.
Again we have 4 convergence times: in the first test from second 31 to 70 and
from 144 to 175, from the second test from second 35 to 60 and from 141 to 190.
These measurements leads to downtime measurements that are 40, 32, 26 and 50
seconds long, with a mean value of 37 seconds. Although the data obtained are
not so different it seams that batmand is a little bit slower than olsrd in reacting
to a suddenly missing node.

1
25

35
50

60
75

100
125

141
150

175
190

200
225

250
275

300

0

1

BATMAN Convergence Test 2

Tests

Ac
tiv

e/
In

ac
tiv

e
C

om
un

ic
at

io
n

Figure 13

17

3.2 Convergence Time with Lossy Node

To conclude with this section we show the two tests done with the ”lossy” path:

1
25

35
50

75
100

103
125

150
175

200

0

1

OLSRD Convergence with Lossy Path

Tests

Ac
tiv

e/
In

ac
tiv

e
C

om
un

ic
at

io
n

Figure 14

1
25

50
75

85
100

125
150

167
175

200

0

1

BATMAN Convergence with Lossy Path

Tests

Ac
tiv

e/
In

ac
tiv

e
C

om
un

ic
at

io
n

Figure 15

Figures 14 and 15 shows the results obtained with both protocols: for olsrd we have
a convergence time of 69 seconds (from second 35 to 103) while for batmand we
have a convergence time of 83 seconds (from second 85 to 167). Again, even if the
difference is small, it seems that batmand is slower in it’s reactions.

18

3.3 Convergence Results

Although the results obtained seems to tell us that olsrd is faster than bat-
mand most of the times, we have also to consider that the environment in which
we have done our tests is not ideal for direct comparisons. Also we are using only a
small number of nodes, while the protocols are designed to work on a much larger
scale (hundreds to thousands of nodes). Table 5 shows the various obtained results
in a compact way.

Times (in seconds)
Test 1 Test 2 Average Lossy Test

olsrd 23, 27 32, 22 26 69
batmand 40, 32 26, 50 37 83

Table 5: Results of the various tests about convergence time of both OLSR and
B.A.T.M.A.N

19

4 Conclusions

During the work for this report we have had the opportunity to work with two of
the most prominent proactive protocol implementations for wireless ad-hoc mesh
networks, batmand and olsrd. In our work we have analyzed the behavior of the two
protocols in a restricted ambient, with particular attention for their throughput
and convergence performances. The actual results obtained seem to be telling us
that in the case of pure throughput there is a nearly equal behavior, while in the
case of response to the ”death” of a node (Convergence), olsrd seems to be a little
faster. These conclusions nonetheless have to be taken with a grain of salt, since
the test are made in conditions and modalities which we believe are far from the
typical field of operation for wireless mesh networks. The reasons are multiple: the
very limited number of participating stations and the interference busy location
in which the network operated are the main concerns. Also the ”tricks” used to
simulate unreachable and-or bad link nodes may have created some unexpected
behavior with use of both the mesh protocols and the benchmarking tools we have
utilized for capturing the results. Instead it was actually interesting to observe the
different responses of different protocols to the same kind of problems.

20

References

[1] B.a.t.m.a.n. advanced
http://www.open-mesh.org/wiki/batman-adv.

[2] B.a.t.m.a.n. (better approach to mobile ad-hoc networking)
http://www.open-mesh.org.

[3] Iperf homepage
http://sourceforge.net/projects/iperf/.

[4] Netperf homepage
http://www.netperf.org.

[5] O.l.s.r. homepage
http://www.olsr.org.

[6] Tcpdump homepage
http://www.tcpdump.org/.

[7] Wireshark homepage
http://www.wireshark.org/.

21

http://www.open-mesh.org/wiki/batman-adv
http://www.open-mesh.org
http://sourceforge.net/projects/iperf/
http://www.netperf.org
http://www.olsr.org
http://www.tcpdump.org/
http://www.wireshark.org/

	Introduction
	Testbed description and setup
	Experiments description

	Speed Study
	Throughput with 1 hop
	Throughput with 2 hops
	Comparison throughput with direct, 1 hop and 2 hops

	Convergence Study
	Convergence Time
	Convergence Time with Lossy Node
	Convergence Results

	Conclusions
	Bibliography

