
Real Time Operating Systems
The Kernel

Luca Abeni

Real Time Operating Systems – p. 1

Real-Time Operating Systems

Real-Time operating system (RTOS): OS providing
support to Real-Time applications

Operating System:
Set of computer programs
Interface between applications and hardware
Control the execution of application programs
Manage the hardware and software resources
Abstracts the physical machine, multiplexing it
between executing tasks

OS as...
A Service Provider for user programs (POSIX API...)
A Resource Manager

Real Time Operating Systems – p. 2

Operating System Services

Services (Kernel Space):
Process / Thread Scheduling
Process Synchronisation, Inter-Process
Communication (IPC)
I / O
Virtual Memory

Provided to user tasks through an API
RT-POSIX interface

Real Time Operating Systems – p. 3

Task Scheduling

The core part of the OS (the kernel) implements a
virtual processor abstraction

A task set T composed by N tasks runs on M

CPUs, with M < N

All tasks τi have the illusion to run in parallel
Temporal multiplexing between tasks

Two core components:
The scheduler is responsible for deciding which task
is executed
The dispatcher actually switches the CPU context to
the context of the scheduled task (context switch)

Real Time Operating Systems – p. 4

Synchronization and IPC

The kernel must also provide a mechanism for allowing
tasks to communicate and synchronize

Two possible programming paradigms:
Shared memory (threads)

The kernel must provide semaphores or / and
mutexes + condition variables
Real-time resource sharing protocols (PI, HLP,
NPP, ...) must be implemented

Message passing (processes)
Interaction models: pipeline, client / server, ...
The kernel must provide some IPC mechanism:
pipes, message queues, mailboxes, Remote
Procedure Calls (RPC), ...
Some real-time protocols can still be used

Real Time Operating Systems – p. 5

Real-Time Scheduling in Practice

An adequate scheduling of system
resources removes the need for
over-engineering the system, and is
necessary for providing a predictable
QoS
Algorithm + Implementation = Scheduling

RT theory provides us with good algorithms...

...But which are the prerequisites for correctly
implementing them?

Real Time Operating Systems – p. 6

Theoretical and Actual Scheduling

Scheduler, IPC subsystem, and device drivers → must
respect the theoretical model saw in previous lessons

Scheduling is simple: fixed priorities
IPC, HLP, or NPP are simple too...
But what about timers?

we already noticed some problems...

Problem:
Are we sure that the scheduler is able to select a
high-priority task as soon as it is ready?
And the dispatcher?

Real Time Operating Systems – p. 7

Periodic Task Example

Consider a periodic task
1 /* ... */
2 while(1) {
3 /* Job body */
4 clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &r, NULL);
5 timespec_add_us(&r, period);
6 }

The task expects to be executed at time r (= r0 + jT)...

...But is sometimes delayed to r0 + jT + δ

Real Time Operating Systems – p. 8

Example - Theoretical Schedule

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

τ3

Real Time Operating Systems – p. 9

Example - Actual Schedule

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

τ3

Real Time Operating Systems – p. 10

Kernel Latency

The delay δ in scheduling a task is due to kernel latency

Kernel latency can be modelled as a blocking time
∑N

k=1
Ck

Tk
≤ Ulub → ∀i, 1 ≤ i ≤ n,

∑i−1

k=1
Ck

Tk
+Ci+δ

Ti
≤ Ulub

Ri = Ci+
∑i−1

h=1

⌈

Ri

Th

⌉

Ch → Ri = Ci+ δ+
∑i−1

h=1

⌈

Ri

Th

⌉

Ch

∃0 ≤ t ≤ Di : Wi(0, t) = Ci +
∑i−1

h=1

⌈

t

Th

⌉

Ch ≤ t →

∃0 ≤ t ≤ Di : Wi(0, t) = Ci +
∑i−1

h=1

⌈

t

Th

⌉

Ch ≤ t− δ

Real Time Operating Systems – p. 11

Kernel Latency

Scheduler → triggered by internal (IPC, signal, ...) or
external (IRQ) events

Time between the triggering event and dispatch:
Event generation
Event delivery (example: interrupts may be disabled)
Scheduler activation (example: non-preemptable
sections)
Scheduling time

Scheduler

Event Delivery Dispatch
Event Time Latency

Real Time Operating Systems – p. 12

Theoretical Model vs Real Schedule

In real world, high priority tasks often suffer from
blocking times coming from the OS (more precisely,
from the kernel)

Why?
How?
What can we do?

To answer the previous questions, we need to recall
how the hardware and the OS work...

Real Time Operating Systems – p. 13

System Architecture

System bus,
interconnecting:

One or more CPU(s)
System memory (RAM)
I/O Devices

Secondary memory
(disks, etc. . .)
Network cards
Graphic cards
Keyboard, mouse, etc

CPU

Memory I/O Devices

Bus

Real Time Operating Systems – p. 14

The CPU

Some general-purpose registers
Can be accessed by all the
programs
data registers or address registers

Program Counter (PC) register (also
known as Instruction Pointer)

Stack Pointer (SP) register

Flags register (also know as Program
Status Word)

Some “special” registers
Control how the CPU works
Must be “protected”

PC

SP

FG
P

R
eg

is
te

rs
Real Time Operating Systems – p. 15

The CPU - Protection

Regular user programs should not be allowed to:
Influence the CPU mode of operation
Perform I/O operations
Reconfigure virtual memory

⇒ Need for “privileged” mode of execution (Supervisor
Mode)

Regular registers vs “special” registers
Regular instructions vs privileged instructions

User programs run at a low privilege level (User Level)

Part of the OS (generally the kernel) runs in Supervisor
Mode

Real Time Operating Systems – p. 16

An Example: Intel x86

Real CPUs are more complex. Example: Intel x86
Few GP registers: EAX, EBX, ECX, EDX
(accumulator registers - containing an 8bit part and a
16bit part), EBP, ESI, EDI

EAX: Main accumulator
EBX: Sometimes used as base for arrays
ECX: Sometimes used as counter
EBP: Stack base pointer (for subroutines calls)
ESI: Source Index
EDI: Destination Index

Segmented architecture → segment registers CS
(code segment), DS (data segment), SS (stack
segment), GS, FS
Various modes of operation: RM, PM, VM86, . . .

Real Time Operating Systems – p. 17

The Kernel

Part of the OS which manages the hardware

Runs with the CPU in privileged mode (high privilege
level), or Supervisor Mode

We often say that the privilege level is the Kernel
Level (KL), or execution is in Kernel Space
Regular programs run at User Level (UL), in User
Space

Some mechanism is needed for increasing the privilege
level (from US to KS) in a controlled way

Interrupts (+ traps / hw execptions)
CPUs provide a way to switch to KL: software
interrupts / instructions causing an hardware
exception

Real Time Operating Systems – p. 18

Interrupts and Hardware Exceptions

Switch the CPU from User Level to Supervisor Mode
Enter the kernel
Can be used to implement system calls

A partial Context Switch is performed
Flags and PC are pushed on the stack
If processor is executing at User Level, switch to
Kernel Level, and eventually switch to a kernel stack
Execution jumps to a handler in the kernel → save
the user registers for restoring them later

Execution returns to User Level through a “return from
interrupt” instruction (IRET on x86)

Pop flags and PC from the stack
Eventually switch back to user stack

Real Time Operating Systems – p. 19

Simplified CPU Execution

To understand interrupts, consider simplified CPU
execution first

Increment
Program
Counter

Execute
Instruction

Fetch
Instruction

The CPU iteratively:
Fetch an instruction (address given by PC)
Increase the PC
Execute the instruction (might update the PC on
jump...)

Real Time Operating Systems – p. 20

CPU Execution with Interrupts

More realistic execution model

Interrupts
Disabled?

No

Yes

Fired?
Interrupt

No

Yes

Hardware Exception

Increment
Program
Counter

Execute
Instruction

Fetch
Instruction

Process
Interrupt

Interrupt: cannot fire during the execution of an
instruction

Hardware exception: caused by the execution of an
instruction

trap, syscall, sc, . . .
I/O instructions at low privilege level
Page faults

Real Time Operating Systems – p. 21

Processing Interrupts

Process
Interrupt

Interrupt table → addresses of the handlers
Interrupt n fires ⇒ after eventually switching to KS
and pushing flags and PC on the stack

Read the address contained in the nth entry of the
interrupt table, and jump to it!

Implemented in hardware or in software
x86 → Interrupt Description Table composed by
interrupt gates. The CPU automatically jumps to the
nth interrupt gate
Other CPUs jump to a fixed address → a software
demultiplexer reads the interrupt table

Real Time Operating Systems – p. 22

Software Interrupt - System Call

τ 1

τ 2

KS

US
Interrupt
Software

Blocks

New task
scheduled

Syscall

1. Task τ1 executes and invokes a system call (by issuing
a software interrupt)

2. Execution passes from US to KS (the stack is changed,
PC & flags are pushed, privilege level is increased)

3. The invoked syscall executes. Maybe, it is blocking

4. τ1 blocks → back to US, and τ2 is scheduled

Real Time Operating Systems – p. 23

Hardware Interrupt

τ 2

1τ

1τ KS

US

ISR

Hardware
Interrupt

unblocks

1. While task τ2 is executing, an hardware interrupt arrives

2. Execution passes from US to KS (the stack is changed,
PC & flags are pushed, privilege level is increased)

3. The proper Interrupt Service Routine executes

4. The ISR can unblock τ1 → when execution returns to
US, τ1 is scheduled

Real Time Operating Systems – p. 24

Summing up...

The execution flow enters the kernel for two reasons:
Reacting to an event “coming from up” (a syscall)
Reacting to an event “coming from down” (an
hardware interrupt from a device)

The kernel executes in the context of the interrupted
task

A system call can block the invoking task, or can
unblock a different task

An ISR can unblock a task

If a task is blocked / unblocked, when returning to user
space a context switch can happen

The scheduler is invoked when returning from KS to US

Real Time Operating Systems – p. 25

Example: I/O Operation

Consider a generic Input or Output to an external
device (example: a PCI card)

Performed by the kernel
User programs use a syscall for accessing the
device

The operation if performed in 3 phases
1. Setup: prepare the device for the I/O operation
2. Wait: wait for the device to terminate the operation
3. Cleanup: complete the operation

Various way to perform the operation: polling, PIO,
DMA, ...

Real Time Operating Systems – p. 26

Polling

The user program invokes the kernel, and execution
remains in kernel space until the operation is terminated

The kernel cyclically reads (polls) an interface status
register to check if the operation is terminated
1. The user program raises a software input
2. Setup phase - in kernel: in case of input operation,

nothing is done; in case of output operation, write a
value to a card register

3. Wait - in kernel: cycle until a bit of the card status
register becomes 1

4. Cleanup - in kernel: in case of input, read a value
from a card register; in case of output, nothing is
done. Eventually return to phase 1

5. IRET
Real Time Operating Systems – p. 27

Interrupt

The user program invokes the kernel, but execution
returns to user space (the process blocks) while waiting
for the device

An interrupt will notify the kernel that phase 2 is
terminated
1. The user program raises a software input
2. Setup phase - in kernel: instruct the device to raise

an input when it is ready for I/O
3. Wait - return to user space: block the invoking task,

and schedule a new one (IRET)
4. Cleanup - in kernel: the interrupt fires → enter

kernel, and perform the I/O operation
5. Return to phase 2, or unblock the task if the

operation is terminated (IRET)
Real Time Operating Systems – p. 28

Programmed I/O Mode

τ 1

τ 2

τ 1

ISR ISR ISR

1τ

Operation
I/O

start i/o

Blocks KS

US

unblocks

Real Time Operating Systems – p. 29

DMA / Bus Mastering

The user program invokes the kernel, but execution
returns to user space (the process blocks) while waiting
for the device

I/O operations are not performed by the kernel on
interrupt, but by a dedicated HW device. An interrupt is
raised when the whole I/O operation is terminated
1. The user program raises a software input
2. Setup phase - in kernel: instruct the DMA (or the

Bus Mastering Device) to perform the I/O
3. Wait - return to user space: block the invoking task,

and schedule a new one (IRET)
4. Cleanup - in kernel: the interrupt fires → the

operation is terminated. Stop device and DMA
5. Unblock the task and invoke the scheduler (IRET)

Real Time Operating Systems – p. 30

DMA / Bus Mastering - 2

τ 1

τ 2

τ 1

ISR

1τ

Operation
I/O

Blocks KS

US

unblocks

start DMA

Real Time Operating Systems – p. 31

Example: Linux System Call

1 int close(int fd)
2 {
3 long __res;
4
5 __asm__ volatile ("int $0x80"
6 : "=a" (__res)
7 : "0" (__NR_close),"b" ((long)(fd)));
8 __syscall_return(type,__res);
9 }

Don’t be scared!
syscall return() is just converting a linux error

code in −1, properly filling errno

Linux uses a syscall1 macro to define it (see
asm/unistd.h)
1 #define _syscall1(type,name,type1,arg1)
2 type name(type1 arg1) \
3 { \
4 ...

Real Time Operating Systems – p. 32

Kernel Side (arch/*/kernel/entry.S)

1 ENTRY(system_call)
2 pushl %eax # save orig_eax
3 SAVE_ALL
4 GET_THREAD_INFO(%ebp)
5 cmpl $(nr_syscalls), %eax
6 jae syscall_badsys
7 syscall_call:
8 call *sys_call_table(,%eax,4)
9 movl %eax,EAX(%esp) # store the return value

10 /* ... */
11 restore_all:
12 /* ... */
13 RESTORE_REGS
14 addl $4, %esp
15 1: iret

SAVE ALL pushes all the registers on the stack

The syscall number is in the eax register (accumulator)

After executing the syscall, the return value is in eax →

must be put in the stack to pop it in RESTORE REGS

Real Time Operating Systems – p. 33

	Real-Time Operating Systems
	Operating System Services
	Task Scheduling
	Synchronization and IPC
	Real-Time Scheduling in Practice
	Theoretical and Actual Scheduling
	Periodic Task Example
	Example - Theoretical Schedule
	Example - Actual Schedule
	Kernel Latency
	Kernel Latency
	Theoretical Model vs Real Schedule
	System Architecture
	The CPU
	The CPU - Protection
	An Example: Intel x86
	The Kernel
	Interrupts and Hardware Exceptions
	Simplified CPU Execution
	CPU Execution with Interrupts
	Processing Interrupts
	Software Interrupt - System Call
	Hardware Interrupt
	Summing up...
	Example: I/O Operation
	Polling
	Interrupt
	Programmed I/O Mode
	DMA / Bus Mastering
	DMA / Bus Mastering - 2
	Example: Linux System Call
	Kernel Side (arch/*/kernel/entry.S)

