- N

Real Time Operating Systems and
Middleware

Managing Concurrency in POSI X

Luca Abeni

abeni @it.unitn.it

Processes

- N

#® A process implements the notion of protection
» Each process has its own address space
» A process can write/read in its address space

s Butis not allowed to touch other processes’
resources

» Two processes can share some resources for
communication, but this has to be explicitly allowed by
them!

#® Processes usually communicate through message
passing
s pipes
» sockets

L s Signals J

Real Time Operating Systems and Middleware — p. 2

Processes as Active Entities
- -

#® A process is more than a set of private resources...
_.ltis an active entity!

#® [wo aspects:

» Protection / Resource Ownership
s EXxecution

s A process contains at least a schedulable entity,
which can access the process’s resources
s Scheduling parameters

s This schedulable entity is also characterized by (at
least) a CPU state and a stack

o |

Real Time Operating Systems and Middleware — p. 3

Single-Threaded Process

-

Each process has only
one thread

One address space
per process

One stack per
process

® One PCB per process

Single-threaded process

-

model

/

Process
Control

Block

\

Stack

User
Address

Kernel
Stack

|

Real Time Operating Systems and Middleware — p. 4

-

Multi-Threaded Process

A process can have multi-
ple threads running in it

9
K
2

One address space
One PCB

Multiple stacks (one
per thread)

A TCB (Thread Con-
trol Block) per thread

Multi-threaded process

model

. |Thread |! | (Thread | ' | |Thread |!

Process . |Control | | |Control | | |Control |
Control | | Block |1 ' |Block |i' |Block |
Block | | - N |
| User i | User i | User i

' 1Stack [! |Stack | 1! |Stack |

User : [: [: [

Address| | L L :
Space | | |Kernel| ! 1 |Kernel| ! | |Kernd| !
. | Stack | || | Stack | ! | | Stack | !

oD e o > = — oD e o > = — oD e o > = —

-

|

Real Time Operating Systems and Middleware —p. 5

A Small Summary about Processes

-

<
9

B

Let’s recall some quick ideas about processes

As usual, focus on POSIX (sometimes, Unix / Linux)

» Not intended to be a complete description about
multiprogramming in Unix

» Refer to manpages (man <functi on nane> for
more Info)

We will see

» Process creation / termination

» Synchronization (IPC, signals)

|

Real Time Operating Systems and Middleware — p. 6

Process Memory Layout

-

Private Address Space
» User Memory
s Stack
s Heap

User Memory is divided In:
s Initialized Data Segment
s BSS
s Text Segment (program code)

The heap:

» Is usable by the process through mal | oc() &
friends

s Cangrow (brk() andsbrk())

o |

Real Time Operating Systems and Middleware — p. 7

Process ldentification

- N

Each process is identified by a Process ID (PID)

A PID is unique Iin the system
» When a new process is created, its PID is returned
» Each process can obtain its pid by calling get pi d()

pid t getpid(void)

Note that get pi d() never fails
o It never returns values < 0

o |

Real Time Operating Systems and Middleware — p. 8

Process Creation

- N

#® A new process can be created by calling f or k()
pid t fork(void)

» The new process (child process) contains a copy of
the parent’s address space

s The call has one entry point, and two exit points
s In the child, 0 Is returned
s In the parent, the PID of the child is returned

s As usual, a negative value is returned in case of
error

® Seewww. dit.unitn. i1t/ ~abeni / RTOS/fork. c

o |

Real Time Operating Systems and Middleware — p. 9

www.dit.unitn.it/~abeni/RTOS/fork.c

Using fork()

- N

Typical usage:

1 child pid = fork();
| f hild_pid 0 - .
2 e e Fork): U Problem: since the child ad-
. } return -1, dress space is a copy of
6 if (child_pid ==0) { the parent’s one, the child’s
7 [+ Child body x/ .
s 1 else { text segment is the same
o o |7 rather body as the father’'s one = both
the parent’s body and the
Simpler version: child body must be Iin the
L same executable file.
2 if (child pid == 0) {
3 /» Child body */ Solution: exec()
4 exit(0);
)
6 }* Fat her body =/

o |

Real Time Operating Systems and Middleware — p. 10

Changing the Process Text and Data
- -

Exec: family of functions allowing to replace the
process address space (text, data, and heap)

s execl (), execl p(), execle(),execv(),
execvp()

s They differer in the arguments; see the manpage

Loads a new program, and jump to it

» Does not create a new process!!! (same PID, same
PCB, ...

s Returns only on error!
® Seewwv. dit.unitn. i1t/ ~abeni/RITOS/ exec. C

o |

Real Time Operating Systems and Middleware — p. 11

www.dit.unitn.it/~abeni/RTOS/exec.c

o

O~NOO O A WN PR

Typical Exec Usage

child pid = fork();

I f (child pid < 0) {
perror (" Fork");
return -1;

}
If (child pid == 0) {
char args[3] = {"argl", "arg2", "arg3"},;

execve("child body", args, NULL);
perror("Exec"); /+* Way don’'t we check the return val ue? x/
return -1;

Note: some (hon POSIX compliant) systems do not
make a distinction between program and process, and
only provide a “fork + exec” combo

#® POSIX also provides a syst en() function, which does
fork + exec (+ walit)

|

Real Time Operating Systems and Middleware — p. 12

Terminating a Process

- N

A process terminates:

1. When it invokes the library call exi t () or the
system call _exi t ()

2. When it returns from its main function
3. When it is killed by some external event (a signal)

When it terminates explicitly, a process can return a
result to the parent

#® Every process can register a hook to be called on
regular process termination

Int atexit(void (*function)(void))

» Handlers are not called if exiting with _exi t () ...

L Why? J

Real Time Operating Systems and Middleware — p. 13

Waiting for a Process

- N

First form of synchronization between processes:
» A parent waits for its child’s termination
s Wait(),waitpid(),wait4()
pidt wait(int =*status)

s |If the process has no children, wai t () fails (a
negative value is returned)

s If the process has at least a terminated child,
wai t () returns the child’s exit value, and child’s
private resources are freed

s If there are no terminated children, wai t () blocks

#® Extended versionsofwait(): waitpid() (POSIX),
wait3(),wait4() (BSD)

L » Permit to select the child to wait for J

Real Time Operating Systems and Middleware — p. 14

Wait, Again
- -

After a process terminates, Its private resources are not
freed until its parent performs awai t ()

Until the wai t (), a terminated process is in zombie
state
» A good parent has to wait for its children!

» When the parent of a process dies, the process is
reparented to i ni t (a system process, with PID 1)

» = Wwhen a process dies, all its zombies are
eliminated

#® A process can be notified about the termination of a
child process through an asynchronous event (signal:
S| GCLD)

o |

Real Time Operating Systems and Middleware — p. 15

Sinchronization through Signals

-

Concurrent processes interact in different ways
s Competition
s Cooperation

Cooperation can be implemented through signals

s Sometimes, a process has to wait until cooperating
processes have completed some operation

s = process 7; waits for an asynchronous event
generated by another process 7;, or by the system
Signal: asynchronous event directed to process 7

® Process 7 can:
» Wait for a signal

o Perform some other work in the meanwhile, and the
L signal will interrupt it J

Real Time Operating Systems and Middleware — p. 16

Handling Signals

- N

Signhals — software equivalent of interrupts

#® A process receiving a signal can:
s Ignore it
s Interrupt its execution, and jJump to a signal handler
s Abort

A signal that has not generated one of the previous
actions yet is a pending signal

» We will see how to:
s Specify how a process handles a signal
» Mask (block) a signal
s Check if there are pending signal for a process

L » Generate (or ask the kernel to generate) signals J

Real Time Operating Systems and Middleware — p. 17

Sighal Handlers

Signal Table

» Per process, private, resource

» Specifies how the process handle each signal
» At process creation, default values

The table entries can be modified by using si gnal (),
or si gacti on() (POSIX, more portable)

Signal handler: voi d si ghand(i nt n)

I nt sigaction(int signum const struct sigaction *act,
struct sigaction *ol dact)

si gnumis the number of the signal we want to modify
If ol dact is not null, returns the old handler

|

Real Time Operating Systems and Middleware — p. 18

Setting a Signal Handler
- -

struct sigaction {
void (*sa_handler)(int);
si gset _t sa_ mask;
I nt sa fl ags;
}
sa_handl er is the signal handler, or SI G.DFL (default

action), or SI G.I GN (ignore the signal)
sa_nask Is a mask of signals to disable when the
handler runs
» Can be modified using si genpt yset (),
sigfillset(),sigaddset (), andsi gdel set ()

sa_fl ags defines the signal handling behaviour
through a set of flags (see manpage)

o |

Real Time Operating Systems and Middleware — p. 19

Sending a Signal
- -

#® A process can send a signal to other processes by
using the ki I | () system call

» Note that it must have the proper permissions (user
root can send signals to everyone, regular users can
send signals only to their own processes)

int kill(pid t pid, int sig)

® Thisis whatthe ki | | command uses, too...

Do not be fooled by the name: it is not only used to kill a
process (example: ki I I - HUP)

o |

Real Time Operating Systems and Middleware — p. 20

o

<

Signal Numbers

-

Signals are identified by numbers, and by some macros
SI GQUSR1 and SI GUSR2: user defined

SI GALRM SI GVTALRM and SI GPROF are used by
process timers (remember?...)

SI &KI LL is used to kill a program (used by "kill -9")

SI GCLD s raised every time that a child dies

s Useful for avoiding zombies (the SI GCLD handler
can performawai t ())

s If SI GCLD s ignored, strange behaviour: zombies
are not created

See
ww. dit.unitn. 1t/ ~abeni / RTOS/oscillator. c
(try to compile with - DNOZOVBI E or - DHANDLERL1) J

Real Time Operating Systems and Middleware — p. 21

www.dit.unitn.it/~abeni/RTOS/oscillator.c

Problems with Signals
-

Almost all of the signals are reserved for the system
s Only SI GQUSR{1, 2} are free for user programs

Signals can be lost

s If a signal arrives more than 1 time while it is
blocked, it is not queued (it will fire only one time)

» This makes signals quite unreliable for RT IPC...

Signals do not transport information
s only the signal number is available to the handler

Solution: POSIX Real-Time signals

|

Real Time Operating Systems and Middleware — p. 22

Real-Time Signals

-

Multiple instances of real-time signals can be gqueued

Real-time signals can transport information
s Elther an integer or a pointer
» An extended signal handler has to be used

void sig _action(int signum siginfo t *info, void *ignored)

s Use sigaction(), setthe SA.SI A NFOflag, and
set sa_si gacti on() instead of sa handler

There are at least SI GRTMAX - SI GRTM N available
signals for user applications

» They must be referred as SI GRTM N + n
Use si gqueue() to send the signal
Seeww. dit.unitn.it/~abeni/RTOS/rtsig.c J

Real Time Operating Systems and Middleware — p. 23

www.dit.unitn.it/~abeni/RTOS/rtsig.c

RT Signhal Information

- N

Real-time signals carry information, in si gi nf o_t

t ypedef struct {

I nt si_signo;

I nt si _code;

uni on sigval si _val ue;
} siginfo_t

uni on sigval {
I nt sival _int;
void *sival _ptr;

O WO ~NOOLA WDNPE

=

}
Si _si gno Is the signhal number (same as si gno)

si _val ue is the information carried by the signal

si _code identifies the cause of the signal

s Sl _USER: sent by a user process (ki I'1 ())

s S| _QUEUE: sent by a user process (si gqueue())

s S|l _TI MER: a POSIX timer expired

s ... (see documentation) J

°

°

°

Real Time Operating Systems and Middleware — p. 24

-

Sending RT Signals
-

| nt sigqueue(pid t p, int n, const union sigval val ue)

o

X

>
9
9

As usual, returns < 0 In case of error
If no error occurs, queue a signal n for process p
Information val ue is transmitted with the signal

RT Signals can also be generated by the kernel
» Described by struct si gevent

1 struct sigevent {

2 i nt sigev_notify;

3 | nt sigev_signo;

4 uni on sigval;

5 voi d(*) (unsi gned sigval) sigev_notify function;
6 (pthread attr _t+) sigev_notify attributes;

7}

s sigev_notify: SI GEV_NONE, SI GEV_SI GNAL, or
S| GEV_THREAD J

Real Time Operating Systems and Middleware — p. 25

Real-Time Scheduling in POSIX

- N

POSIX provides support for Real-Time scheduling

Priority scheduling
s Multiple priority levels
» A task queue per priority level
» The first task from the highest-priority, non empty,
gueue Is scheduled
POSIX provides multiple scheduling policies

» A scheduling policy describes how tasks are moved
between the priority queues

» Fixed priority: a task is always in the same priority
gueue

o |

Real Time Operating Systems and Middleware — p. 26

Real-Time Scheduling in POSIX
-

POSIX specifically requires four scheduling policies:
s SCHED_FI FO
s SCHED.RR
s SCHED_SPORADI C
s SCHED_OTHER

SCHED_FI FOand SCHED_RR have fixed priorities

#® SCHED_SPORADI Cis a Sporadic Server — decreases
the response time for aperiodic real-time tasks

#® SCHED_OTHER s the “traditional” Unix scheduler
s Dynamic priorities
» Scheduled in background respect to fixed priorities

o |

Real Time Operating Systems and Middleware — p. 27

Fixed Priorities

- N

#® SCHED_FI FOand SCHED_RR use fixed priorities

» They can be used for real-time tasks, to implement
RM and DM

» Real-time tasks have priority over non real-time
(SCHED_OTHER) tasks

The difference between the two policies is visible when
more tasks have the same priority

s SCHED_FI FQ priority queues handled in FIFO order
s When a task start executing, only higher priority
tasks can preempt it

s SCHED_RR: time Is divided In intervals
s After executing for one interval, a task is removed
by the head of the queue, and inserted at the end

o |

Real Time Operating Systems and Middleware — p. 28

SCHED FIFO vs SCHED RR
-

Only one task per priority level — SCHED_FI FOand
SCHED_RR behave the same way

More tasks with the same priority

s With SCHED_FI FQ, the first task of a priority queue
can starve other tasks having the same priority

» SCHED_RRtries serve tasks having the same priority
In a more fair way

The round-robin interval (scheduling quantum) is
Implementation dependent

RR and FIFO priorities are comparable. Minimum and
maximum priority values can be obtained with
sched_get priority_m n() and

sched_get _priority_nmax() J

Real Time Operating Systems and Middleware — p. 29

Setting the Scheduling Policy
B -

I nt sched _get _priority max(int policy)
I nt sched _get _priority mn(int policy)

| Nt sched _setscheduler(pid t pid, int policy,
const struct sched _param *param
I nt sched _setparan(pid_t pid,
const struct sched _param *param
o Ifpid == 0, then the parameters of the running task

are changed

The only meaningful field of st ruct sched_par amis
schedpriority

o |

Real Time Operating Systems and Middleware — p. 30

Problems with Real-Time Priorities

- N

In general, “regular’” (SCHED_OTHER) tasks are
scheduled in background respect to real-time ones

A real-time task can preempt / starve other applications

Example: the following task scheduled at high priority
can make the system unusable

voi d bad bad task()

1

2 {

3 while(l);
4

» Real-time computation have to be limited (use
real-time priorities only when really needed!)

» On sane systems, running applications with real-time
priorities requires root privileges (or part of them!)

o |

Real Time Operating Systems and Middleware — p. 31

Memory Swapping and Real-Time
- -

The virtual memory mechanism can swap part of the
process address space to disk

» Memory swapping can increase execution times
unpredictabllities

» Not good for real-time applications
A real-time task can lock part of its address space In
main memory

» Locked memory cannot be swapped out of the
physical memory

» This can result in a DoS (physical memory
exhausted!!!)

Memory locking can be performed only by applications
L having (parts of) the root privileges! J

Real Time Operating Systems and Middleware — p. 32

o

Memory Locking Primitives

-

m ock() : lock some pages from the process address
space into main memory

» Makes sure this region is always loaded in RAM
munl ock() : unlock previously locked pages

m ockal | () : lock the whole address space into main
memory

» Can lock the current address space only, or all the
future allocated memory too

» Can be used to disable “lazy allocation” techniques

These functions are defined in sys/ mman. h
» Please check the manpages for details

|

Real Time Operating Systems and Middleware — p. 33

	Processes
	Processes as Active Entities
	Single-Threaded Process
	Multi-Threaded Process
	A Small Summary about Processes
	Process Memory Layout
	Process Identification
	Process Creation
	Using fork()
	Changing the Process Text and Data
	Typical Exec Usage
	Terminating a Process
	Waiting for a Process
	Wait, Again
	Sinchronization through Signals
	Handling Signals
	Signal Handlers
	Setting a Signal Handler
	Sending a Signal
	Signal Numbers
	Problems with Signals
	Real-Time Signals
	RT Signal Information
	Sending RT Signals
	Real-Time Scheduling in POSIX
	Real-Time Scheduling in POSIX
	Fixed Priorities
	SCHED_FIFO vs SCHED_RR
	Setting the Scheduling Policy
	Problems with Real-Time Priorities
	Memory Swapping and Real-Time
	Memory Locking Primitives

