
Real Time Operating Systems
Cross Compiling

Luca Abeni

Real Time Operating Systems – p. 1

The Kernel

Kernel → component of an OS that directly interacts
with the hardware

Runs in privileged mode (Kernel Space → KS)
User Level ⇔ Kernel Level switch through special
CPU instructions (INT, TRAP, sysenter / sysexit, . . .)
User Level invokes system calls or IPCs

Kernel Responsibilities
Process management
Memory management
Device management
(Drivers...)
System Calls

Level
User

Hardware

Level
Kernel

Applications

memory devicesCPU

Kernel

Real Time Operating Systems – p. 2

System Libraries

Applications generally don’t invoke system calls directly

They generally use system libraries (like glibc), which
Provide a more advanced user interface (example:
fopen() vs open())
Hide the US ⇔ KS switches
Provide some kind of stable ABI (application binary
interface)

Real Time Operating Systems – p. 3

Static vs Shared Libraries

Libraries can be static or dynamic

Static libraries (.a)
Collections of object files (.o)
Application linked to a static library ⇒ the needed
objects are included into the executable
Only needed to compile the application

Dynamic libraries (.so, shared objects)
Are not included in the executable
Application linked to a dynamic library ⇒ only the
library symbols names are written in the executable
Actual linking is performed at loading time
.so files are needed to execute the application

Real Time Operating Systems – p. 4

Embedded Development

Embedded systems are generally based on low power
CPUs . . .

. . .And have not much ram or big disks

⇒ not suitable for hosting development tools
Development is often performed by using 2 different
machines: host and guest
Guest: the embedded machine; Host: the machine
used to compile
Host and Guest often have different CPUs and
architectures
⇒ cross-compiling is needed

Real Time Operating Systems – p. 5

Cross-Compilers

Cross Compiler: runs on the Host, but produces
binaries for the Target

For many embedded systems, cross-compilation is the
only way to build programs (as the target hardware
does not have the resources or capabilities to compile
code on its own)

Cross-Compiling environment: cross-compiler (and
some related utilities) + libraries (at least system
libraries, static or dynamic)

C compiler and C library are often strictly
interconnected
⇒ building (and using) a proper cross-compiling
environment is not easy

Real Time Operating Systems – p. 6

Cross-Compilers Internals - gcc

gcc: Gnu Compiler Collection
Compiler transforming high-level (C, C++, etc...)
code into assembly code (.s files, machine
dependant)
Assembler as, transforming assembly in machine
language (.o files, binary)
Linker ld, transforming a set of .o files and libraries
in an executable (ELF, COFF, PE, . . .) file
ar, nm, objdump, . . .

gcc -S: run only the compiler; gcc -c: run compiler
and assembler, . . .

Real Time Operating Systems – p. 7

Cross-Compilers - Dependencies

Assembler, linker, and similar programs are part of the
binutils package

gcc depends on binutils

As already seen, the compiler need standard libraries to
generate working executables

gcc depends on glibc, or similar libraries (uclibc,
etc...)

But glibc must be compiled using gcc...
Circular dependency?

⇒ This is why building a Cross-Compiler can be tricky...

Real Time Operating Systems – p. 8

Cross-Configuring GNU Packages

gcc, binutils, etc... → GNU tools

configure script generated by automake / autoconf
--host=, --target=, . . .

Configuration Name (configuration triplet):
cpu-manufacturer-operating_system

Systems which support different kernels and OSs → a
fourth optional kernel field can be added:
cpu-manufacturer-kernel-operating_system

Examples:
mips-dec-ultrix
i586-pc-linux-gnu
arm-unknown-elf

Real Time Operating Systems – p. 9

Configuration Names

CPU: type of processor used on the system (tipically
‘i386’, or ‘sparc’, or specific variants like ‘mipsel’)

Manufacturer: somewhat freeform string indicating the
manufacturer of the system (often ‘unknown’, ‘pc’, . . .)

Operating System: name of the operating system
(system libraries matter)

Typical embedded systems do not run any operating
system. . .

⇒ the object file format, such as ‘elf’ or ‘coff’ is used

Kernel: mainly used for GNU/Linux systems (example:
‘i586-pc-linux-gnulibc1’)

the kernel (‘linux’) is separated from the OS, (ex:
‘gnu’)

Real Time Operating Systems – p. 10

Building a gcc Cross-Compiler - 1

First of all, build binutils
./configure --target=arm-unknown-linux-gnu
--host=i686-host pc-linux-gnu --prefix=...
--disable-nls

Generally, it is not needed to specify --host=
(config.guess can guess it)

Then, install headers needed to build gcc
Sanitized kernel headers
glibc headers

Then compile gcc

Real Time Operating Systems – p. 11

Building a gcc Cross-Compiler - 2

gcc must be built 2 times
First, to build glibc (no threads, no shared libraries,
etc...)
Then, a full version after building glibc

After building gcc the first time, glibc is built

Then, a fully working gcc (using the glibc we just
compiled) can be finally built

Support for threads, the shared libraries we just built,
etc

For non-x86 architectures, some patches are
sometimes needed

Real Time Operating Systems – p. 12

Helpful Scripts

As seen, correctly building a cross-compiler can be
difficult, long, and boring...

... But there are scripts doing the dirty work for us!
crosstool http://kegel.com/crosstool

A slightly different (but more detailed) description can
be found on the eglibc web site: www.eglibc.org

Real Time Operating Systems – p. 13

http://kegel.com/crosstool
www.eglibc.org

An Example: ARM Crosscompiler

Download it from
www.dit.unitn.it/~abeni/RTOS/Cross/cross.tgz

Untar it in /tmp and properly set the path:

cd /tmp
tar xvzf cross.tgz #use the right path instead of cross.tgz
PATH=$PATH:/tmp/Cross/gcc-4.1.0-glibc-2.3.2/arm-unknown-linux-gnu/bin

Ready to compile: try arm-unknown-linux-gnu-gcc -v

It is an ARM crosscompiler built with crosstool
gcc 4.1.0
glibc 2.3.2

Real Time Operating Systems – p. 14

www.dit.unitn.it/~abeni/RTOS/Cross/cross.tgz

The Crosscompiler

The crosscompiler is installed in
/tmp/Cross/gcc-4.1.0-glibc-2.3.2/arm-unknown-linux-gnu

In particular, the .../bin directory contains gcc and
the binutils

All the commands begin with
arm-unknown-linux-gnu-

Compile a dynamic executable with
arm-unknown-linux-gcc hello.c

Static executable: arm-unknown-linux-gcc
-static hello.c

We obtain ARM executables... How to run them?
ARM Emulator: Qemu!
qemu-arm a.out

Real Time Operating Systems – p. 15

QEMU

QEMU is a generic (open source) CPU and machine
emulator

It also is a virtualizer, but we are not interested in that
Generic: it supports different CPU models. We are
interested in ARM
It emulates both CPU and system

QEMU as a CPU emulator: permits to execute Linux
programs compiled for a different CPU. Example: ARM
→ quemu-arm

To execute a static ARM program, qemu-arm
<program name>

What about dynamic executables?

Real Time Operating Systems – p. 16

QEMU and Dynamic Executables

To run a dynamic executable, the system libraries must
be dynamically linked to it

This happens at load time

QEMU can load dynamic libraries, but you have to
provide a path to them

-L option

qemu-arm -L <path to libraries> <program
name>

For example:

qemu-arm -L \
.../gcc-4.1.0-glibc-2.3.2/arm-unknown-linux-gnu/arm-unknown-linux-gnu \
/tmp/a.out

Real Time Operating Systems – p. 17

	The Kernel
	System Libraries
	Static vs Shared Libraries
	Embedded Development
	Cross-Compilers
	Cross-Compilers Internals - gcc
	Cross-Compilers - Dependencies
	Cross-Configuring GNU Packages
	Configuration Names
	Building a gcc Cross-Compiler - 1
	Building a gcc Cross-Compiler - 2
	Helpful Scripts
	An Example: ARM Crosscompiler
	The Crosscompiler
	QEMU
	QEMU and Dynamic Executables

