Nomadic Communications

WLAN (802.11)

Renato Lo Cigno LoCigno@disi.unitn.it - Tel: 2026

Dipartimento di Ingegneria e Scienza dell'Informazione

Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications

Copyright

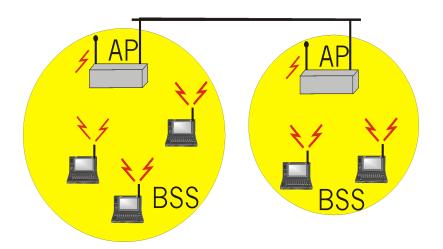
Quest'opera è protetta dalla licenza:

Creative Commons
Attribuzione-Non commerciale-Non opere derivate
2.5 Italia License

Per i dettagli, consultare http://creativecommons.org/licenses/by-nc-nd/2.5/it/

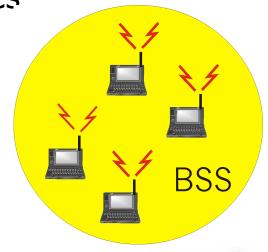
IEEE 802.11

- Wireless LAN standard specifying a wireless interface between a client and a base station (or access point), as well as between wireless clients
- Defines the PHY and MAC layer (LLC layer defined in 802.2)
- Physical Media: radio or diffused infrared
- Standardization process begun in 1990 and is still going on (1st release '97, 2nd release '99, then '03, '05, ...)


802.11 Architecture

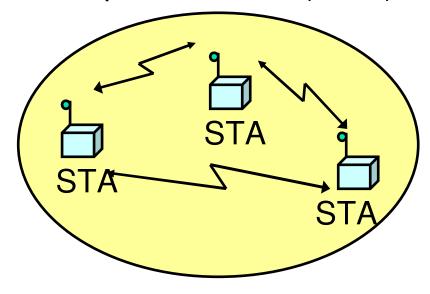
- BSS (Basic Service Set): set of nodes using the same coordination function to access the channel
- BSA (Basic Service Area): spatial area covered by a BSS (WLAN cell)
- BSS configuration mode
 - ad hoc mode
 - with infrastructure: the BSS is connected to a fixed infrastructure through a centralized controller, the socalled Access Point (AP)

WLAN with Infrastructure


- BSS contains:
 - wireless hosts
 - access point (AP): base station
- BSS's interconnected by distribution system (DS)

Ad Hoc WLANs

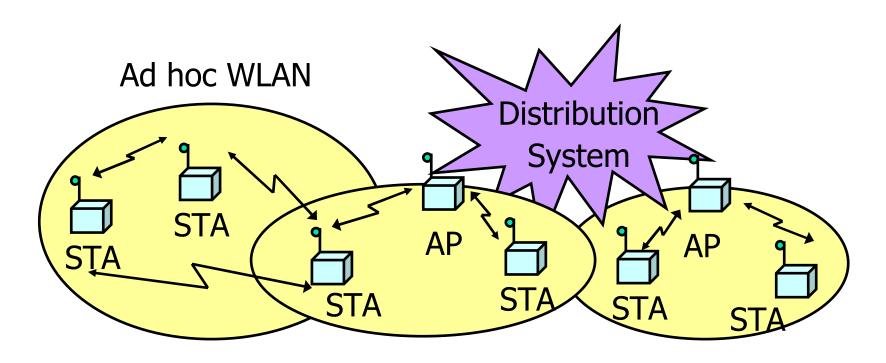
- Ad hoc network: IEEE 802.11 stations can dynamically form a network without AP and communicate directly with each other: IBSS Independent BSS
- Applications:
 - "laptop" meeting in conference room, car
 - interconnection of "personal" devices
 - battlefield
- IETF MANET
 (Mobile Ad hoc Networks)
 working group


Extended Service Set (ESS)

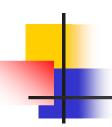
- Several BSSs interconnected with each other at the MAC layer
- The backbone interconnecting the BSS APs (Distribution System) can be a:
 - LAN (802.3 Ethernet/802.4 token bus/802.5 token ring)
 - wired MAN
 - IEEE 802.11 WLAN, possibly meshed (routing problems!)
- An ESS can give access to the fixed Internet network through a gateway node
 - If fixed network is a IEEE 802.X, the gateway works as a bridge thus performing the frame format conversion

Possible Scenarios (1)

Ad hoc networking Independent BSS (IBSS)



Network with infrastructure



Possible Scenarios (2)

WLANs with infrastructure

Joining a BSS

Scanning → Authentication → Association

- BSS with AP: Both authentication and association are necessary for joining a BSS
- Independent BSS: Neither authentication neither association procedures are required for joining an IBSS

Joining BSS with AP: Scanning

A station willing to join a BSS must get in contact with the AP. This can happen through:

1. Passive scanning

 The station scans the channels for a Beacon frame that is periodically (100ms) sent by every AP

2. Active scanning (the station tries to find an AP)

- The station sends a ProbeRequest frame
- All AP's within reach reply with a ProbeResponse frame
- Active Scanning may be more performant bu wase resources

Passive Scan

- Beacons are broadcast frames transmitted periodically (default 100ms). They contain:
 - Timestamp
 - TBTT (Target Beacon Transmission Time) also called Beacon Interval
 - Capabilities
 - SSID (BSSID is AP MAC address + 26 optional octets)
 - PHY layer information
 - System information (Network, Organization, ...)
 - Information on traffic management if present
 - ...
- STA answer to beacons with a ProbeResponse containing the SSID

Active Scan

- Directed probe: The client sends a probe request with a specific destination SSID; only APs with a matching SSID will reply with a probe response
 - It is often considered "secure" if APs do not broadcast SSIDs and only respond to Directed Probes ...
- Broadcast probe: The client sends a null SSID in the probe request; all APs receiving the probe-request will respond with a probe-response for each SSID they support
 - Useful for service discovery systems

Joining BSS with AP: Authentication

Once an AP is found/selected, a station goes through authentication

- Open system authentication (default, 2-step process)
 - Station sends authentication frame with its identity
 - AP sends frame as an ack / nack

Shared key authentication

- Stations receive shared secret key through secure channel independent of 802.11
- Stations authenticate through secret key (requires encryption via WEP)
- Per Session Authentication (WPA2 more later)

Joining BSS with AP: Association

Once a station is authenticated, it starts the association process, i.e., information exchange about the AP/station capabilities and roaming

- STA → AP: AssociateRequest frame
- AP → STA: AssociationResponse frame
- New AP informs old AP via DS
- Only after the association is completed, a station can transmit and receive data frames

IEEE 802.11 MAC Protocol

Performs the following functions:

- Resource allocation
- Data segmentation and reassemby
- MAC Protocol Data Unit (MPDU) address
- MPDU (frame) format
- Error control

MAC Frames

Three frame types are defined

- **1. Control**: positive ACK, handshaking for accessing the channel (RTS, CTS)
- 2. Data Transfer: information to be transmitted over the channel
- **3. Management**: connection establishment/release, synchronization, authentication. Exchanged as data frames but are not reported to the higher layer

Data Transfer

- Asynchronous data transfer for delay-tolerant traffic (like file transfer)
 - DCF (Distributed Coordination Function)
- Synchronous data transfer for real-time traffic (like audio and video)
 - PCF (Point Coordination Function): based on the polling of the stations and controlled by the AP (PC)
 - Its implementation is optional (not really implemented)

Time Slot

- Time is divided into intervals, called slots
- A slot is the system unit time and its duration depends on the implementation of the physical layer
 - 802.11b: **20μs**; 802.11a: **9μs**
 - Stations are synchronized with the AP in the infrastructure mode and among each other in the ad hoc mode ⇒ the system is synchronous
- Synchornization maintained through Beacon frames

IFS

- Interframe space (IFS)
 - time interval between frame transmissions
 - used to establish priority in accessing the channel
- 4 types of IFS:
 - Short IFS (SIFS)
 - Point coordination IFS (PIFS) >SIFS
 - Distributed IFS (DIFS) >PIFS
 - Extended IFS (EIFS) > DIFS
- Duration depends on physical level implementation

Short IFS (SIFS)

- To separate transmissions belonging to the same dialogue
- Associated to the highest priority
- Its duration depends on:
 - Propagation time over the channel
 - Time to convey the information from the PHY to the MAC layer
 - Radio switch time from TX to RX mode
- 802.11b: 10µs; 802.11a: 16µs

Point Coordination IFS (PIFS)

 Used to give priority access to Point Coordinator (PC)

 Only a PC can access the channel between SIFS and DIFS

PIFS=SIFS + 1 time slot

Distributed IFS (DIFS)

Used by stations waiting for a free channel to contend

Set to: PIFS + 1 time slot

802.11b: 50µs; 802.11a: 34µs

Extended IFS (EIFS)

- Used by every station when the PHY layer notifies the MAC layer that a transmission has not been correctly received
- Avoids that stations with bad channels disrupt other stations' performance
- Forces fairness in the access is one station does not receive an ACK (e.g. hidden terminal)
- Reduce the priority of the first retransmission (indeed make it equal to all others)
- Set to: DIFS + 1 ACK slot

DCF Access Scheme

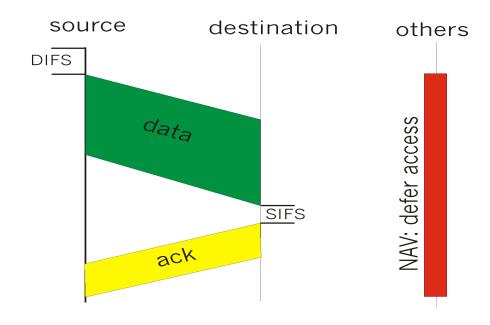
Basic Characteristics

- Its implementation is mandatory
- DCF is based on the Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) scheme:
 - stations that have data to transmit contend for accessing the channel
 - a station has to repeat the contention procedure every time it has a data frame to transmit

IEEE 802.11 MAC Protocol Overview: CSMA/CA

802.11 CSMA: sender

- if sense channel idle for **DISF** sec.

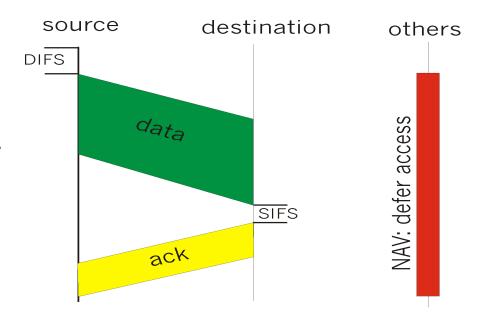

then transmit entire frame (no collision detection)

-if sense channel busy then random access over a contention window CWmin (CA)

802.11 CSMA receiver:

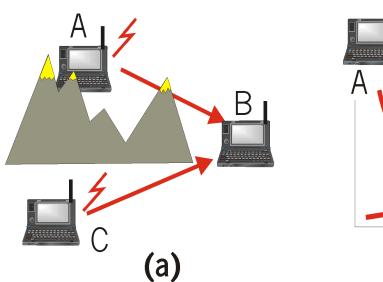
if received OK

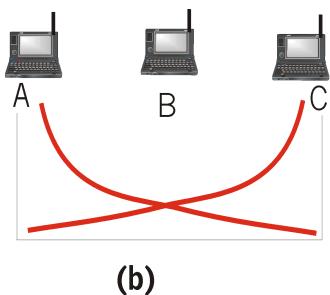
return ACK after SIFS



IEEE 802.11 MAC Protocol Overview

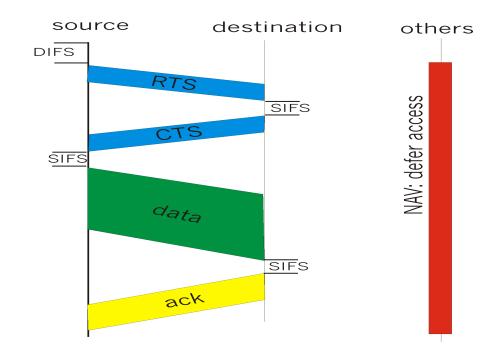
802.11 CSMA Protocol: others


- NAV: Network Allocation Vector
 - 802.11 frame has transmission time field
 - others (hearing data) defer access for NAV time units
 - NAV is contained in the header of frames
 - Allows reducing energy consumption
 - Helps reducing hidden terminals problems

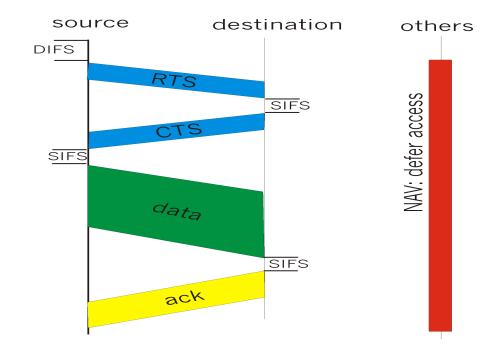


Hidden Terminal Effect

- hidden terminals: A, C cannot hear each other
 - obstacles, signal attenuation
 - collisions at B
- goal: avoid collisions at B
- CSMA/CA with handshaking



IEEE 802.11 MAC Protocol Overview: Handshaking


- CSMA/CA: explicit channel reservation
 - sender: send short RTS: request to send
 - receiver: reply with short CTS: clear to send
- CTS reserves channel for sender, notifying (possibly hidden) stations
- avoid hidden station collisions

IEEE 802.11 MAC Protocol Overview: Handshaking

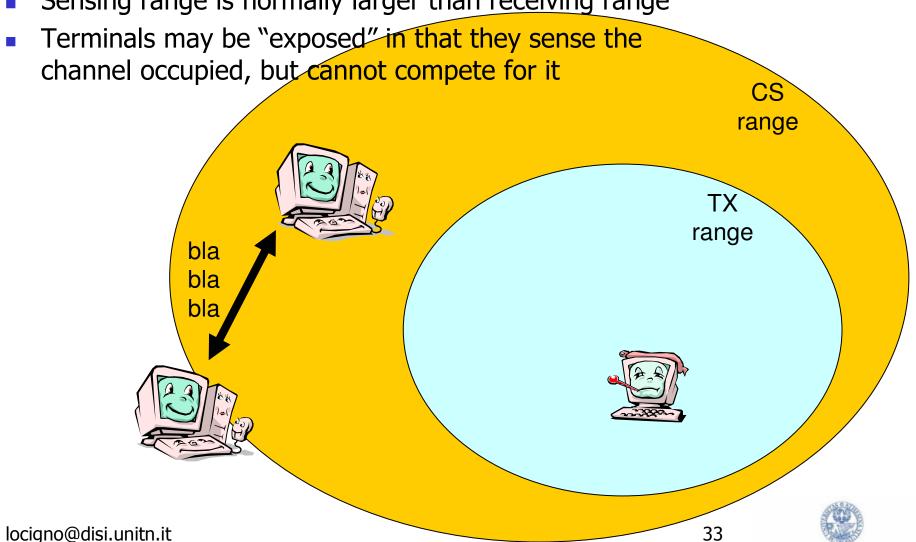
- RTS and CTS are short:
 - collisions of shorter duration, hence less "costly"
 - the final result is similar to collision detection
- DCF allows:
 - CSMA/CA
 - CSMA/CA with reservations

The DCF Access Scheme

Basic

- the simplest scheme
- used when the data frames to be transmitted have a fairly short duration

With handshaking


- Uses additional control frames for channel access
- Designed to solve the problems of hidden terminals
- Provides higher reliability in data transmission

The exposed terminal problem

Sensing range is normally larger than receiving range

UNIVERSITÀ DEGLI STUDI DI TRENTO

DCF The Basic Access Mode

Carrier Sensing

- Used to determine whether the channel is busy or idle
- Performed at the physical layer (physical carrier sensing) and at the MAC layer (virtual carrier sensing)
 - Physical carrier sensing: detection of nearby energy sources
 - Virtual carrier sensing: the frame header indicates the remaining duration of the current Channel Access Phase (till ACK is received)

Network Allocation Vector (NAV)

- Used by the stations nearby the transmitter to store the duration of the frame that is occupying the channel
- The channel will become idle when the NAV expires
- Upon the NAV expiration, stations that have data to transmit listen to the channel again

Using DIFS and SIFS

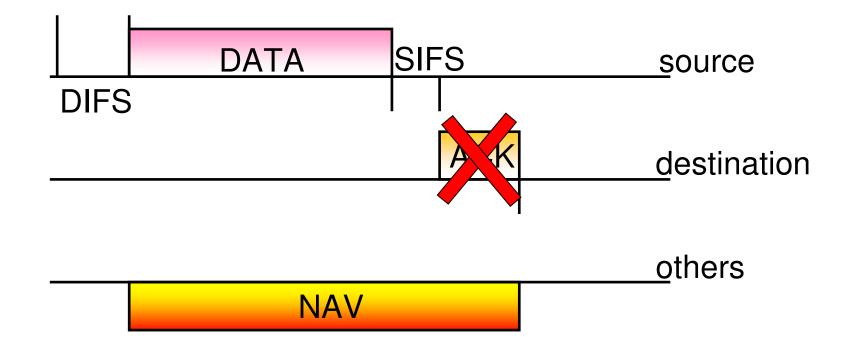
• Transmitter:

- senses the channel
- if the channel is idle, it waits a time equal to DIFS
- if the channel remains idle for DIFS, it transmits its MPDU

Using DIFS and SIFS

Receiver:

- computes the checksum thus verifying whether the transmission is correct
- if so, it sends an ACK after a time equal to SIFS
- it should always transmit an ACK with a rate less than or equal to the one used by the transmitter and no larger than
 - 2 Mbit/s in 802.11b
 - 6/12 Mbit/s in 802.11g/a/h


Using DIFS and SIFS

Neighbors:

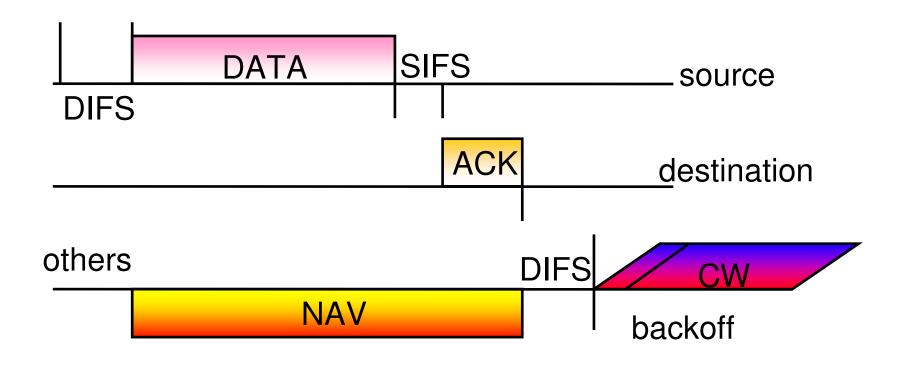
- set their NAV to the value indicated in the transmitted MPDU
- NAV set to: the MPDU tx time + 1 SIFS + ACK time

MPDU Transmission

Frame Retransmissions

- A frame transmission may fail because of collision or errors on the radio channel
- A failed transmission is re-attempted till a max no. of retransmissions is reached
- ARQ scheme: Stop&Wait

Collision Avoidance (CA)


Backoff procedure

- If a station senses the channel busy, it waits for the channel becoming idle
- As soon as the channel is idle for DIFS, the station
 - computes the backoff time interval
 - sets the backoff counter to this value
- The station will be able to transmit when its backoff counter reaches 0

MPDU Transmission

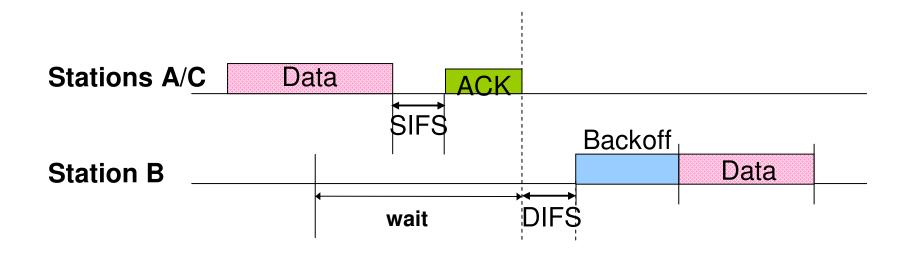
CW=Contention Window

Backoff Value

- Integer value corresponding to a number of time slots
- The number of slots is a r.v. uniformly distributed in [0,CW-1]
- CW is the Contention Window and at each transmission attempt is updated as:
 - For i=1, CW₁=CW_{min}
 - For i>1, CW_i=2CW_{i-1} with i>1 being the no. of consecutive attempts for transmitting the MPDU
 - For any i, CW_i ≤CW_{max}

Backoff Decrease

- While the channel is busy, the backoff counter is frozen
- While the channel is idle, and available for transmissions the station decreases the backoff value (-1 every slot) until
 - the channel becomes busy or
 - the backoff counter reaches 0


Accessing the Channel

 If more than one station decrease their counter to 0 at the same time → collision

Colliding stations have to recompute a new backoff value

Basic DCF: An Example

Data Fragmentation (1)

- A MSDU is fragmented into more than one frame (MPDU) when its size is larger than a certain fragmentation threshold
 - In the case of failure, less bandwidth is wasted
- All MPDUs have same size except for the last MPDU that may be smaller than the fragmentation threshold
- PHY header is inserted in every fragment → convenient if the fragmentation threshold is not too little

Data Fragmentation (2)

- MPDUs originated from the same MSDU are transmitted at distance of SIFS + ACK + SIFS
- The transmitter releases the channel when
 - the transmission of all MPDUs belonging to a MSDU is completed
 - the ACK associated to an MPDU is lost

Data Fragmentation (3)

- Contentio Window (Backoff counter) is increased for each fragment retransmission belonging to the same frame
- The receiver reassembles the MPDUs into the original MSDU that is then passed to the higher layers
- Broadcast and multicast data units are never fragmented

Recontending for the Channel

- A station recontends for the channel when
 - it has completed the transmission of an MPDU but still has data to transmit
 - a MPDU transmission fails and the MPDU must be retransmitted

 Before recontending the channel after a successful transmission, a station must perform a backoff procedure with CWmin

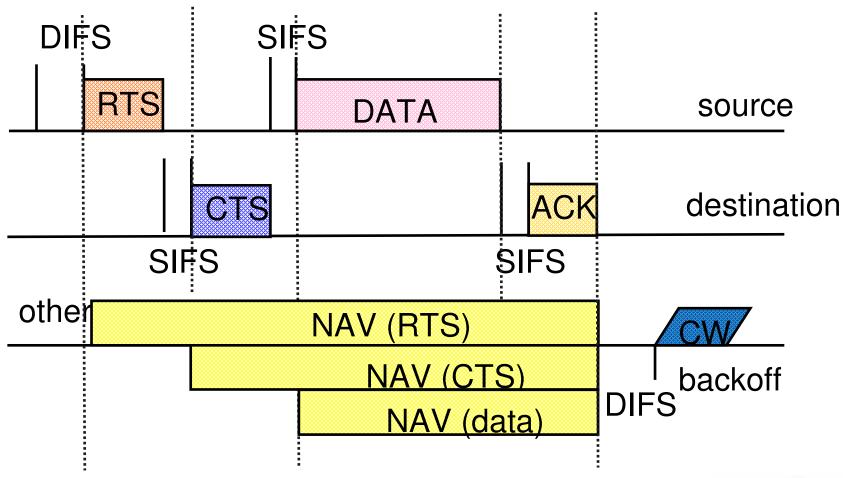
DCF Access with handshaking

Access with Handshake

- Used to reserve the channel
- Why?
 - Hidden stations
 - Colliding stations keep transmitting their MPDU; the larger the MPDU involved in the collision, the more bandwidth is wasted
 - Need to avoid collisions, especially when frame is large
 - Particularly useful when a large no. of STAs contend for the channel

RTS/CTS

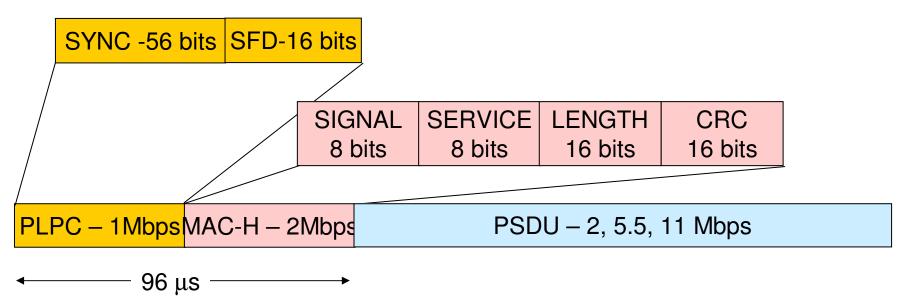
- Handshaking procedure uses the Request to send (RTS) and Clear to send (CTS) control frames
- RTS / CTS should be always transmitted @1 (6a/g/h) Mbit/s (they are only headers)
- Access with handshaking is used for frames larger than an RTS_Threshold


DCF with Handshaking

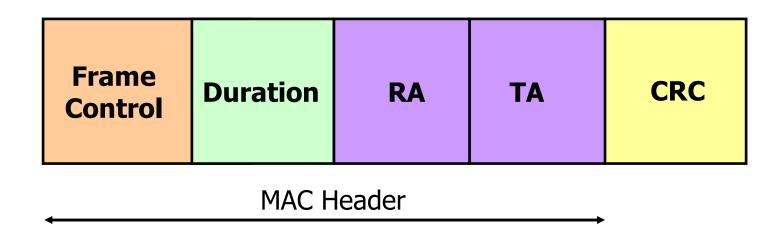
- Transmitter:
 - send a RTS (20 bytes long) to the destination
- Neighbors:
 - read the duration field in RTS and set their NAV
- Receiver:
 - acknowledge the RTS reception after SIFS by sending a CTS (14 bytes long)
- Neighbors:
 - read the duration field in CTS and update their NAV
- Transmitter:
 - start transmitting upon CTS reception

MPDU Transmission & NAV

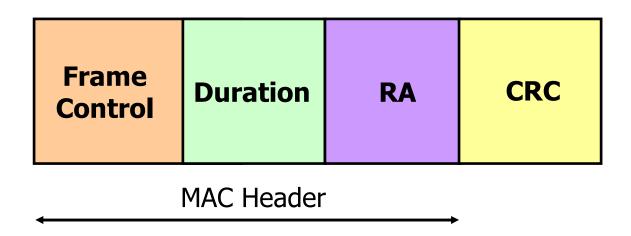
Examples of frame format



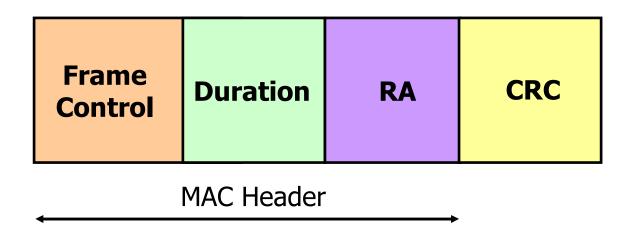
Generic DSSS (802.11b) packet


SFD - Start Frame Delimiter

PLPC – Physical Layer Convergence Protocol


Example: RTS Frame

- Duration (in μs): Time required to transmit next (data) frame + CTS + ACK + 3 SIFs
- **RA**: Address of the intended immediate recipient
- **TA**: Address of the station transmitting this frame


Example: CTS Frame

- Duration (in μs): Duration value of previous RTS frame 1 CTS time 1 SIFS
- **RA**: The TA field in the RTS frame

Example: ACK Frame

- **Duration**: set to 0 if More Fragments bit was 0, otherwise equal to the duration of previous frame 1 ACK 1 SIFS
- **RA**: copied from the Address 2 field of previous frame

Some Numerical Values...

- PHY_{HDR}: 16 bytes, transmitted @ 1 Mbps
- MAC_{HDR}: 34 bytes, transmitted @ 1 Mbps
 - If slot=20µs, PHY_{HDR}+ MAC_{HDR}=20 slots
- ACK=PHY_{HDR}+14 bytes , transmitted @ 1 Mbps
 - If slot=20µs, ACK=12 slots

Detailed MAC Format (bytes)

Frame	Duration	Address1	Address2	Address3
Control	ID	(source)	(destination)	(rx node)
2	2	6	6	6

Sequence Control	Address4 (tx node)	Data	FCS
2	6	0 - 2,312	4

MAC Format fields

Field	Bits	Notes/Description
Frame Control	15 - 14	Protocol version. Currently 0
	13 - 12	Туре
	11 - 8	Subtype
	7	To DS. 1 = to the distribution system.
	6	From DS. 1 = exit from the Distribution System.
	5	More Frag. 1 = more fragment frames to follow (last or unfragmented frame = 0)
	4	Retry. 1 = this is a re-transmission.
	3	Power Mgt. 1 = station in power save mode, 1 = active mode.
	2	More Data. 1 = additional frames buffered for the destination address (address x).
	1	WEP. 1 = data processed with WEP algorithm. 0 = no WEP.
	0	Order. 1 = frames must be strictly ordered.

MAC Format fields

Field	Bits	Notes/Description
Duration ID	15 - 0	For data frames = duration of frame. For Control Frames the associated identity of the transmitting station.
Address 1	47 - 0	Source address (6 bytes).
Address 2	47 - 0	Destination address (6 bytes).
Address 3	47 - 0	Receiving station address (destination wireless station)
Sequence Control	15 - 0	
Address 4	47 - 0	Transmitting wireless station.
Frame Body		0 - 2312 octets (bytes).
FCS	31 - 0	Frame Check Sequence (32 bit CRC). defined in P802.11.