Wireless Network Esercitazioni

Alessandro Villani avillani@science.unitn.it

Wireless Router WRT54G LINKSYS

WRT54G

- □ È un router Wireless:
 - 1 porta ADSL
 - 4 porte ethernet
 - 802.11b e 802.11g
- □ La particolarità è che esegue un firmware "linux"
- □ La Linksys ha rilasciato i sorgenti del firmware

WRT54G: Aggiornamento Firmware □ Configurazione via WEB (login vuota e password admin) □ Assegnato un IP al router (l'ip di default è 192.168.1.1) si aggiorna il firmware via □ A questo punto si possono abilitare le connessioni ssh □ La login è root, la password (di default) è admin WRT54G: Aggiornamento Firmware □ Attualmente ci sono molti progetti per estendere le funzionalità di questo router □ Uno dei firmware più interessanti è scaricabile all'indirizzo: □ Il file attuale è: Firmware_Samadhi2_v2_2.00.8.6sv.bin WRT54G: Comandi □ La documentazione è reperibile all'indirizzo: ocs.sveasoft.com/ □ Si possono eseguire molti comandi unix: Is cd ifconfig cat ps

WRT54G: Filesystem □ La struttura del filesystem è quella di un sistema linux: /etc /bin /sbin /proc □ Ad esempio: cat /proc/cpuinfo cat /proc/net/wireless WRT54G: Comandi Linksys □ wl è il comando generico per la gestione del router ■ wl ver → versione del sistema ■ wl radio → stato dell'802.11 ■ wl radio on → attiva 802.11 ■ wl radio off → spenge 802.11 ■ wl chanlist → lista dei canali validi ■ wl channels_in_countr IT b → canali validi in Italia per 802.11b WRT54G: Possibili Applicazioni □ Installare regole di instradamento, firewalling, traffic shaping direttamente sull'AP ■ Installare un end-point VPN → non c'è più bisogno di WEP! □ Installare un captive portal direttamente sull'AP \rightarrow il firmware sviluppato da PortLess Network implementa questa feature (http://www.portless.net/ewrt/index.html)

WEP Cracking	
	_
WEP: Wired Equivalent Privacy	
 WEP si basa sull'algoritmo RC4 della RSA È un sistema di crittazione basato su una 	
chiave condivisa La chiave condivisa è lunga 40 bit	
□ È concatenata a un vettore di inizializzazione (IV) lungo 24 bit	
□ Si ottiene cosi un seed di 64 bit per l'RC4	
	1
WEP: Wired Equivalent Privacy	
Molte schede generano i 24 bit dell'IV utilizzando un counter od un generatore di numeri pseudocasuali	
□ Alcune schede azzerano l'IV ogni volte che sono inizializzate e poi incrementano il	
counter di 1 → aumentano la probabilità che la chiave sia riusata (i valori bassi di	
IV sono più probabili)	

WEP: Wired Equivalent Privacy

- □ Per inviare un pacchetto di dati:
 - Dato il paylod M, viene calcolato il CRC di 32 bit c(M) che viene concatenato ad M → M·c(M)
 - La chiave k è concatenata all'IV determianto per il pacchetto → IV·K
 - L'algoritmo RC4 è inizializzato usando questo pacchetto e viene generata una sequenza di bytes → RC4(IV·k)
 - M·c(M) a questo punto e messo in xor con RC4(IV·k) \rightarrow C = (M·c(M)) \oplus RC4(IV·k)
 - I 3 byte dell'IV sono trasmessi in chiaro (insieme con l'indice della chiave WEP)

WEP: Wired Equivalent Privacy

- Il ricevente concatena l'IV ricevuto con la chiave WEP condivisa
- Decritta il payload e se il CRC coincide allora il pacchetto è valido

WEP: RC4

- Key Scheduling Algorithm
- RC4 utilizza un vettore di stato di 256 ottetti S[256] e due contatori i, j
- □ Inizializzazione dello stato:
 - S[n] = n, i=0, j=0
 - Il vettore temporaneo T di 256 ottetti si inserisce la chiave K ripetendola se corta
 - Si scorre S scambiando gli elementi del vettore for i = 0 to 255
 i = (i + S[i] + T[i]) mod 256

 $j = (j + S[i] + T[j]) \mod 256$ scambia (S[i], S[j])

WEP: RC4

- □ Pseudo Random Generation Alghoritm. Generazione del keystream:
 - Per generare un ottetto z del keystream dallo stato corrente (S, i, j):
 i = (i + 1) mod 256
 j = (j + S[i]) mod 256

scambia (S[i], S[j]) $t = (S[i] + S[j]) \mod 256$

z = S[t]

- Inizialmente i=0, j=0 e si scarta T.
- Il processo di generazione continuerà finche non ci sono più dati

WEP: Riutilizzo della codifica

- Se utilizziamo lo stesso IV, viene generata la stessa sequenza (keystream) di byte da RC4
- □ Crittando così due messaggi p1 e p2 abbiamo:
 - C1 = P1⊕RC4(IV·k)
 - $C2 = P2 \oplus RC4(IV \cdot k)$
 - C1 \oplus C2 = P1 \oplus RC4(IV·k) \oplus P2 \oplus RC4(IV·k) = P1 \oplus P2
- □ Quindi con l'xor di due messaggi cifrati si ottiene l'xor dei due messaggi in chiaro

WEP: Riutilizzo della codifica

- Se si conosce uno dei due messaggi si ottiene l'altro
- Se si hanno molti messaggi codificati con lo stesso keystream è facile risalire ai messaggi originali
- I protocolli impongono molte similarità sui pacchetti!
- □ Non si devono riusare i keystream!

WEP: Attacchi di forza bruta □ Bastano due pacchetti in generale (per essere sicuri che il CRC non coincida per caso anche con una chiave WEP sbagliata) □ Può utilizzare una lista di chiavi "facili" □ Analizzando l'intero spazio di ricerca dato dai 40 bit, ci possono volere circa 45 giorni → Non pratico per chiavi a 104 bit WEP: Attacchi basati su Weak IV S. Fluhrer, I. Mantin, A. Shamir hanno dimostrato che esistono delle debolezze nell'algoritmo di generazione delle chiavi in RC4 → "Weakness in the Key Scheduling Algorithm of RC4" □ L'attacco descritto nel loro articolo, oltre ad essere estremamente veloce, richiede un tempo che cresce linearmente con la lunghezza della chiave WEP! WEP: Attacchi basati su Weak IV □ Il fatto che un larga parte della chiave (3 byte) sia trasmessa in chiaro aumenta la facilità di cracking: ■ Le prime tre iterazioni del KSA sono facilmente

deducibili per il fatto che le prime tre cifre della

□ Si può vedere che c'è una probabilità del 5% che i valori in S[0] - S[3] non cambino

dopo le prime 3 iterazioni del KSA

chiave sono note!

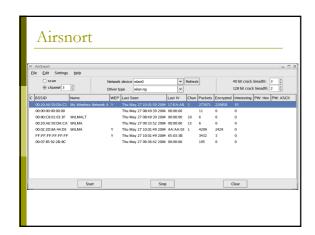
È stato dimostrato che un IV di un certo tipo sono soggetti ad essere crackati: (B+3, 255, x)dove B è il byte della chiave segreta che stiamo crackando □ Quindi per ogni byte della chiave ci sono 256 Weak IV WEP: Attacchi basati su Weak IV □ I primi valori dei dati crittati è l'header SNAP (Sub Network Attachment Point). È uno standard (di livello 2) per la trasmissione di datagram IP su reti IEEE □ L'header non crittato è AA in esadecimale □ Xor dei primi dati crittati con AA ci da il primo byte del PRGA □ Questa informazione ci può consentire di ricostruire la prima cifra della chiave WEP se ho un Weak IV del tipo (3, 255, x) WEP: Attacchi basati su Weak IV □ Esistono anche altre famiglie di Weak IV □ Oltre il primo byte della chiave l'operazione si complica perché richiede di ciclare sul PRGA per più passi e quindi potremmo non essere più in grado di dedurre con una ragionevole probabilità le permutazioni di S

WEP: Attacchi basati su Weak IV

Airsnort

- Esistono vari tools che consentono di determinare in modo automatico una chiave WEP
- □ Uno di questi è Airsnort, scaricabile all'indirizzo:

http://airsnort.shmoo.com/


- □ È un programma linux
- □ Richiede che la scheda wireless sia in modalità monitor
- □ Funziona ad esempio con le schede Prism2, Orinoco e Cisco

Airsnort

- Una volta attivato, il programma cattura i pacchetti ed in contemporanea cerca di crackare la chiave WEP:
 - Tutti i pacchetti non data (eccetto i beacon) sono scartati
 - I pacchetti non crittati sono scartati
 - I pacchetti crittati sono selezionati e quelli ritenuti non interessanti sono scartati
- □ I pacchetti ritenuti interessanti sono i Weak IV individuati da Fluhrer, Mantin e Shamir (più Weak IV individuati successivamente)

Airsnort

- □ Ogni 10 weak IV acquisiti, airsnort utilizza un attacco probabilistico
- Si può controllare quanto profondamente analizzare l'albero delle diverse possibilità
- Un valore *n* del parametro "breadth" indica che verranno provate gli n valori più probabili per ciascuna posizione della chiave
- Sono richiesti circa 1500 weak IV per una chiave a 64 bit e circa 3000 per una chiave a 128 bit

Airsnort
 □ Test di attacco effettuato utilizzando: ■ L'Access Point dell'Avaya ■ Due laptop per generare traffico ■ Un laptop con una scheda Netgear ed Airsnort □ Impostata una chiave WEP a 64 bit, ovvero 40 bit di chiave, ovvero 5 caratteri → .SL04
■ Dopo circa 2.5 ore di acquisizione, circa 1.300.000 pacchetti acquisiti (di cui 1.200.000 criptati) e 1127 Weak IV, la chiave è stata determinata!