A glimpse into the
Linux Wireless Core:
From kernel to firmware

5 w;& \ []

2\l 170 ' I n

e LS
N/ ‘L/-‘-\} 71"i!_ O t | I e

\ [=[] T |
L T N !_: =

W e =

X 2

e Linux Kernel Network Code
— Modular architecture: follows layering

e Descent to (hell?) layer 2 and below
— Why hacking layer 2
— OpenFirmWare for WiFi networks

e OpenFWWEF: RX & TX data paths

e OpenFWWEF exploitations

— TCP Piggybacking
— Partial Packet Recovery

Slide 2 Trento 29/4/2011 From kernel to firmware

Linux Kernel Network Code

. Linux Networking Stack
=¥ Modular architecture

e Layers down to MAC (included)

— All operations above/including layer 2 done by kernel code
— Net code device agnostic
— Net code prepares suitable packets

e |n 802.3 stack [pkt |

— Eth code talks with device drivers

— Device drivers E
e Map/unmap DMA desc to packets e1000 8139¢cp

e Set up Hardware registers PCI

Slide 4 Trento 29/4/2011 From kernel to firmware

e What happens with 802.117?

— New drivers to handle WiFi HW: how to link to net code?
— A wrapper “mac80211” module is added

mac80211
b43 ath9k el1000 8139cp

PCI

Slide 5 Trento 29/4/2011 From kernel to firmware

SYUDIOR%

N %
=)
N A N
A G 74.
. @

eeeeeeeeeeee Linux & 802.11
” Modular architecture

e Layers down to LLC (“mac) common with 802.3
— All operations above/including layer 2 done by ETH/UP code

e Packets converted to 802.11 format for rx/tx
— By wrapper “mac80211”

e Manage packet conversion
e Handle AAA operations
. i mac80211
e Drivers: packets to devices
— One dev type/one driver athok N 8139cp
PCI PCI

e Add data to “drive” the device

Slide 6 Trento 29/4/2011 From kernel to firmware

: S[UDIOR%

=

Linux & 802.11
Modular architecture/1

*Convert agnostic info into device dependent data
Eeitip ftent trdrey Wesd] diratdatasdbgusnoeaandress
*Fill header, add LLC (0xAA 0xAA, 0x00, 0x0

_ _ | ’ 0>_<9R_c%90p£%%§8;a9%00)'
*Add information for HW setup (device agn
DA | SA | ET PACKET PAYLOAD
INFO |CN|DUR| DA | BSS | SA |SEQ]| LLC PACKET PAYLOAD
DEVICE
mawe 802.11 PACKET
DEVICE .
DATA Waﬂolleér?ﬁél’{ﬁﬁlty
PLCP OFDM1 OFDM2 OFDM3 OFDM4
o GO!

Slide 7 Trento 29/4/2011

mac80211

Set HW
reqgisters

From kernel to firmware

@iy Linux & 802.11

e Opposite path: conversions reversed
e ® Several operations involved for each packet

e © Multiple buffer copies (should be) avoided

— E.g., original packet at layer 4 correctly allocated
e Before L3 encapsulation output device already known

e ® Packets are queued twice

— Qdisc: before wrapper
— Device queues: between wrapper and driver

Slide 8 Trento 29/4/2011 From kernel to firmware

e Forwarding/routing packet on a double interface box
FW/Route decision

Ethernet & upper layers

802.3 pkt mac80211 802.11 pkt

802.11 pkt

iy Linux & 802.11

e On CPU limited platform, fw performance too low

— Need to accelerate/offload some operations

e Ralink was first to introduce SoC WiFi devices
— A mini-pci card hosts an ARM CPU
— Main host attaches a standard ethernet iface
— The ARM CPU converts ETH packet to 802.11
— Main host focuses on data forwarding

e Question: where can be profitably used?

Slide 10 Trento 29/4/2011 From kernel to firmware

§ Linux & 802.11: setup

e Asimple BSS in Linux

— One station runs hostapd (AP)
— Others join (STAs): wpa_supplicant keeps joining alive
e Why? Kernel (STA) periodically checks if AP is alive

e |[f management frames lost, kernel (STA) does not retransmit!
e A supplicant is needed to re-join the BSS

— In following experiments we fix arp associations
S: ip neigh replace to PEERIP lladdr PEERMAC dev wlanO

— Traffic not encrypted
— QoS disabled

Slide 11 Trento 29/4/2011 From kernel to firmware

&z Linux & 802.11: kernel setup

e Check the device type with

$: lspci | grep —i net

e |oad the driver for Broadcom devices
S$: modprobe b43 qos=0

e Check kernel ring buffer with
$: dmesg | tail -30

e Check which other modules loaded
$: lsmod | grep b43

e Bring net up and configure an IP address

SAP: ifconfig wlan0 192.168.1.1 up
SSTA: ifconfig wlan0O 192.168.1.10 up

Slide 12 Trento 29/4/2011 From kernel to firmware

e Configuration of the AP in “hostapd.conf”

interface=wlan0
driver=nl80211
dump file=/tmp/hostapd.dump
ctrl interface=/var/run/hostapd
ss1d=NOISE-B43
hw _mode=g

channel=1

beacon int=100

auth algs=3

wpa=0

e Runs with
$: hostapd -B hostapd.conf

e Check dmesg!

Slide 13 Trento 29/4/2011

Linux & 802.11: hostapd setup

Try to send SIGUSR1

PIPE used by

RSS nronerties

No encryption/
authentication

From kernel to firmware

Linux & 802.11: station setup

e Configuration of STAs in

ctrl interface=/var/run/wpa supplicant

network={
ssid="NOISE-B43"
scan ssid=1 o
- BSS to join
key mgmt=NONE

}
e Runs with

$: wpa supplicant -B -i wlan0 -c wpa supp.conf

e Check dmesg!

e Simple experiment: ping the AP
$: ping 192.168.1.1

e Simple experiment (continued): try capture traffic

Slide 14 Trento 29/4/2011 From kernel to firmware

nTArr- (.o - ...

Linux & 802.11: capturing packets

e On both AP and STA run “tcpdump”

S: tcpdump -i wlanO -n
e |s exactly what we expect?
— What is missing?
— Layer 2 acknowledgment?

e Display captured data

$: tcpdump -i wlan0 -n -XXX
e What kind of layer 2 header?
e What have we captured?

Slide 15 Trento 29/4/2011 From kernel to firmware

Linux & 802.11: capturing packets

e Run “tcpdump” on another station set in monitor mode

S:
S:
S:

S:

ifconfig wlan0 down

iwconfig wlan0 mode monitor chan 4(?)
ifconfig wlan0 up

tcpdump -i wlan0 —n

e What’s going on? What is that traffic?
— Beacons (try to analyze the reported channel, what’s wrong?)

— Probe requests/replies

— Data frames

e Tryto dump some packet’s payload

— What kind of header?
— Collect a trace with tcpdump and display with Wireshark

Slide 16 Trento 29/4/2011 From kernel to firmware

Linux & 802.11: capturing packets

e Exercise: try to capture only selected packets

e Play with matching expression in tcpdump
$: [cut] ether[N] ==|!= 0xAB

e Discard beacons and probes

e Display acknowledgments

e Display only AP and STA acknowledgments
e Question: is a third host needed?

Slide 17 Trento 29/4/2011 From kernel to firmware

i Virtual Interfaces

e Wrapper/driver “may agree” on virtual packet path

— Each received packet duplicated by the driver

— mac80211 creates many interfaces “binded” to same HW

— In this example
e Monitor interface attached
e Blue stream follow upper stack

e Red stream hooked to pcap
$: iw dev wlan0 interface add \
fish0 type monitor

— Try capturing packets on the AP
e What’s missing?

Slide 18 Trento 29/4/2011

mac8021:.

From kernel to firmware

Descent to layer 2 and below
An open firmware

Wrapper for all hw Ethernet & upper layers

Find interface;
remove eth head;
add LLC&dot11 head; — mac80211
fill (sa;da;ra;seq);
fill(control;duration);
set rate (from RC);
fill (rate;fallback);

Ethernet & upper layers

mac80211

Set up hw regs;
Fill hw private fields;
Send frame on DMA;

Get stats;
Reports to mac80211
Several MAC
primitives missing!

Who takes care of

ack?

3 Linux & 802.11
<Y Modular architecture/3

For sure -

We will hack the firmware today but first...
Let’'s check why we should do that ©

Firmware does

Slide 22 Trento 29/4/2011 From kernel to firmware

': Why/how playing with 802.11

e Radio access protocols: issues
— Some are unpredictable: noise & intf, competing stations
e Experimenting with simulators (e.g., ns-3)

— Captures all “known” problems
e Testing changes to back-off strategy is possible ©

— Unknown (not expected)?
e Testing how noise affects packets not possible ®

e In the field testing is mandatory

— Problem: one station is not enough!

Slide 23 Trento 29/4/2011 From kernel to firmware

Programmable Boards

e Complete platforms like
— WARP: Wireless open-Access Research Platform
— Based on Virtex-5

— Everything can be changed
e PHY (access to OFDM symbols!)
e MAC

— Two major drawbacks
e More than very expensive
e Complex deployment

— If PHY untouched: look for other solutions!

Slide 24 Trento 29/4/2011 From kernel to firmware

iy Off-the-shelf hardware

e Five/Six vendors develop cheap WiFi hw
— Hundreds different boards

— Almost all boards load a binary firmware
e MAC primitives driven by a programmable CPU

— Changing the firmware = Changing the MAC!
e Target platform:

— Linux & 802.11: modular architecture

— Official support prefers closed-source drivers @

— Open source drivers && Good documentation
e Thanks to community! ©

Slide 25 Trento 29/4/2011 From kernel to firmware

Linux & 802.11
Broadcom AirForce54g

e Architecture chosen because
— Existing asm/dasm tools

e A new firmware can be written!

— Some info about hw regs

e We analyzed hw behavior mac80211
— Internal state machine decoded

— Got more details about hw regs
— Found timers, tx&rx commands
— Open source firmware for DCF possible

e We released OpenFWWF!

— OpenFirmWare for WiFi networks

Slide 26 Trento 29/4/2011 From kernel to firmware

Template
RAM

Internal
memory

PHY

Slide 27 Trento 29/4/2011 From kernel to firmware

% Description of the HW

e CPU/MAC processor capabilities
— 8MHz CPU, 64 general purpose registers

e Data memory is 4KB, direct and indirect access
— From here on it’s called Shared Memory (SHM)

e Separate template memory (arrangeable > 2KB)

— Where packets can be composed, e.g., ACKs & beacons
e Separate code memory is 32KB (4096 lines of code)
e Access to HW registers, e.g.:

— Channel frequency and tx power
— Access to channel transmission within N slots, etc...

Slide 28 Trento 29/4/2011 From kernel to firmware

o TX o
i a‘ ‘ijﬁ ‘;LV S I e
HTHTHZANE e

iR N il

e |Interface from host/kernel
— Six independent TX FIFOs
— DMA transfers @ 32 or 64 bits
— HOL packet from each FIFO

e can be copied in data memory
— Analysis of packet data before transmission
— Kernel appends a header at head with rate, power etc

e can be transmitted “as is”
e can be modified and txed, direct access to first 64 bytes

Slide 29 Trento 29/4/2011 From kernel to firmware

S TX side/2

e Interface to air
— Only 802.11 b/g supported, soon n
— Full MTU packets can be transmitted (~2300bytes)

e |f full packet analysis is needed, analyze block-by-block

— All 802.11 timings supported

e Minimum distance between Txed frames is Ous
— Note: channel can be completely captured!!

— Backoff implemented in software (fw)

e Simply count slots and ask the HW to transmit

Slide 30 Trento 29/4/2011 From kernel to firmware

2 RX side

e Interface from AIR

— HW acceleration for
e PLCP and global packet FCS - Destination address matching

— Packet can be copied to internal memory for analysis
e Bytes buffered as soon as symbols is decoded
— During reception and copying CPU is idle!

e Can be used to offload other operations

— Packets are pushed to host/kernel
e |f FW decides to go and through one FIFO ONLY
e May drop! (e.g., corrupt packets, control...)

Slide 31 Trento 29/4/2011 From kernel to firmware

Examp|e:
<7 TX a packet, wait for the ACK
PKT

K

DMA

Template
RAM

DROPPED!

Slide 32 Trento 29/4/2011 ACK From kernel to firmware

- Example
<=7 RX a packet, transmit an ACK

Template Prepare Send to
sl ACK host

PKT is
for me

Wait SIFS

Slide 33 Trento 29/4/2011 PKT From kernel to firmware

&) What lesson we learned

e From the previous slides
— Time to wait ack (success/no success)
— Dropping ack (rcvd data not dropped, goes up)

— And much more
e When to send beacon
e Backoff exponential procedure and rate choice

— Decided by MAC processor (by the firmware)
e Bottom line:
Hardware is (almost) general purpose

Slide 34 Trento 29/4/2011 From kernel to firmware

=% From lesson to OpenFWWEF
7 Description of the FW

e OpenFWWEF
— It’s not a production firmware

— It supports basic DCF
e No RTS/CTS yet, No QoS, only one queue from Kernel

— Full support for capturing broken frames
— It takes 9KB for code, it uses < 200byte for data
e We have lot of space to add several features

e Works with 4306, 4311, 4318 hw
— Linksys Routers supported (e.g., WRT54GL)

Slide 35 Trento 29/4/2011 From kernel to firmware

2,% Broadcom AirForce54g
&= Simple TDM

TDM
needed!
Waiting

turn

PKT

Template

Slide 36 Trento 29/4/2011 From kernel to firmware

2,% Broadcom AirForce54g
& simple TDM/?2

Template i ‘ Sync the
RAM A clock

PKT from
TDM

domain
PKT

Slide 37 Trento 29/4/2011 From kernel to firmware

OpenFWWF
RX & TX data paths

Firmware in brief

e Firmware is really complex to understand ®

— Assembly language
e CPU registers: 64 registers [rO, rl, ..., r63]

e SHM memory: 4KB of 16bits words addressable as [0x000] -> [Ox7FF]

e HW registers: spr000, spr001, ..., sprlFF

— Use #define macro to ease understanding

o #define CUR_CONTENTION WIN
o #define SPR_RXE_FRAMELEN
o #define SHM RXHDR
— SHM(.) isamacro as well that divides by 2

— Assignments:
e Immediate mov OxABBA, rO;
e Memory direct mov [0x0013], rO;

Slide 39 Trento 29/4/2011

r8
spr00c
SHM (0xA88)

// load OXABBA in r0
// load 16bit @ 0x0026 (LE!)

From kernel to firmware

e Value manipulation:

— Arithmetic:

e Sum: add rl,

e Subtraction: sub r2,
— Logical:

e Xor: XOor rl,
— Shift:

e Shift left: sl rl,

e Pay attention:

Firmware in brief/2

r2, r3;

rl, r3;

r2, r3;

0x3, r3;

//r3=rl+r2
//r3=r2-rl

[/ r3=r1"r2

//r3=r1<<3

— In 3 operands instruction, immediate value in range [0..0x7FF]

— Value is sign extended to 16bits

Slide 40 Trento 29/4/2011

From kernel to firmware

Firmware in brief/3

e Code flow execution controlled by using jumps

— Simple jumps, comparisons

e Jump ifequal: e

e Jump if less: jl

r2, r5, loop; //jumpifr2==r5
r2, r5, exit; //jumpifr2<r5 (unsigned)

— Condition register jumps: jump on selected CR (condition registers)

on plcp end: jext
on rx end: jext
on good frame: jext
unconditionally: jext

COND_RX PLCP, rx plcp;
COND_ RX COMPLETE, rx complete;
COND_RX FCS GOOD, frame ok;
COND TRUE, loop;

— A check can also clean a condition, e.g.,
e jext EOI(COND RX PLCP), rx plcp; //clean CR bit before jump

— Call a code subsection, save return value in link-registers (Ir):

e call 1r0, push frame;

// return with ret 1r0, 1ro0;

Slide 41 Trento 29/4/2011 From kernel to firmware

iz Firmware in brief/4

Slide 42

e OpenFWWEF is today ~ 1000 lines of code

— Not possible to analyze in a single lesson
— We will analyze only some parts

e Asimple exercise:
— Analyze quickly the receiver section

— Propose changes to implement a jammer
e When receives packets from a given STA, jams noise!

Trento 29/4/2011 From kernel to firmware

AP

ity RX code made easy

e During reception CPU keeps on running

— Detect end of PLCP

— May wait for a given number of bytes received

— May prepare a response frame (ACK)

— Wait for end of reception

— May schedule response frame transmission after a while

[M-1...N]

[N-1...0]

PLCP

Slide 43 Trento 29/4/2011

NOowW

. .
; A 0
LI .".“:"““ ;“"-;.‘;,y. »ya s

If from jam target setup jam

JAM JAM READY!

From kernel to firmware

RX code made easy/2

bad
rx_plcp rx_badplcp
good
data control ack
Wait
enough management
header X_data_plus x ack
bytes beacon —
rx_beacon send_CTRL_
frame_to_host
send_response__ RX check Eill HW
If ra_matches ;match Promisc header for
ch kernel,
matc raise IRQ
Prepare WAIT
ACK in . packet end RXx FCSgood gand frame_
tegx:ate Send_response complete to_host

Slide 44 Trento 29/4/2011 From kernel to firmware

RX code made easy/3

e During reception
— CR RX_PLCP set when PLCP is completely received
— CR COND_RX_BADPLCP set if PLCP CRC went bad
— SPR_RXE_FRAMELEN hold the number of already received bytes

— First 64B of packet are copied starting at SHM_RXHEADER = SHM(0x908)
e First 6B hold the PLCP

— CR COND_RX_COMPLETE set when packet is ready

e We can have a look at the code flow for a data packet
— rx_plcp: checks it’s a data packet
— rx_data_plus: checks packet is longer than 0x1C = 6(PLCP)B + 22(MAC)B
— send_response: copy src mac address to ACK addr1, set state to TX_ACK
— rx_complete: schedule ACK transmission

Slide 45 Trento 29/4/2011 From kernel to firmware

$& RX code made easy/4

e |f first byte of a packet are copied to SHM
e |f we have ways of displaying SHM

— Could we find evidence of received packets?

e Useful tool
— S: b43-fwdump [-s]
— Display r0..ré3 registers
— Switch “-s” dump content of SHM
e Run this experiment: Ping the AP very fast from the STA
S: ping -i 0.1 192.168.1.1 -b size
— On AP dump the SHM: locate the ICMP packet
— Fix the rate on STA: how do the first 6 bytes change?
— Try for different ICMP size.

Slide 46 Trento 29/4/2011 From kernel to firmware

iz Back to jammer

e Disturbing a station when sending data

— Jammer recognizes tx’ed data and sends fake ACK packet

e Starts little before the SIFS
e Send a slightly longer packet

e Maybe (for testing) jamming all packets is too much

— Selected packets?
TX station

JAMMER

Slide 47 Trento 29/4/2011

DATA1

AP
SIFS

From kernel to firmware

m? Back to jammer/2

* Propose changes to code flow for a selected data packet
e Exercise: only for UDP packets to port 43962

— rx_plcp: checks it’s a data packet

— rx_data_plus: checks packet is longer than 0x1C = 6(PLCP)B + 22(MAC)B
— send_response: copy src mac address to ACK addrl, set state to TX_ACK
— rx_complete: schedule ACK transmission

Slide 48 Trento 29/4/2011 From kernel to firmware

@i JAM code

e To switch to a different firmware
— Look at /lib/firmware
— Link the desired firmware release as “b43”

— Remove b43 module, reload and bring back the network up
S: rmmod b43 .

e How to test JAM code? “iperf” performance tool

e On AP run in server mode (receiver)
$: iperf -s -u -p 10000 -i 1

e On STA run in client mode (transmit)
S: iperf —c 192.168.1.1 —u —p 10000 —1i 1 —t 10

Slide 49 Trento 29/4/2011 From kernel to firmware

e Packets are prepared by the kernel
— Fill all packet bytes (e.g., 802.11 header)

— Choose hw agnostic device properties
e Tx power to avoid energy wasting
e Packet rate: rate control algorithm (minstrel)
— A driver translates everything into hw specific
e b43: rate encoded in PLCP (first 6B)
e b43: append a fw-header at packet head

— Firmware will setup hw according to these values

Slide 50 Trento 29/4/2011 From kernel to firmware

&) TX made easy/2

e Kernel (follows)
— b43: send packet data (+hw info) through DMA

e firmware:

— Continuous loop, when no receiving
e |f IDLE, check if packet in FIFO (comes from DMA)
e |f packet does not need ACK, TX,report and exit
e |f packet needs ACK, wait ACK timeout
e |f ACK timeout expired:
— if ACK RXed, report to kernel, exit

— If ACK not RXed, setup backoff, try again
— If too much TX attempt, remove packet from FIFO, report to kernel, exit

Slide 51 Trento 29/4/2011 From kernel to firmware

&) TX made easy/3

Second attempt:
increase backoff

Device TX FIFO TXANT RXANT
_. ACK
3 —>
New packet in FIFO GEJ" Packet Gifrupt
TX attempt =0 = L e ACK back
ACK ok
TX STATUS FIFO Report to
kernel g3

IRQ wake status
handler in kernel

Slide 52 Trento 29/4/2011 From kernel to firmware

m? TX made easy/4

e Summary
backoff backoff
DATA DATA DATA
COLLISION COLLISION OK
S S
AP < I

e FW reports to kernel the number of attemps
— Kernel feeds the rate control algo
— A rate for the next packet is chosen

Slide 53 Trento 29/4/2011 From kernel to firmware

m? TX made easy/5

e Currently “minstrel” is the default RC algo
— At random intervals tries all rates
— Builds a tables with success “rate” for each “rate”
— In the short term it selects the best rate

— How to checks this table from userspace?

e DEBUGFS ©

e Take a look at folder
sys/kernel/debug/ieee80211

Slide 54 Trento 29/4/2011 From kernel to firmware

iz TX made easy: exercise

e Firmware: backoff entered if ack is not rx

— Simple experiment
e Two STAs joined to the same BSS
e iperf on both STAs to the AP
e They should share the channel

— What happen if we hack one station fw?
— Let’s try...
e TX path really complex, skip
e But at source top we have a few “_ CW” values

Slide 55 Trento 29/4/2011 From kernel to firmware

OpenFWWEF Exploitation:
Two concrete MACs released

OpenFWWEF Exploitation:
TCP-PIGGYB-ACK

"Z TCP flow over WiFi

e AP: sends data segments to STA (e.g., from remote)
e STA: sends TCP ACK to AP (that forwards them)

— Two separate channel accesses
e |dea: TCP ACK is short
— Why not replacing L2 ACK with a mixed L2+L4 ACK?

backoff

frozen backoff

DIFS DIFS
TCP_DATA ACK

ACK TCP_ACK

T,=TCP_DATA+SIFS+ACK+DIFS+TCP_ACK+ACK+DIFS+E[backoff]

Slide 58 Trento 29/4/2011 From kernel to firmware

& TCP flow over WiFi/2

e Expected behavior: TCP-PIGGYB-ACK!

backoff backoff
frozen backoff

DIFS DIFS DIFS
TCP_DATA TCP_DATA TCP_ACK

ACK TCP_ACK ACK

T.=2 TCP_DATA+3 SIFS+3 DIFS+2 TCP_ACK+2 ACK+2 E[backoff]

e Enhanced behavior, work in progress.

backoff

frozen backoff

DIFS DIFS
TCP_DATA TCP_ACK

TCP_ACK TCP_DATA

T,=2 TCP_DATA+2 SIFS+2 DIFS+2 TCP_ACK+ACK+E[backoff]

Slide 59 Trento 29/4/2011 From kernel to firmware

egress
queue

egress
queue

If this packet gets lost...
It will never be retransmitted!

TCP will correct this at next
ACK

Slide 60 Trento 29/4/2011 From kernel to firmware

) TCP-PIGGYB-ACK: changes

e FW @ rx

— Piggyback: only if a TCP DATA is received
e Avoid Ping-Pong

— Piggyback: only if a TCP ACK is in queue
e If not, send L2 ACK

— Piggyback: header is L2ACK, longer!

e Kernel @ tx
— If L2ZACK long (=>TCP ACK) received

e Forge and inject a recovered TCP ACK in the stack

Slide 61 Trento 29/4/2011 From kernel to firmware

. SYUDIOR%

= TCP-PIGGYB-ACK
Performance Evaluation

e Testbed & measurement

— Two peers, several other BSS
— One peer is the Access Point

while(1l) {
For 60 sec: exchange traffic with no PIGGYBACK
Measure throughput Tl at rx
For 60 sec: exchange traffic with PIGGYBACK
Measure throughput T2 at rx
Plot(Tl, T2)

Slide 62 Trento 29/4/2011 From kernel to firmware

. SYUDIOR

=™ Performance Evaluation
Data rate fixed to 2Mb/s

—
(6)]
T

PiggyBack (Mb/s)

o
o
T

0 0.5 1.5 2

’
Legacy (Mb/s)

Slide 63 Trento 29/4/2011 From kernel to firmware

. SYUDIOR

=™ Performance Evaluation
Data rate fixed to 11Mb/s

&)

N

PiggyBack (Mb/s)
\V) w

—
T

Legacy (Mb/s)

Slide 64 Trento 29/4/2011 From kernel to firmware

» Performance Evaluation
’ Data rate free

14

—
\}

—_
o

PiggyBack (Mb/s)

Legacy (Mb/s)

Slide 65 Trento 29/4/2011 From kernel to firmware

i TCP-PIGGYB-ACK: Comments

e Lost TCP-ACK in piggybacking
— Not retransmitted

e Problems with rate control algorithm?

e Not all TCP segment are piggybacked with
TCP-ACK

— E.g., when the queue is empty

Trento 29/4/2011 From kernel to firmware

4igb) TCP-PIGGYB-ACK: exercise

e Switch module and firmware
— We have a single kernel module for rx/tx

— Still two separated FW — Not production!

e Keep in mind: for debug purposes
— Experiments “legacy” to port 12346
— Experiments “piggy” to port 12345
— AP should receive TCP data, generate L2+L4 ACK
— STA should transmit TCP data

® Play With /sys/kernel/debug/b43/phyN/specack

Slide 67 Trento 29/4/2011 From kernel to firmware

< TCP-PIGGYB-ACK: exercise/2

e Useiperf/tcp
— AP(rx) $: iperf -s -p 12345|12346 -i 1
— STA(tx) $: iperf -c 192.168.1.1 -p 12345 -i 1 -t 10

e At the end on both, issue
— $: sudo cat /sys/kernel/debug/b43/phyN/specack

e To reset statistics
— $: echo 0 | tee /sys/kernel/debug/b43/phyN/specack

Slide 68 Trento 29/4/2011 From kernel to firmware

OpenFWWEF Exploitation:
Partial Packet Recovery

In collaboration with

({’.:‘ U N LYSERESSRRIY. OF

? MARYLAND &= atad

iy Errors & noise in WiFi

e Packet Error Rate of 802.11 networks is high[1]

— Random noise can affect only a few bits
e One or multiple blocks of corrupted bits inside a packet

— Corrupted frames are discarded

e Even if only 1 bit is wrong!
— 802.11 retransmits after ACK timeout

— Correctly received bits are completely wasted

[1] Bo Han, Lusheng Ji, Seungjoon Lee, Bobby Bhattacharjee, and Robert R. Miller.
All Bits Are Not Equal. A Study of IEEE 802.11 Communication Bit Errors.
INFOCOM 2009, pp. 1602-1610, Apr. 20009.

Slide 70 Trento 29/4/2011 From kernel to firmware

" Errors & noise in WiFi/2

e Suppose we divide packets into 64bytes block
— Typical packet trace of a managed station

30000 - T . l T ,
25000 r
20000 r
15000 r
10000 [
5000 r —

0 1 1 | 1 1 1

0 2 4 6 8 10 12 14
The Number of Error Blocks

Slide 71 Trento 29/4/2011 From kernel to firmware

The Number of Error Packets

%) Recent Approaches

e Forward Error Correction (FEC) based
— ZipTx [2] sends RS redundant bits for recovery
— Two-round coding scheme
— Educated guess of BER and high recovery delay

e Implemented(?) in kernel-space on Atheros devices
e Evaluated in 113, outdoor tests (low interference)

[2] K. C.-J. Lin, N. Kushman, and D. Katabi. ZipTx: Harnessing Partial Packets in
802.11 Networks. ACM MOBICOM 2008, pag. 351-362, Sept. 2008.

Slide 72 Trento 29/4/2011 From kernel to firmware

"’ Recent Approaches

e Based on Automatic Repeat reQuest (ARQ)

— PPR [3] relies on the confidence of each bit’s
correctness

— Retransmit only corrupted bits

— Not available in commercial hardware
e implemented and evaluated on 802.15.4 protocol stack

[3] K. Jamieson and H. Balakrishnan. PPR: Partial Packet Recovery for
Wireless Networks. ACM SIGCOMM 2007, pag. 409-420, Aug. 2007

Slide 73 Trento 29/4/2011 From kernel to firmware

5 ,w;;.'; 5

"El ji‘(—w‘;\

g=3 Our approach
oy [

e Similar to PPR
— No access to confidence information

e Use checksum coefficient embedded in packets
e We implemented everything from scratch

— Changes to Linux kernel
— Changes to OpenFWWEF

e We designed MARANELLO and BOLOGNA
— AKAS Practical Partial Packet Recovery P3R!

Slide 74 Trento 29/4/2011 From kernel to firmware

" Maranello: P3R

e At rx corrupted packet is divided into blocks
— Blocks are equally sized (apart the last one)
— For each block apart the first compute a checksum
— Checksums sent back to the transmitter in a N-ACK

Corrupted Block 1 Block 2 Block 3 Block 4

packet: Y y y

To transmitter NACK Header | C1 | C2 | C3
— Transmitter retransmits only corrupted blocks

— First block can’t be protected
e [t must always be retransmitted, contains the header!

Slide 75 Trento 29/4/2011 From kernel to firmware

Maranello: handling retransmission

Tx ml Rx

Tt
.....................
................
]

I
N

N

AN

o ldgHetansmission

4y Bologna: P3R

e Like Maranello but...

e At tx packet is expanded
— In each block a checksum is embedded

e Rx checks all blocks:
— If packet fails, send back a NACK
— NACK is the bitmap of corrupt blocks

Corrupted Block 1 Block 2 C1 Block 3 C2 | Block 4

packet: Y y Y

To transmitter NACK Header ﬂ

Slide 77 Trento 29/4/2011 From kernel to firmware

Bologna: handling retransmission

g = g

Slide 78 Trento 29/4/2011 From kernel to firmware

iy Advantages of P3R

e Receiver-controlled recovery
e Utilizing the airtime reserved for ACKs

— No additional overhead for correct packets

e Faster packet recovery
— Recovery immediately after a transmission fails
— Shorter recovery frames

Slide 79 Trento 29/4/2011 From kernel to firmware

i Implementation Architecture

e Time-critical operations should be
implemented in firmware space

— RX: block checksum calculation, NACK generation
— TX: block checksum calc., block retransmissions

e Why not in driver space
— High bus transfer delay + interrupt latency (>70 us)

e ACK, and NACK:

— must start within 10us after receiving a frame

Slide 80 Trento 29/4/2011 From kernel to firmware

"?" Implementation: Transmitter

e Kernel=>Maranello operations:
— precompute checksums for each output packet
— send packet and checksums to the firmware

e Firmware=>Maranello operations:

— receive NACK: compares checksums to those precomputed
— rebuild “special retransmission” putting pieces together

Output packet (backlogged) NACK Header [C1 | C2 | C3

Block 1 X
C1 Block 2 C21=C2
C2 Block 3 Sends this “special retransmission”
C3 | Block 4 Block 1 Block 3

Slide 81 Trento 29/4/2011 From kernel to firmware

&y Implementation: receiver

e Firmware=>Maranello operations:
— compute checksums on packet reception

— if frame is corrupted
e send NACK instead of ACK, same timings
e send corrupted packet up to kernel

e Kernel=>Maranello operations:
— stores corrupted packet

— when receives a special retransmission
e rebuild the original packet

Slide 82 Trento 29/4/2011 From kernel to firmware

<y Other details

e Maranello & Bologna

— We used 64-byte blocks

— Checksum:

e CRC16 is desiderata
e OpenFWWEF has not access to CRC engine
e We used Fletcher-16/32, computing checksums on the fly

— Recovered packets protected by an additional CRC32
checksum

Slide 83 Trento 29/4/2011 From kernel to firmware

"Z Throughput tests

e Repeat this experiment
— 60s UDP traffic, sta to AP (iperf), legacy => 3,
— 60s UDP traffic, sta to AP (iperf), Maranello => 3,
— Plot (3, &)

e Each run follows sta initialization

e Three environments
— ATT lab
— Maryland campus
— Bo’s home
e Linux sta
— Fixed channels (1, 6, 11)
— Minstrel as RC

Slide 84 Trento 29/4/2011 From kernel to firmware

&% Throughput tests

e Reliable test?

30

25 r

throughput of 802.11

20 1

15 |

10 |

51.4%

. . . * l. L A

. w’.,,‘2,0:. . .

o, L % e % .

. te g eteca

o . :-'.:1 -“Ei';,iﬂ -_..:' .
B ...';.;7;3535..-: setee. o
Lhu b osge

.
. .

. *
. o® e

TR .
Y S
K-

1X
48.6%

5 10 15 20
throughput of 802.11

Slide 85 Trento 29/4/2011

25 30

From kernel to firmware

&) Throughput tests

e Bo’s home
30 r

2X 1.6X 1.3X 1X

0.8% 5.6% . 65.6% 3.6%
L 284% .

25

20

:- ()/
. ’,;..a.
PR R L3 - L
15 + B R
s AN ARV o SN
, o 4o --.‘/. o ‘-L-', :..

..... o

* .

10

throughput of Maranello

o b . .
0 5 10 15 20 25 30

throughput of 802.11

Slide 86 Trento 29/4/2011 From kernel to firmware

2X 1.6X 1.3X

25 r

20 t S ABA% .

) -. ’ '.“," :-;‘" o e -
S e L
15 | Joe e ’.Gt.f'r&..:&, &
oot ;-I£|' ::%'-{.- LI W R s
RO o R
Lo '..:.?....o ‘:". .

e ‘::3 eyl
St e
- o,)

10

throughput of Maranello

0.8% 13.2% ~40.3%

1X

0.5%

0 5 10 15 20
throughput of 802.11

Slide 87 Trento 29/4/2011

25 30

From kernel to firmware

& Throughput tests

e Maryland campus
30 r

o | 2X 1.6X 1.3X 1X
o . . - o
= 7.0%17.9% 36.2% 4.1%
S 20 " 348% "
2 s
B 15 ¢+ . h;t?# f‘
=
o %
L
& 10|
S
5 i ..',
O ’//;’)’:’. | | | | | J
o 5 10 15 20 25 30

throughput of 802.11

Slide 88 Trento 29/4/2011 From kernel to firmware

i%*--‘i; Throughput tests

e Link layer latency is reduced (shorter retr)

1 _
f'f
0.8 [¥
'
i
]
0.6 -g
LL
Q |
@)
0.4 l
0.2 i
| Maranellg e
0
10 20 30 40 50 60 70 80 90 100110

link layer latency (ms)

Slide 89 Trento 29/4/2011 From kernel to firmware

90

Maranello

PRO

e Partial Packet Recovery
e Backward comp. 802.11
e Link latency--

e No extra-bits in reg. packets

ISSUES
e NACK very long

Trento 29/4/2011

MARANELLO vs BOLOGNA

BBR
PRO
e Partial Packet Recovery
e Backward comp. 802.11
e Link latency--
e NACK minimized

ISSUES
e Packet expansion

From kernel to firmware

15

BOLOGNA

=
<
T

- 5l 1i0 1i5
MARANELLO

Slide 91 Trento 29/4/2011 From kernel to firmware

a=» What to Do Next?
L

e Complete Bologna evaluation

e Evaluating checksum strength
— E.g., is ok Fletcher16? Or Fletcher32 is better?

e Different block sizes

e Back-to-Back packet aggregation

e |[nteraction between rate control and error
recovery protocols

— Better bit rate for retransmissions

Slide 92 Trento 29/4/2011 From kernel to firmware

» What to Do Next?/2

e Packet aggregation with Partial Packet Recovery:
— For failed packets if retransmission is short
— Instead of retransmitting only the corrupt part
— Transmit corrupt part + new packet (if any ©!)

802.11 PPR 802.11 PPR+N-PHY
PEER1 H% PEER2 PEER1 % PEER2
€—NACK €—NACK
Backoff
<€ ACK | :: €ACK2
Use the same airtime of DCF and may
——DRAIA2 — re-transmit + new-transmission!!

Slide 93 Trento 29/4/2011 From kernel to firmware

m? What to Do Next?/3
e Without N-PHY we can use OpenFWWF Hack

802.11PPR++

PEER1 % PEER2

€NACK
DATA1*+2

=

€ ACK?

Slide 94 Trento 29/4/2011 From kernel to firmware

=% Experiment: block error
<=7 distribution

e Use “superblockanalyzer” to tx/rx traffic
e Use “codeanalyzer2” to compute distribution
e A virtual iface in monitor mode is needed on TX/RX

S$: sudo iw dev wlan0 interface add fish0O type monitor

S: sudo ifconfig fishO0 up
e Onreceiver

$: sudo ./supercodeanalyzer -i fish0O -s -p 10000

e On transmitter

$: sudo ./supercodeanalyzer -c larrybird.trento -p 10000 \
-r ./packet.pcap -B Bologna/58//fletcherl6/64 \
-x 00:22:15:87:87:b3 -y 00:13:d4:bb:2c:bf -i fishO

Slide 95 Trento 29/4/2011 From kernel to firmware

=% Experiment: block error
=7 distribution/2

e Check RX screen

— Never ending? Why?
— Focus on “wrong blocks”? Always 07
— Should we have in kernel space wrong packets?

e | will manage kernel and firmware switch!
e Run again the tools...

e Finally display statistics

. /codeanalyzer2 -e f16 -r packet expO.pcap -p /
. /packet.pcap -x 00:22:15:87:87:b3 /
-y 00:13:d4:bb:2c:bf

Slide 96 Trento 29/4/2011 From kernel to firmware

Some recent news

. SYUDIOR%

,» News from .11 hardware world

..................
NEmEL:

=7 ATHEROS/1

e Atheros AR9170USB
— USB dongle, supports a/b/g/n-draft
e Atheros released opensource fw and driver

— Otus driver: features missing, code style--

e C. Lamparter introduced carl9170
— Pro: Everything implemented, station, ap, monitor
— Pro: Firmware sources can be compiled from C code
— Issue: random firmware crashes

e Kernel handles crashes and restart wireless subsystem

Slide 98 Trento 29/4/2011 From kernel to firmware

. SYUDIOR%

_____________ ? News from .11 hardware world
=7 ATHEROS/2

e Got in touch with C. Lamparter

— FW/Processor is not the MAC processor
e Resembles SoftMAC

— FW/Processor polls the hardware (e.g., MAC), no IRQ

e Filters packets from air by type and forwards to host on DMA
No way(unknown?) to build responses and send them back
ACKs handled by MAC processor: “Response Controller”
ACKs can be only disabled

Not a real time platform!

— But...

e ...CCA can be disabled @

e |s this enough?

Slide 99 Trento 29/4/2011 From kernel to firmware

2,9 News from .11 hardware world
<&¥ BROADCOM/1

e Pros

— Broadcom boards ARE realtime
— Opensource firmware available: OpenFWWF

— L2 protocol exchanges: can be deeply customizated
e E.g., Partial Packet Recovery (Maranello/Bologna MAC)

e Drawbacks

— We know how to do this on b/g boards:
e What about 11n?

— We don’t know how to handle CCA

e Minimum space between packets is 10us (follows from .11e)

— We can’t change modulation
e E.g., no way to modify MPDU format (i.e., PLCP is fixed)

Slide 100 Trento 29/4/2011 From kernel to firmware

% News from .11 hardware world
<=7 BROADCOM/?2

e 10/10/2010 Good news!

— Broadcom released OS drivers
— Builds on mac80211 linux module
— For their latest N-PHY boards (43224/225)

e Same architecture, firmware that drives the MAC processor!

e Drawbacks
— No open-source firmware yet, will ever?

— Only managed mode implemented (no AP)
— 43224/225 boards still hard to find: we have two since last week

— We will add RE instruments to Broadcom driver

RE work will start soon

Slide 101 Trento 29/4/2011 From kernel to firmware

2,3 News from .11 hardware world
<=7 BROADCOM/3

e Original developers of Broadcom drivers for Linux
— They were(are) working on N-PHY support
— More devices included, not only latest-state-of-the-art
e After Broadcom announcement
— Request to open the firmware source

— Broadcom said NO!

e Got in touch with main developer R. Mitecki
— We now have an opensource driver

e What about firmware...
— We are working on our own firmware: Ope(N)FWWF
— RE Broadcom Firmware: interestingly they simply added features
— So we will do building up OpenFWWF!

Slide 102 Trento 29/4/2011 From kernel to firmware

Projects starting soon

Sheletd®/4/2011 From kernel to firmware

=% Issues with 802.11 DCF
<=7 Packet aggregation (helper)/1

e (Real) Packet aggregation started with .11N
— Packets TO THE SAME dst packed & sent in single A-MPDU

802.11 DCF 802.11n
L DATA1+2+3
™ DATA RX X — RX
Backoff: may W—-
lose channel | > < ACK
access! TA2
Backof. andom R - Protocol exchange much shorter!
wait! A3 * Deterministic time!
CK

Slide 104 Trento 29/4/2011 From kernel to firmware

3 Issues with 802.11 DCF
=7 Packet aggregation (helper)/2

e (1) Unfairness in DCF channel access
— Pack packets to all destinations in a single A-MPDU
— AP will not lose channel access
— AP can “steals” more than 1/N access

— Downlink packets paced as uplinks

802.11 DCF 802.11n
A1 DATA1+2
AP STA1 AP STA1
STA2
Backoff: may CK
lose channel |:> ACK
access! QAEZ

(’H STA2 AP can't simply lose channel access!

2% ISsues with 802.11 DCF
=7 Packet aggregation (helper)/3

e (1) Unfairness in DCF channel access

e Problems:
— one A-MPDU means one PLCP: rate?
— How can we send acknowledgements?

802.11n
DATA1+2
AP STA1
STA2
ACK1
ACK2

Slide 106 Trento 29/4/2011 From kernel to firmware

T
N
2 1‘5-%”;_»7

1 (]
&7 Whv?/1

e No.11ln && b/g cards + OpenFWWEF limited

— Can build internally packet < 1000bytes

e Fallback to clause 9.10.3 of 802.11e (2005)

— Packets spaced by minimum possible

— 802.11e says 10us: can we shorten this?

— Yes! A minimum of 2us was demonstrated recently

802.11n
DATA1+2
AP STA1
STA2
ACK1
ACK2

Slide 107 Trento 29/4/2011

AP

802.11

OpenFWWEF Hack

DATA1+2

=N

€ACK1

< ACK2

From kernel to firmware

Back-to-Back packet transmission

STA2
STA1

% Mesh networks
ey Slmple Forwarder/l

e Packet in transit & single radio interface

— Best case, no collisions & no noise: two accesses

Channel busy' %

«—TACK /775@@-’74

Backoff Several us wasted!

- DATA~———>
&—ACK

Slide 108 Trento 29/4/2011 From kernel to firmware

% Mesh networks
2 Simple Forwarder/2

e Packet in transit & single radio interface
— Best case, no collisions & no noise: one access + %4~
— Onrx: forwarder broadcasts the rx pkt
— Left AP receives the broadcast and sets ACK!

]

Saved time!

Slide 109 Trento 29/4/2011 From kernel to firmware

END!

