
Real Time Operating Systems
The Non-Preemptable Sections Latency

Luca Abeni

Real Time Operating Systems – p. 1

Latency

Latency: measure of the difference between the
theoretical and actual schedule

Task τ expects to be scheduled at time t . . .

. . . but is scheduled at time t′

⇒ Latency L = t′ − t

The latency L can be modelled as a blocking time ⇒

affects the guarantee test

If L is too high, only few task sets result to be
schedulable

The latency must be bounded: ∃Lmax : L < Lmax

The latency bound Lmax cannot be too high

Real Time Operating Systems – p. 2

Sources of Latency

A task τi is a stream of jobs Ji,j arriving at time ri,j

Job Ji,j is scheduled at time t′ > ri,j

t′ − ri,j is given by the sum of various components:
1. Ji,j ’s arrival is signalled at time ri,j + L1

2. Such event is served at time ri,j + L1 + L2

3. Ji,j is actually scheduled at ri,j + L1 + L2 + L3

L1 2 L3L

Real Time Operating Systems – p. 3

Analysis of the Various Sources

L = L1 + L2 + L3

L3 is the scheduler latency
Interference from higher priority tasks
Already accounted by the guarantee tests → let’s not
consider it

L2 is the non-preemptable section latency, called Lnp

Due to non-preemptable sections in the kernel,
which delays the response to hardware interrupts
It is composed by various parts: interrupt disabling,
bottom halves delaying, . . .

L1 is due to the delayed interrupt generation

Real Time Operating Systems – p. 4

Interrupt Generation Latency

Hardware interrupts are generated by external devices

Sometimes, a device must generate an interrupt at time
t . . .

. . . but actually generates it at time t′ = t+ Lint

Lint is the Interrupt Generation Latency
It is due to hardware issues
It is generally small compared to Lnp

Exception: if the device is a timer device, the
interrupt generation latency can be quite high

Timer Resolution Latency Ltimer

The timer resolution latency Ltimer can often be much
larger than the non-preemptable section latency Lnp

Real Time Operating Systems – p. 5

The Timer Resolution Latency

Kernel timers are generally implemented by using a
hardware device that produces periodic interrupts

Periodic timer interrupt → tick

Example: periodic task (setitimer(), Posix timers,
clock nanosleep(), . . .) τi with period Ti

At the end of each job, τi sleeps for the next activation

Activations are triggered by the periodic interrupt

Periodic tick interrupt, with period T tick

Every T tick, the kernel checks if the task must be
woken up

If Ti is not multiple of T tick, τi experiences a timer
resolution latency

Real Time Operating Systems – p. 6

Non-Preemptable Section Latency

The non-preemptable section latency Lnp is given by
the sum of different components
1. Interrupt disabling
2. Delayed interrupt service
3. Delayed scheduler invocation

The first two are mechanisms used by the kernel to
guarantee the consistency of internal structures

The third mechanism is sometimes used to reduce the
number of preemptions and increase the system
throughput

Real Time Operating Systems – p. 7

Disabling Interrupts

Remember? Before checking if an interrupt fired, the
CPU checks if interrupts are enabled...

Interrupts
Disabled?

No

Yes

Fired?
Interrupt

No

Yes

Hardware Exception

Increment
Program
Counter

Execute
Instruction

Fetch
Instruction

Process
Interrupt

Every CPU has some protected instructions (STI/CLI
on x86) for enabling/disabling interrupts

Only the kernel (or code running in KS) can
enable/disable interrupts

Interrupts disabled for a time T cli → Lnp ≥ T cli

Interrupt disabling is used to enforce mutual exclusion
between sections of the kernel and ISRs

Real Time Operating Systems – p. 8

Delayed Interrupt Service

When the interrupt fire, the ISR is ran, but the kernel
can delay interrupt service some more...

ISRs are generally small, and do only few things
An ISR can set some kind of software flag, to notify
that the interrupt fired
Later, the kernel can check such flag and run a
larger (and more complex) interrupt handler

Advantages of “larger interrupt handlers”:
They can re-enable interrupts
Enabling/Disabling such handlers is simpler/cheaper

Disadvantages:

Interrupt response latency is increased: Lnp >> T cli

“larger interrupt handlers” are often non-preemptable
Real Time Operating Systems – p. 9

Deferred Scheduling

Scheduler: invoked only when returning from KS to US

For efficiency reasons, the kernel might want to return
to user tasks only after performing a lot of activities

Try to reduce the number of KS ↔ US switches
Reduce the number of context switches
Throughput vs low latency: opposite requirements

So, maybe the ISR runs at the correct time, the delayed
interrupt handler is ran im-
mediately, but the scheduler is invoked after some time...

Event Time

Scheduler

Latency

Event Delivery

Handlers

KS

US

Real Time Operating Systems – p. 10

Latency in the Standard Kernel

 1

 10

 100

 1000

 10000

 100000

 20000 17000 11000 10000 9000 8000 7000 1000

La
te

nc
y

(u
se

c)

Elapsed Time (msec)

m
em

or
y

ca
ps

 o
n

ca
ps

 o
ff

ch
vt

 3
ch

vt
 2

i/o pr
oc

 r
ea

d

fo
rk

Real Time Operating Systems – p. 11

Summing Up

Lnp depends on some different factors

In general, no hw reasons → it almost entirely depends
on the kernel structure

Non-preemptable section latency is generally the
result of the strategy used by the kernel for ensuring
mutual exclusion on its internal data structures
To analyze / reduce Lnp, we need to understand
such strategies
Different kernels, based on different structures, work
in different ways

Some of the problems:
Interrupt Handling (Device Drivers)
Management of the parallelism

Real Time Operating Systems – p. 12

Data Structures Consistency

Hardware interrupt: breaks the regular execution flow
If the CPU is executing in US, switch to KS
If execution is already in KS, possible problems

Example:
1. The kernel is updating a linked list
2. IRQ While the list is in an inconsistent state
3. Jump to the ISR, that needs to access the list...

The kernel must disable the interrupts while updating
the list!

Similar interrupt disabling is also used in spinlocks and
mutex implementations...

Real Time Operating Systems – p. 13

Real-Time Executives

Executive: Library code that can be directly linked to
applications

Implements functionalities generally provided by kernels

Generally, no distinction between US and KS
No CPU privileged mode, or application executes in
privileged mode
“kernel” functionalities are invoked by direct function
call
Applications can execute privileged instructions

Advantages:
Simple, small, low overhead
Only the needed code is linked in the final image

Real Time Operating Systems – p. 14

Real-Time Executives - 2

Disadvantages:
No protection
Applications can even disable interrupts → Lnp risks
to be unpredictable

Examples:
RTEMS http://www.rtems.org

SHaRK http://shark.sssup.it

Consistency of the internal structures is generally
ensured by disabling interrupts: Lnp is bounded by the
maximum amount of time interrupts are disabled

Generally used only when memory footprint is
important, or when the CPU does not provide a
privileged mode

Real Time Operating Systems – p. 15

http://www.rtems.org
http://shark.sssup.it

Monolithic Kernels

Traditional Unix-like structure

Protection: distinction between Kernel (running in KS)
and User Applications (running in US)

The kernel behaves as a single-threaded program
Only one single execution flow runs in KS at each
time
This greatly simplifies ensuring the consistency of
internal kernel structures

Execution enters the kernel in two ways:
Coming from up (system calls)
Coming from down (hardware interrupts)

Real Time Operating Systems – p. 16

Single-Threaded Kernels

Only one single execution flow (thread) can execute in
the kernel

It is not possible to execute more than 1 system call
at time

Non-preemptable system calls
In SMP systems, syscalls are critical sections
(execute in mutual exclusion)

Interrupt handlers execute in the context of the
interrupted task

Interrupt handlers split in two parts
Short and fast ISR
Deferred handler: Bottom Half (BH) (AKA Deferred
Procedure Call - DPC - in Windows)

Real Time Operating Systems – p. 17

Synchronizing System Calls and BHs

Synchronization with ISRs by disabling interrupts

Synchronization with BHs is almost automatic: BHs
execute at the end of the system call, before invoking
the scheduler for returning to US

BHs execute atomically (a BH cannot interrupt another
BH)

Kernels working in this way are often called
non-preemptable kernels

Lnp is upper-bounded by the maximum amount of time
spent in KS

Maximum system call length
Maximum amount of time spent serving interrupts

Real Time Operating Systems – p. 18

Evolution of the Monolithic Structure

Monolithic kernels are single-threaded: how to run then
on multiprocessor?

The kernel is a critical section: Big Kernel Lock
protecting every system call
This solution does not scale well: a more
fine-grained locking is needed!

Tasks cannot block on these locks → not mutexes, but
spinlocks!

Fine-grained locking allows more execution flows in the
kernel simultaneously

More parallelism in the kernel...
...But tasks executing in kernel mode are still
non-preemptable

Real Time Operating Systems – p. 19

Spinlocks

Spinlock: non-blocking synchronization object, similar
to mutex

Behave as a mutex, but tasks do not block on it

A task trying to acquire an already locked spinlock spins
until the spinlock is free

Obviously, spinlocks are only useful on SMP

For synchronising with ISR, there are “interrupt
disabling” versions of the spinlock primitives

spin lock(lock), spin unlock(lock)

spin lock irq(lock), spin unlock irq(lock)

spin lock irqsave(lock, flags),
spin unlock irqrestore(lock, flags)

Real Time Operating Systems – p. 20

Latency in Multithreaded Kernels

Non-preemptable sections latency is similar to
traditional monolithic kernels

Lnp is bounded by the maximum time spent in KS

A multithreaded kernel can be made preemptable
(spinlocks ensure proper synchronisation)

spin lock() increases a preemption counter
spin unlock() decreases a preemption counter;
when such counter is 0 the scheduler is invoked to
check if a preemption is needed
⇒ Can return to US earlier to decrease the latency

In a preemptable kernel, Lnp is upper bounded by the
maximum size of a kernel critical section

Similar to real-time executives

Real Time Operating Systems – p. 21

Latency
in

a
P

reem
ptable

K
ernel

1 10

100

1000

10000

100000
1000

7000
8000

9000

10000
11000

17000

20000

Latency (usec)

E
lapsed T

im
e (m

sec)

memory

caps on

caps off
chvt 3

chvt 2

i/o

proc read

fork

R
ealT

im
e

O
perating

S
ystem

s
–

p.22

µKernels

Basic idea: simplify the kernel
Reduce to the minimum the number of abstractions
exported by the kernel

Address Spaces
Threads
IPC mechanisms (channels, ports, etc...)

Most of the “traditional” kernel functionalities
implemented in user space
Even device drivers can be in user space

Interactions via IPC (IRQs to drivers as messages, ...)

Servers: US processes implementing OS functionalities
Single-server OSs
Multi-server OSs

Real Time Operating Systems – p. 23

µKernels: a Failed Experiment?

First generation of µKernels: Mach, Chorus, . . .:
Reduced functionalities, but not small (example:
Mach is quite big!)
Bad performance (need for in-kernel drivers,
colocated servers, etc...)

None of the major OSs is based on a µKernel structure
Windows NT used to be based on a µKernel, but
now uses drivers running in the kernel address
space (colocated servers)
MacOS X is based on Mach, but includes FreeBSD
functionalities in kernel code
Linux is a multithreaded monolithic kernel

Real Time Operating Systems – p. 24

µKernels vs Multithreaded Kernels

µKernels are known to be “more modular” (servers can
be stopped / started at run time)

All the modern monolithic kernels provide a module
mechanism

Modules are linked into the kernel, servers are separate
programs running in US

Key difference between µKernels and traditional
kernels: each server runs in its own address space

In some “µKernel systems”, some servers share the
same address space for some servers to avoid the IPC
overhead

What’s the difference with multithreaded monolithic
kernels?

Real Time Operating Systems – p. 25

Latency in µKernel-Based Systems

Non-preemptable sections latency is similar to
monolithic kernels

Lnp is upper-bounded by the maximum amount of
time spent in the µKernel
µKernels are simpler than monolithic kernels
System calls and ISRs should be shorter ⇒ the
latency in a µKernel should be smaller than in a
monolithic kernel

Unfortunately, the latency reduction achieved by the
µKernel structure is not sufficient for real-time systems

µKernels have to be modified like monolithic kernels
for obtaining good real-time performance

Real Time Operating Systems – p. 26

2
nd GenerationµKernels

Problems with Mach-like “fat µKernels”
The kernel is too big → does not fit in cache memory
Unefficient IPC mechanisms

Second generation of µKernels (“MicroKernels Can and
Must be Small”): L4

Very simple kernel (only few syscalls)
Small (fits in cache memory)
Super-optimized IPC (not designed to be powerful,
but to be efficient)

The Linux kernel has been ported to L4 (l4linux), and
only shows 10% performance penalty

Real-time performance: bad. The kernel has to be
heavily modifies to provide low latencies (Fiasco)

Real Time Operating Systems – p. 27

L4Linux and Real-Time

Idea: a µKernel is so simple and small that it does not
need to be preemptable

False: Fiasco needed some special care to obtain
good real-time performance

l4linux: single-server OS, providing the Linux ABI
Linux applications run unmodified on it
Actually the server is the Linux kernel (ported to a
new “l4” architecture)

Real-Time OS: DROPS
Non real-time applications run on l4linux
Real-time applications directly run on L4
The l4linux server should not disable interrupts, or
contain non-preemptable sections

Real Time Operating Systems – p. 28

“Tamed” L4Linux

The Linux kernel often disables interrupts (example:
spin lock irq()) or preemption...

...So, l4linux risks to increase the latency for L4...

Solution: in the “L4 architecture”, interrupt disabling can
be remapped to a soft interrupt disabling

l4linux disables interrupts → no real cli
IPCs notifying interrupts to l4linux are disabled
When l4linux re-enables interrupts, pending
interrupts can be notified to the l4linux server via IPC

As a result, Lnp is high for the l4linux server (and for
Linux applications), but is very low for L4 applications

l4linux cannot affect the latency experienced by L4
applications

Real Time Operating Systems – p. 29

Dual Kernel Approach

Idea: Linux applications are non real-time; real-time
applications run at lower level

Try to mix the real-time executive approach with the
monolithic approach

A Low-level real-time kernel runs at low level and
directly handle interrupts and manage the hardware
Non real-time interrupts are forwarded to the linux
kernel only when they do not interfere with real-time
activities
Linux cannot disable interrupts (no cli), but can
only disable (or delay) the forwarding of interrupts
from the low-level real-time kernel

Real-time applications cannot use the Linux kernel

Real Time Operating Systems – p. 30

RTLinux, RTAI & Friends - I

Dual kernel approach: initially used by RTLinux
Patch for the Linux kernel to intercept the interrupts
Small module implementing a real-time executive

Intercept interrupts; handle real-time interrupts
with low latency
Forward non real-time interrupts to Linux
Provide real-time functionalities (POSIX API)

Real-time applications are kernel modules

There is a patent on interrupt forwarding ???
RTAI: “Free” implementation of a dual-kernel
approach
Better maintained than RTLinux
Real-time applications are Linux modules: must
have an (L)GPL compatible license

Real Time Operating Systems – p. 31

RTLinux, RTAI & Friends - II

I-Pipes: Interrupt Pipelines
A small nanokernel handles interrupts by sending
them to pipelines of applications / kernels that
actually manage them
Real-time application come first in the pipeline
Same functionalities as RTLinux interrupt forwarding

Described in a paper that has been published before
the RTLinux patent → patent free

Adeos nanokernel: implements the interrupt pipelines,
similarly to the RTLinux patch

Xenomai: similar to RTAI; based on Adeos
Provides different real-time APIs
Allows some form of real-time in US

Real Time Operating Systems – p. 32

Other Real-Time Extensions to Linux

Real-Time performance to Linux processes ⇒ need to
reduce Lnp for the Linux kernel, not for low-level
applications running under it

Linux is a multithreaded kernel ⇒ need:
1. Fine-grained locking
2. Preemptable kernel
3. Schedulable ISRs and BHs ⇒ threaded interrupt

handling
4. Replacing spinlocks with mutexes
5. A real-time synchronisation protocol to avoid priority

inversion

Remember that current Linux kernels (2.6.21) already
provide high-resolution timers

Real Time Operating Systems – p. 33

Using Threads for BHs and ISRs

Using threads for serving BHs and ISRs, it is possible to
schedule them

The priority of interrupts not needed by real-time
applications can be decreased, to reduce Lnp

Non-threaded ISRs ⇒ spinlocks must be used for
protecting internal data structures accessed by the ISR

The ISR executes in the interrupted process context
⇒ it cannot block

When using threaded ISRs, a lot of spinlocks can be
replaced by mutexes

Spinlocks implicitly use NPP, mutexes do not use any
real-time synchronisation protocol

At least PI is needed

Real Time Operating Systems – p. 34

Ingo Molnar’s Realtime-Preempt Tree

The features presented in the previous slides can
surprisingly be implemented with a fairly small kernel
patch

Ingo Molnar maintains the realtime-preempt patch,
which is about 1.2MB of code

Most of the code is needed for changing spinlocks in
mutexes

Various real-time features can be enabled / disabled at
kernel configuration time

The worst case total kernel latency is less than 50µs

Remember: it was more than 10ms on a stock kernel

Real Time Operating Systems – p. 35

	Latency
	Sources of Latency
	Analysis of the Various Sources
	Interrupt Generation Latency
	The Timer Resolution Latency
	Non-Preemptable Section Latency
	Disabling Interrupts
	Delayed Interrupt Service
	Deferred Scheduling
	Latency in the Standard Kernel
	Summing Up
	Data Structures Consistency
	Real-Time Executives
	Real-Time Executives - 2
	Monolithic Kernels
	Single-Threaded Kernels
	Synchronizing System Calls and BHs
	Evolution of the Monolithic Structure
	Spinlocks
	Latency in Multithreaded Kernels
	Latency in a Preemptable Kernel
	$mu $Kernels
	$mu $Kernels: a Failed Experiment?
	$mu $Kernels vs Multithreaded Kernels
	Latency in $mu $Kernel-Based Systems
	2^{nd} Generation $mu $Kernels
	L4Linux and Real-Time
	``Tamed'' L4Linux
	Dual Kernel Approach
	RTLinux, RTAI & Friends - I
	RTLinux, RTAI & Friends - II
	Other Real-Time Extensions to Linux
	Using Threads for BHs and ISRs
	Ingo Molnar's Realtime-Preempt Tree

