
Francesco Gringoli
University of Trento

Laboratory of Nomadic
Communication

Course Overview

•  Introduction to Linux Networking Stack

Trento 7/3/2016 From kernel to firmware Slide 2

Francesco Gringoli
Laboratory of Nomadic

Communication
University of Trento

A glimpse into the
Linux Wireless Core:

From kernel to firmware

Outline

•  Linux Kernel Network Code
– Modular architecture: follows layering

•  Descent to (hell?) layer 2 and below
– Why hacking layer 2
– OpenFirmWare for WiFi networks

•  OpenFWWF: RX & TX data paths
– Hands on: examples

•  OpenFWWF exploitations

Trento 7/3/2016 From kernel to firmware Slide 4

Linux Kernel Network Code

A glimpse into the
Linux Kernel Wireless Code

Part 1

Linux Networking Stack
Modular architecture

•  Layers down to MAC (included)
–  All operations above/including layer 2 done by kernel code
–  Network code device agnostic
–  Net/code prepares suitable packets

•  In 802.3 stack
–  Eth code talks with device drivers
–  Device drivers

•  Map/unmap DMA desc to packets
•  Set up Hardware registers

Trento 7/3/2016 From kernel to firmware Slide 6

e1000
pkt

Upper layers
Ethernet

PCI

8139cp
pkt

pkt

pkt

Linux Networking Stack
Modular architecture

•  What happens with 802.11?
–  New drivers to handle WiFi HW: how to link to net code?
–  A wrapper “mac80211” module is added

Trento 7/3/2016 From kernel to firmware Slide 7

Upper layers
Ethernet

Upper layers
Ethernet

PCI

8139cp e1000 b43 ath9k

PCI PCI

? mac80211

Linux & 802.11
Modular architecture

•  Layers down to LLC (~mac) common with 802.3
–  All operations above/including layer 2 done by ETH/UP code

•  Packets converted to 802.11 format for rx/tx
–  By wrapper “mac80211”

•  Manage packet conversion
•  Handle AAA operations

•  Drivers: packets to devices
–  One dev type/one driver

•  Add data to “drive” the device

Trento 7/3/2016 From kernel to firmware Slide 8

mac80211

Upper layers
Ethernet

b43 ath9k

PCI PCI

8139cp

Linux & 802.11
Modular architecture/1

mac80211

ETH

b43

P
C

I

DA SA ET PACKET PAYLOAD

PACKET PAYLOAD

BSS SA LLC PACKET PAYLOAD CN DUR DA SEQ

802.11 PACKET DEVICE
DATA

802.11 PACKET DEVICE
DATA

OFDM1 OFDM2 OFDM3 OFDM4 PLCP Set HW
registers

Wait TX opportunity

GO!

• Look in neighbor tables for the destination address and egress device
• Fetch from the egress device data the source address
• Check if the egress device is associated to an AP connected to DA
• Compute Control Word, Duration, sequence num
• Fill header, add LLC (0xAA 0xAA, 0x03, 0x00, 0x00, 0x00, 0x08, 0x00)
• Add information for HW setup (device agnostic) in info fields

INFO

• Convert agnostic info into device dependent data

Trento 7/3/2016 From kernel to firmware Slide 9

Linux & 802.11

•  Opposite path: conversions reversed
•  ! Several operations involved for each packet
•  ☺ Multiple buffer copies (should be) avoided

–  E.g., original packet at layer 4 correctly allocated
•  Before L3 encapsulation output device already known

•  ! Packets are queued twice/(3 times ☺)
–  Qdisc: before wrapper
–  Device queues: between wrapper and driver/(+DMA)

•  Bottom line:
–  Clean design but can be resource exhausting

Trento 7/3/2016 From kernel to firmware Slide 10

•  Forwarding/routing packet on a double interface box

Linux & 802.11
Modular architecture

mac80211

Ethernet & upper layers

b43 ath9k

PCI

802.11 pkt

802.3 pkt 802.11 pkt

FW/Route decision

Trento 7/3/2016 From kernel to firmware Slide 11

Linux & 802.11

•  On CPU limited platform, fw performance too low
–  Need to accelerate/offload some operations

•  Ralink was first to introduce SoC WiFi devices
–  A mini-pci card hosts an ARM CPU
–  Main host attaches a standard ethernet iface
–  The ARM CPU converts ETH packet to 802.11
–  Main host focuses on data forwarding

•  Question: where can be profitably used?
–  Take a look to Andriod phones
–  2016: new 11ac cards are switching to such approach!!

Trento 7/3/2016 From kernel to firmware Slide 12

Linux & 802.11: setup

•  A simple BSS with Linux only nodes
–  One station runs hostapd (AP)
–  Others (STAs) join:

•  Once, with iw/iwconfig
•  Use a supplicant to join, e.g., use wpa_supplicant

–  Why using a supplicant?
•  management frame losses#STA disconnection
•  Why? Kernel (STA) periodically checks if AP is alive
•  If management frames lost, kernel (STA) does not retransmit!
•  A supplicant (wpa_supplicant) is needed to re-join the BSS

transparently

Trento 7/3/2016 From kernel to firmware Slide 13

Linux & 802.11: kernel setup

•  Check the device type with
$: lspci | grep -i net

•  Load the driver for Broadcom devices and check is loaded
$: modprobe b43 qos=0
$: lsmod | grep b43

•  Check kernel ring buffer with
$: dmesg | tail -30

•  Bring net up and configure an IP address
$AP: ifconfig wlan0 172.16.0.1 up

 $STA: ifconfig wlan0 172.16.0.10 up

•  In following experiments we fix arp associations
$: ip neigh replace to PEERIP lladdr PEERMAC dev wlan0

–  Traffic not encrypted
–  QoS disabled

Trento 7/3/2016 From kernel to firmware Slide 14

Linux & 802.11: hostapd setup

•  Configuration of the AP in “hostapd.conf”
interface=wlan0
driver=nl80211
dump_file=/tmp/hostapd.dump
ctrl_interface=/tmp/hostapd
ssid=TESTTODAY
hw_mode=g
channel=14
beacon_int=100
auth_algs=3
wpa=0

•  Runs with
$: hostapd -B hostapd.conf # -B: run in background

•  Check dmesg!

Try to send SIGUSR1
signal to hostapd

PIPE used by
hostapd_cli

BSS properties

No encryption/
authentication

Trento 7/3/2016 From kernel to firmware Slide 15

Linux & 802.11: station setup

•  Scan for networks
$: iwlist wlan0 scan

•  Configuration of STAs in wpasupp.conf
ctrl_interface=/tmp/wpa_supplicant
network={
 ssid=”TESTODAY"
 scan_ssid=1
 key_mgmt=NONE
}

•  Runs with
$: wpa_supplicant -B -i wlan0 -c wpasupp.conf

•  Check dmesg!
•  Simple experiment: ping the AP

$: ping 172.16.0.1

PIPE used by
wpa_cli

BSS to join

Trento 7/3/2016 From kernel to firmware Slide 16

Linux & 802.11:
run some traffic

•  We use iperf in UDP mode
•  On AP, server mode

$: iperf -s -u -p3000 -i1
•  On STA, client mode

$: iperf -c172.16.0.1 -u -p3000 -i1 -t100 -b54M
•  Channel 14 is usually free (by law)

–  Try another channel, e.g., 1 or 6 or 11
–  How to do it?
–  Reconfigure hostapd and reconnect, let’s see how…

Trento 7/3/2016 From kernel to firmware Slide 17

Linux & 802.11:
check status

•  There are some “debug” helpers, on AP:
– Browse this folder

/sys/kernel/debug/ieee80211

– Learn what is phy0
– Cd to phy0/stations
– Cd to the MAC address of the STA!!

•  Explore all the stats
•  Why rc_stats is almost empty?

•  What on the STA?

Trento 7/3/2016 From kernel to firmware Slide 18

Linux & 802.11:
capturing packets

•  On both AP and STA run “tcpdump”
$: tcpdump -i wlan0 -nn

•  Is exactly what we expect?
–  What is missing?
–  Layer 2 acknowledgment?

•  Display captured data
$: tcpdump -i wlan0 -nn -XXX

•  What kind of layer 2 header?
•  What have we captured?

Trento 7/3/2016 From kernel to firmware Slide 19

Linux & 802.11:
capturing packets

•  Run “tcpdump” on another station set in monitor mode
$: ifconfig wlan0 down
$: iwconfig wlan0 mode monitor chan 4(?)
$: ifconfig wlan0 up
$: tcpdump -i wlan0 -nn

•  What’s going on? What is that traffic?
–  Beacons (try to analyze the reported channel, what’s wrong?)
–  Probe requests/replies
–  Data frames

•  Try to dump some packet’s payload
–  What kind of header?
–  Collect a trace with tcpdump and display with Wireshark

Trento 7/3/2016 From kernel to firmware Slide 20

Linux & 802.11:
capturing packets

•  Exercise: try to capture only selected packets
•  Play with matching expression in tcpdump

$: [cut] ether[N] ==|!= 0xAB

•  Discard beacons and probes
•  Display acknowledgments
•  Display only AP and STA acknowledgments
•  Question: is a third host needed?

Trento 7/3/2016 From kernel to firmware Slide 21

Virtual Interfaces

•  Wrapper/driver “may agree” on virtual packet path
–  Each received packet duplicated by the driver
–  mac80211 creates many interfaces “bound” to same HW
–  In this example

•  Monitor interface attached
•  Blue stream follow upper stack
•  Red stream hooked to pcap

$: iw dev wlan0 interface add \
fish0 type monitor

–  Try capturing packets on the AP
•  What’s missing?

mac80211

Ethernet & upper layers

b43

PCI
pkt

pkt

pkt

Trento 7/3/2016 From kernel to firmware Slide 22

Descent to layer 2 and below
An open firmware
A glimpse into the

Linux Kernel Wireless Code
Part 2

Linux & 802.11
Modular architecture

mac80211

carl9170

Ethernet & upper layers

b43 ath9k
P

C
I

U
S

B

M
-P

C
I

Wrapper for all hw
Find interface;

remove eth head;
add LLC&dot11 head;

fill (sa;da;ra;seq);
fill(control;duration);
set rate (from RC);
fill (rate;fallback);

Trento 7/3/2016 From kernel to firmware Slide 24

Linux & 802.11
Modular architecture/2

mac80211

carl9170

Ethernet & upper layers

b43 ath9k
P

C
I

U
S

B

M
-P

C
I

Set up hw regs;
Fill hw private fields;
Send frame on DMA;

Get stats; $
Reports to mac80211

Several MAC
primitives missing!

Who takes care of
ack?

Trento 7/3/2016 From kernel to firmware Slide 25

Linux & 802.11
Modular architecture/3

mac80211

carl9170

Ethernet & upper layers

b43 ath9k
P

C
I

U
S

B

M
-P

C
I

For sure
•  Retransmission;
•  Beaconing;
•  Acknowledgment
Handled by boards!

HOW?
Firmware does

We will see the firmware in this course
but first…

Let’s check why we should do that ☺

Trento 7/3/2016 From kernel to firmware Slide 26

Why/how playing with 802.11

•  Radio access protocols: issues
–  Some are unpredictable: noise & intf, competing

stations
•  Experimenting with simulators (e.g., ns-3)

–  Captures all “known” problems
•  Testing changes to back-off strategy is possible ☺

–  Unknown (not expected)?
•  Testing how noise affects packets not possible !

•  In the field testing is mandatory
– Problem: one station is not enough!

Trento 7/3/2016 From kernel to firmware Slide 27

Programmable Boards

•  Complete platforms like
–  RICE-WARP: Wireless open-Access Research Platform
–  NI-RIO2940
–  Microsoft SORA
–  Based on FPGA
–  Everything can be changed

•  MAC + PHY (access to OFDM symbols!)

–  Two major drawbacks
•  More than very expensive
•  Complex deployment

–  If PHY untouched: look for other solutions!

Trento 7/3/2016 From kernel to firmware Slide 28

Off-the-shelf hardware

•  Five/Six vendors develop cheap WiFi hw
– Hundreds different boards
– Almost all boards load a binary firmware

•  MAC primitives driven by a programmable CPU
– Changing the firmware # Changing the MAC!

•  Target platform:
–  Linux & 802.11: modular architecture
– Official support prefers closed-source drivers !
– Open source drivers && Good documentation

•  Thanks to community! ☺

Trento 7/3/2016 From kernel to firmware Slide 29

Linux & 802.11
Broadcom AirForce54g

•  Architecture chosen because
–  Existing asm/dasm tools

•  A new firmware can be written!
–  Some info about hw regs

•  We analyzed hw behavior
–  Internal state machine decoded
–  Got more details about hw regs
–  Found timers, tx&rx commands
–  Open source firmware for DCF possible

•  We released OpenFWWF!
–  OpenFirmWare for WiFi networks

mac80211

ath9k

IP & upper layers

b43

P
C

I

Trento 7/3/2016 From kernel to firmware Slide 30

Broadcom AirForce54g
Basic HW blocks

DMA FIFOs

ucode

Template
RAM

TXE

Internal
memory

CPU

PHY

RXE

Trento 7/3/2016 From kernel to firmware Slide 31

Description of the HW

•  CPU/MAC processor capabilities
–  88MHz CPU, 64 general purpose registers

•  Data memory is 4KB, direct and indirect access
–  From here on it’s called Shared Memory (SHM)

•  Separate template memory (arrangeable > 2KB)
–  Where packets can be composed, e.g., ACKs & beacons

•  Separate code memory is 32KB (4096 lines of code)
•  Access to HW registers, e.g.:

–  Channel frequency and tx power
–  Access to channel transmission within N slots, etc…

Trento 7/3/2016 From kernel to firmware Slide 32

TX side

•  Interface from host/kernel
– Six independent TX FIFOs
– DMA transfers @ 32 or 64 bits
– HOL packet from each FIFO

•  can be copied in data memory
–  Analysis of packet data before transmission
–  Kernel appends a header at head with rate, power etc

•  can be transmitted “as is”
•  can be modified and txed

– Direct access to first 64 bytes

Trento 7/3/2016 From kernel to firmware Slide 33

TX side/2

•  Interface to air
–  Only 802.11 b/g supported, soon n
–  Full MTU packets can be transmitted (~2300bytes)

•  If full packet analysis is needed, analyze block-by-block

–  All 802.11 timings supported
•  Minimum distance between Txed frames is 0us

–  Note: channel can be completely taken by such firmware!!

–  Backoff implemented in software (fw)
•  Simply count slots and ask the HW to transmit

Trento 7/3/2016 From kernel to firmware Slide 34

RX side

•  Interface from AIR
–  HW acceleration for

•  PLCP and global packet FCS - Destination address matching

–  Packet can be copied to internal memory for analysis
•  Bytes buffered as soon as symbols is decoded

–  During reception and copying CPU is idle!
•  Can be used to offload other operations
•  Try to suggest something

–  Packets are pushed to host/kernel
•  If FW decides to go and through one FIFO ONLY
•  May drop! (e.g., corrupt packets, control…)

Trento 7/3/2016 From kernel to firmware Slide 35

Example:
TX a packet, wait for the ACK

DMA FIFOs

ucode

Template
RAM

TXE

SHM

CPU

PHY

RXE

DROPPED!

Trento 7/3/2016 From kernel to firmware Slide 36

PKT

ACK

Template
RAM

Example:
RX a packet, transmit an ACK

FIFOs

ucode SHM

CPU RXE

Send to
host

PKT is
for me

DMA

Prepare
ACK

Wait SIFS

TXE

PHY

Trento 7/3/2016 From kernel to firmware Slide 37 PKT

ACK

What lesson we learned

•  From the previous slides
– Time to wait ack (success/no success)
– Dropping ack (rcvd data not dropped, goes up)
– And much more

•  When to send beacon
•  Backoff exponential procedure and rate choice

– Decided by MAC processor (by the firmware)
•  Bottom line:

Hardware is (almost) general purpose
Trento 7/3/2016 From kernel to firmware Slide 38

From lesson to OpenFWWF
Description of the FW

•  OpenFWWF
–  It’s not a production firmware
–  It supports basic DCF

•  No RTS/CTS yet, No QoS, only one queue from Kernel

–  Full support for capturing broken frames
–  It takes 9KB for code, it uses < 200byte for data

•  We have lot of space to add several features

•  Works with 4306, 4311, 4318 hw
–  Linksys Routers supported (e.g., WRT54GL)

Trento 7/3/2016 From kernel to firmware Slide 39

Broadcom AirForce54g
Simple TDM

DMA FIFOs

ucode

Template
RAM

TXE

SHM

CPU

PHY

RXE

TDM
needed!
Waiting

turn

GO! 3 2 1

Trento 7/3/2016 From kernel to firmware Slide 40

PKT

Broadcom AirForce54g
Simple TDM/2

FIFOs

ucode

Template
RAM

TXE

SHM

CPU

PHY

RXE

Sync the
clock

PKT from
TDM

domain

DMA

Trento 7/3/2016 From kernel to firmware Slide 41 PKT

