Real Time Operating Systems and Middleware

Real-Time Scheduling Analysis

Luca Abeni

abeni@dit.unitn.it

Credits: Luigi Palopoli, Giuseppe Lipari, and Marco Di Natale Scuola Superiore Sant'Anna

Pisa -Italy

Response Time Analysis

- Necessary and sufficient test: compute the worst-case response time for every task
- For every task τ_i :
 - Compute the worst case response time R_i for task τ_i
 - If $R_i \leq D_i$, then the task is schedulable
 - otherwise, the task is not schedulable
- To compute R_i , no assumption on the priority assignment is needed
- The algorithm described in the next slides is valid for an arbitrary priority assignment
- The algorithm assumes periodic tasks with no offsets, or sporadic tasks

The Critical Instant

- Tasks ordered by decreasing priority ($i < j \rightarrow p_i > p_j$)
- No assumptions about tasks offsets
 - \Rightarrow consider the worst possible offsets combination
 - critical instant: a job $J_{i,j}$ released at the critical instant (for task τ_i) has the maximum response time respect to all the other jobs in τ_i : $\forall k, \rho_{i,j} \ge \rho_{i,k}$
 - This is a simplified definition (jobs deadlines should be considered...)
 - Theorem: The critical instant for task τ_i occurs when job $J_{i,j}$ is released at the same time with a job in every high priority task
- If all the offsets are 0, the first job of every task is released at the critical instant!!!

Worst Case Response Time

- To compute the worst case response time R_i for task τ_i :
 - We have to consider its computation time...
 - ...And the computation time of the higher priority tasks
 - Higher priority tasks can *preempt* task τ_i , and increment its response time

Computing the Response Time - I

$$R_i = C_i + \sum_{h=1}^{i-1} \left\lceil \frac{R_i}{T_h} \right\rceil C_h$$

• Urk!!! $R_i = f(R_i)$... How can we solve it?

- There is no closed-form expression for computing the worst case response time R_i
- We need an iterative method to solve the equation

Computing the Response Time - II

- Iterative solution
 - $R_i = \lim_{k \to \infty} R_i^{(k)}$
 - $R_i^{(k)}$: worst case response time for τ_i , at step k
- $R_i^{(0)}$: first estimation of the response time
 - We can start with $R_i^{(0)} = C_i$

•
$$R_i^{(0)} = C_i + \sum_{h=1}^{i-1} C_h$$
 saves 1 step

$$R_{i}^{(0)} = C_{i}(+\sum_{h=1}^{i-1} C_{h})$$
$$R_{i}^{(k)} = C_{i} + \sum_{h=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{h}}\right] C_{h}$$

Computing the Response Time - III

- Problem: are we sure that we find a valid solution?
- The iteration stops when:
 - $R_i^{(k+1)} = R_i^{(k)}$ or
 - $R_i^{(k)} > D_i$ (non schedulable);
- This is a standard method to solve non-linear equations in an iterative way
- If a solution exists (the system is not overloaded), $R_i^{(k)}$ converges to it
- Otherwise, the " $R_i^{(k)} > D_i$ " condition avoids infinite iterations

$$R_3^{(0)} = C_3 + 1 \cdot C_1 + 1 \cdot C_2 = 9$$

$$R_3^{(1)} = C_3 + 2 \cdot C_1 + 1 \cdot C_2 = 11$$

$$R_3^{(2)} = C_3 + 3 \cdot C_1 + 2 \cdot C_2 = 15$$

$$R_3^{(3)} = C_3 + 3 \cdot C_1 + 2 \cdot C_2 = 15 = R_3^{(2)}$$

The method is valid for different priority assignments and deadlines different from periods

 $\tau_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2, \tau_3 = (3, 10, 10), p_3 = 1;$ U = 0.72

The method is valid for different priority assignments and deadlines different from periods

 $au_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2, \tau_3 = (3, 10, 10), p_3 = 1;$ U = 0.72

The method is valid for different priority assignments and deadlines different from periods

 $au_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2, \tau_3 = (3, 10, 10), p_3 = 1;$ U = 0.72

The method is valid for different priority assignments and deadlines different from periods

 $au_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2, \tau_3 = (3, 10, 10), p_3 = 1;$ U = 0.72

Considerations

The response time analysis is an efficient algorithm

- In the worst case, the number of steps N for the algorithm to converge is exponential
 - It depends on the total number of jobs of higher priority tasks that may be contained in the interval [0, D_i]:

$$N \propto \sum_{h=1}^{i-1} \left\lceil \frac{D_h}{T_h} \right\rceil$$

- If s is the minimum granularity of the time, then in the worst case $N = \frac{D_i}{s}$;
- However, such worst case is very rare: usually, the number of steps is low.

Processor Demand Approach

The Idea

- Processor Demand approach has been proposed by Lehoczky and others in 1989
- Refined by Audsley and others in 1993 and by Baruah in 1990
- The basic idea is very simple: in any interval, the computation demanded by all tasks in the set must never exceed the available time
- The problem is: how to compute the time demanded by a task set T?
 - Remember: we have to look only at jobs released at the critical instant
 - Offsets = 0 ⇒ only consider the first job of each task...

The Processor Demand

- Given an interval $[t_1, t_2]$,
- It \mathcal{J}_{t_1,t_2} be the set of jobs started after t_1 and with deadline lower than or equal to t_2 :

$$\mathcal{J}_{t_1, t_2} = \{ J_{i,j} : r_{i,j} \ge t_1 \land d_{i,j} \le t_2 \}$$

• the processor demand in $[t_1, t_2]$ is defined as:

$$W(t_1, t_2) = \sum_{J_{i,j} \in \mathcal{J}_{t_1, t_2}} c_{i,j}$$

• Worst case: use C_i instead of $c_{i,j}$

Computing the Processor Demand

- Guaranteeing a task set \mathcal{T} based on $W(t_1, t_2)$ can take a loooong time (need to check all the (t_1, t_2) combinations in a hyperperiod?), but...
- ... We only need to check the first job $J_{i,1}$ of every task $\tau_i!$
- Let's define $W_i(t_1, t_2)$ as the time demanded in $[t_1, t_2]$ by all the tasks τ_j with $p_j \ge p_i$ ($\Rightarrow j \le i$)
 - We can consider only $W_i(0,t)$
 - For guaranteeing task τ_i , we must check $W_i(0, t)$ only for $0 \le t \le D_i$
- We already have some hints about computing $W_i(0,t)$...

$$W_i(0,t) = C_i + \sum_{h=1}^{i-1} \left\lceil \frac{t}{T_h} \right\rceil C_h$$

TDA: The Guarantee

- Task τ_i is schedulable iff $\exists t : 0 \le t \le D_i \land W_i(0, t) \le t$
- A task set \mathcal{T} is schedulable iff

$$\forall \tau_i \in \mathcal{T}, \exists t : 0 \le t \le D_i \land W_i(0, t) \le t$$

- Some notes:
 - Sometimes, $W_i(0,t) \to W_i(t) = \sum_{h=1}^{i} \left| \frac{t}{T_h} \right| C_h$ (this is equivalent, because $0 \le t \le T_i$)
 - It is sometimes useful to define

$$L_i(t_1, t_2) = \frac{W_i(t_1, t_2)}{t_2 - t_1}$$

$$L_i = \min_{0 \le t \le D_i} L_i(0, t); L = \max_{\tau_i \in \mathcal{T}} L_i$$

TDA Simplifications

By using the L_i and L definitions shown above, the guarantee test becomes

Task τ_i is schedulable iff $L_i \leq 1$ \mathcal{T} is schedulable iff $L \leq 1$

- Computing L_i might still be long (need to check many values of L(0, t) to find the minimum)...
 - The number of points to check for computing L_i can be reduced
 - Scheduling points: $S_i = \{kT_h | h \le i; 1 \le k \le \left| \frac{T_i}{T_h} \right| \}$
 - (multiples of T_h for $h \leq i$)
 - $L_i = \min_{t \in S_i} L_i(0, t)$

- \bullet $\tau_1 = (20, 100), \tau_2 = (40, 150), \tau_3 = (100, 350)$
- τ_1 is schedulable: 20 < 100
- What about τ_2 ?
 - $S_2 = \{100, 150\}$
 - $W_2(0, 100) = 40 + 20 = 60 \le 100$: τ_2 is schedulable
- And now, au_3 :
 - $S_3 = \{100, 150, 200, 300, 350\}$
 - $W_3(0, 100) = 100 + 20 + 40 = 160 > 100$
 - $W_3(0, 150) = 100 + 2 * 20 + 40 = 180 > 150$
 - $W_3(0,200) = 100 + 2 * 20 + 2 * 40 = 220 > 200$
 - $W_3(0, 300) = 100 + 3 * 20 + 2 * 40 = 240 \le 300$: τ_3 is schedulable

Example - Continued

- But we already knew that the task set is schedulable: $\frac{20}{100} + \frac{40}{150} + \frac{100}{350} = 0.2 + 0.2\overline{6} + 0.2857 = 0.753 < 0.779$
- Now, let's change C_1 to 40:
 - $\tau_1 = (40, 100), \tau_2 = (40, 150), \tau_3 = (100, 350)$

$$U = \frac{40}{100} + \frac{40}{150} + \frac{100}{350} = 0.953$$

- $U_{lub} \leq U \leq 1$: using utilisation-based analysis, we cannot say is T is schedulable or not...
- τ_1 is schedulable: 40 < 100
- $W_2(0, 100) = 40 + 40 \le 100$: τ_2 is schedulable
- $W_3(0, 300) = 100 + 3 * 40 + 2 * 40 = 300 \le 300$: τ_3 is still schedulable!!!

Example - Checking the Results

• TDA says that the task set is schedulable, but I do not believe it!!! (U = 0.953 looks very high)

Example - Checking the Results

- TDA says that the task set is schedulable, but I do not believe it!!! (U = 0.953 looks very high)
- So, here is the schedule...

Checking the Results - Response Time

- And what about using response time analysis?
- $\mathbf{\mathcal{T}} = \{ (40, 100), (40, 150), (100, 350) \}$
 - $R_3^{(0)} = 100$
 - $R_3^{(1)} = 100 + \left\lceil \frac{100}{100} \right\rceil 40 + \left\lceil \frac{100}{150} \right\rceil 40 = 100 + 40 + 40 = 180$ • $R_3^{(2)} = 100 + \left\lceil \frac{180}{100} \right\rceil 40 + \left\lceil \frac{180}{150} \right\rceil 40 = 100 + 80 + 80 = 260$
 - $R_3^{(3)} = 100 + \left\lceil \frac{260}{100} \right\rceil 40 + \left\lceil \frac{260}{150} \right\rceil 40 = 100 + 120 + 80 = 300$ • $R_3^{(4)} = 100 + \left\lceil \frac{300}{100} \right\rceil 40 + \left\lceil \frac{300}{150} \right\rceil 40 = 100 + 120 + 80 = 300$
 - $R_3^{(4)} = R_3^{(3)} \Rightarrow$ stop. $R_3 = 300$
- $R_3 = 300 \le 350 \Rightarrow$ the system is schedulable.
- The previous result is confirmed...