- N

Real Time Operating Systems
Cross Compiling

Luca Abeni

The Kernel

-

with the hardware

Kernel — component of an OS that directly interacts

-

» Runs in privileged mode (Kernel Space — KS)

» User Level < Kernel Level switch through special
CPU instructions (INT, TRAP, sysenter / sysexit, . . .)

» User Level invokes system calls or IPCs

~

Kernel Responsibilities
» Process management

Applications

» Memory management -

s Device management

.

Kernel

J

(Drivers...)
» System Calls

o

User
Level

Kernegl
Level

(CPU | memory| eices |« « « 2 Hardware

Real Time Operating Systems — p. 2

System Libraries

- N

Applications generally don’t invoke system calls directly

They generally use system libraries (like glibc), which

» Provide a more advanced user interface (example:
f open() vs open())

o Hide the US < KS switches

» Provide some kind of stable ABI (application binary
Interface)

o |

Real Time Operating Systems — p. 3

Static vs Shared Libraries

-

Libraries can be static or dynamic

Static libraries (. a)
» Collections of object files (. 0)

s Application linked to a static library = the needed
objects are included into the executable

s Only needed to compile the application

Dynamic libraries (. so, shared objects)
s Are not included in the executable

s Application linked to a dynamic library = only the
library symbols names are written in the executable

» Actual linking Is performed at loading time
s . so files are needed to execute the application

Real Time Operating Systems — p. 4

Embedded Development

- N

Embedded systems are generally based on low power
CPUs ...

.. .And have not much ram or big disks

#® = not suitable for hosting development tools

s Development is often performed by using 2 different
machines: host and guest

o Guest: the embedded machine; Host: the machine
used to compile

o Host and Guest often have different CPUs and
architectures

s = cross-compiling is needed

o |

Real Time Operating Systems — p. 5

-

o

¥

X

Cross-Compilers

-

Cross Compiler: runs on the Host, but produces
binaries for the Target

For many embedded systems, cross-compilation is the
only way to build programs (as the target hardware
does not have the resources or capabillities to compile
code on its own)

Cross-Compiling environment: cross-compiler (and
some related utilities) + libraries (at least system
libraries, static or dynamic)

o C compiler and C library are often strictly
Interconnected

» = building (and using) a proper cross-compiling
environment is not easy

|

Real Time Operating Systems — p. 6

Cross-Compillers Internals - gcc

- N

#® gcc: Gnu Compiler Collection

s Compiler transforming high-level (C, C++, etc...)
code into assembly code (. s files, machine
dependant)

s Assembler as, transforming assembly in machine
language (. o files, binary)

s Linker | d, transforming a set of . o files and libraries
In an executable (ELF, COFF, PE, ...) file

s ar,nmobj dunp, ...

#® gcc - S:runonly the compiler; gcc - c: run compiler
and assembler, . ..

o |

Real Time Operating Systems —p. 7

Cross-Compilers - Dependencies

-

Assembler, linker, and similar programs are part of the
binutils package

» gcc depends on binutils

As already seen, the compiler need standard libraries to
generate working executables

» gcc depends on glibc, or similar libraries (uclibc,
etc...)

But glibc must be compiled using gcc...
s Circular dependency?

= This is why building a Cross-Compiler can be tricky...

|

Real Time Operating Systems — p. 8

Cross-Configuring GNU Packages
-

#® (dcc, binutils, etc... — GNU tools
confi gur e script generated by automake / autoconf
--host=,--target=, ...
Configuration Name (configuration triplet):
cpu-manufacturer-operating_system

Systems which support different kernels and OSs — a
fourth optional kernel field can be added:
cpu-manufacturer-kernel-operating_system

Examples:

» Mmips-dec-ultrix
» 1586-pc-linux-gnu
s arm-unknown-elf

o |

Real Time Operating Systems — p. 9

o

Configuration Names

-

CPU: type of processor used on the system (tipically
'1386’, or ‘sparc’, or specific variants like ‘mipsel’)
Manufacturer: somewhat freeform string indicating the
manufacturer of the system (often ‘unknown’, ‘pc’, ...)
Operating System: name of the operating system
(system libraries matter)

s Typical embedded systems do not run any operating
system. ..

s = the object file format, such as ‘elf’ or ‘coff’ is used
Kernel: mainly used for GNU/Linux systems (example:
'1586-pc-linux-gnulibcl’)

» the kernel (‘linux’) is separated from the OS, (ex:

gnu) B

Real Time Operating Systems — p. 10

Building a gcc Cross-Compiler - 1
-

First of all, build binutils
./configure --target=arm unknown-| | nux-gnu

- - host =1 686- host _pc-1i nux-gnu --prefix=...

--di sabl e-nl s

» Generally, it is not needed to specify - - host =
(config.guess can guess it)

Then, install headers needed to build gcc

s Sanitized kernel headers

» glibc headers

Then compile gcc

Real Time Operating Systems — p. 11

Building a gcc Cross-Compiler - 2

gcc must be built 2 times T

s First, to build glibc (no threads, no shared libraries,
etc...)

s Then, a full version after building glibc
After building gcc the first time, glibc is built

Then, a fully working gcc (using the glibc we just
compiled) can be finally built

s Support for threads, the shared libraries we just built,
etc

For non-x86 architectures, some patches are
sometimes needed

|

Real Time Operating Systems — p. 12

Helpful Scripts
- -

#® As seen, correctly building a cross-compiler can be
difficult, long, and boring...

... Butthere are scripts doing the dirty work for us!
s crosstool http:// kegel . coni crosst ool

A slightly different (but more detailed) description can
be found on the eglibc web site: ww. egl i bc. org

o |

Real Time Operating Systems — p. 13

http://kegel.com/crosstool
www.eglibc.org

An Example: ARM Crosscompiler

-

Download it from T
www. dit.unitn.it/~abeni/RTOS/ Cross/cross.tgz

Untaritin/t np and properly set the path:

cd /tnmp
tar xvzf cross.tgz #use the right path instead of cross.tgz
PATH=$PATH: / t np/ Cr oss/ gcc-4. 1. 0-gli bc-2. 3. 2/ arm unknown- | i nux- gnu/ bi n

#® Ready to compile: try ar m unknown- | i nux- gnu-gcc -v

|t is an ARM crosscompiler built with crosstool
s gcc4.1.0
s glibc 2.3.2

o |

Real Time Operating Systems — p. 14

www.dit.unitn.it/~abeni/RTOS/Cross/cross.tgz

The Crosscompiler
-

#® The crosscompiler is installed In T
[tmp/ Cross/gcc-4.1.0-glibc-2. 3.2/ arm unknown- | i nux- gnu

|n particular, the . . . / bi n directory contains gcc and
the binutils

» All the commands begin with
ar m unknown- | I nux- gnu-

s Compile a dynamic executable with
arm unknown- | i nux-gcc hello.c

» Static executable: ar m unknown- | i nux- gcc
-static hello.c

® We obtain ARM executables... How to run them?
s ARM Emulator: Qemu!

\— s gemu-arm a. out J

Real Time Operating Systems — p. 15

QEMU
-

QEMU is a generic (open source) CPU and machine
emulator

o lItalsois a virtualizer, but we are not interested in that

» Generic: it supports different CPU models. We are
Interested in ARM

s It emulates both CPU and system

QEMU as a CPU emulator: permits to execute Linux
programs compiled for a different CPU. Example: ARM
— quenu-arm

To execute a static ARM program, genu- ar m
<pr ogr amnane>

What about dynamic executables?

|

Real Time Operating Systems — p. 16

QEMU and Dynamic Executables
-

To run a dynamic executable, the system libraries must
be dynamically linked to it

This happens at load time

QEMU can load dynamic libraries, but you have to
provide a path to them
s - L option

® gemu-arm-L <path to libraries> <program
nanme>
» For example:

genmu-arm-L \
...lgcc-4.1.0-glibc-2. 3.2/ armunknown- | i nux- gnu/ ar m unknown- | i nux-gnu \
[tnp/ a. out

o |

Real Time Operating Systems — p. 17

	The Kernel
	System Libraries
	Static vs Shared Libraries
	Embedded Development
	Cross-Compilers
	Cross-Compilers Internals - gcc
	Cross-Compilers - Dependencies
	Cross-Configuring GNU Packages
	Configuration Names
	Building a gcc Cross-Compiler - 1
	Building a gcc Cross-Compiler - 2
	Helpful Scripts
	An Example: ARM Crosscompiler
	The Crosscompiler
	QEMU
	QEMU and Dynamic Executables

