Real-Time in the Real World

Luca Abeni luca.abeni@unitn.it

October 24, 2011

Real-Time Operating Systems

Luca Abeni – 1 / 9

From Theory...

From Theory...

- ✤...To Practice
- ✤ The WCET
- Sensitivity
- Analysis
- Reservation-Based
 Scheduling
- Implementing
- Temporal Protection
- Aperiodic Servers
- Multiprocessor
 Scheduling

• Real-time system: $\{\tau_i\}$

- $\blacklozenge \ \tau_i : (C_i, T_i)$
- Independent tasks
- Periodic tasks, $D_i = T_i$
- ♦ WCET???
- Theoretical schedule: function $t \rightarrow \tau_i$
- 1 CPU

...To Practice

From Theory...

✤...To Practice

- ✤ The WCET
- Sensitivity
 Analysis
- Reservation-Based
- Scheduling
- Implementing
 Temporal Protection
- Aperiodic Servers
- Multiprocessor
 Scheduling

- Real-time system: $\{\tau_i\}, \{S_k\}$
- $\tau_i: (C_i, D_i, T_i)$
- Sporadic Tasks
 - Minimum Inter-Arrival Time???
- Still do be solved:
 - Do something about WCET and MIT knowledge
 - Scheduling for more than 1 CPU (example: SMP or multicore)
 - Take OS overhead (and practical issues) into account

The WCET

From Theory...

✤...To Practice

♦ The WCET

SensitivityAnalysis

 Reservation-Based
 Scheduling

Implementing
 Temporal Protection

Aperiodic Servers

Multiprocessor
 Scheduling

- Schedulability analysis is based on the WCET
- But... How can I know it?
 - Today, my crystal ball is broken...
- Problem: a task τ_i executing for more than C_i can cause deadline misses in a different task τ_j
- Two possible solutions:
 - Analyse the effects of variations in the WCETs: Sensistivity Analysis
 - Limit the execution time in some way (enforcing a WCET): Resource Reservations

Sensitivity Analysis

From Theory...

…To Practice

The WCET

SensitivityAnalysis

 Reservation-Based
 Scheduling

Implementing
 Temporal Protection

Aperiodic Servers

Multiprocessor
 Scheduling

• WCETs are estimations. What happens if my WCET estimation is wrong?

♦ A job $J_{i,j}$ can execute for a time $c_{i,j} > C_i!$

- What's the acceptable error in WCETs estimations?
- Formulate TDA or RTA as a sensitivity analysis problem
 - How sensible is the demanded time (or response time) to variations of the WCETs?
 - Example: What happens to R_i if C_h (with $p_h > p_i$) is increased by a small amount δ ?
 - ◆ $R_i = f(C_1, ..., C_i, T_1, ..., T_{i-1}); f()$ is not linear...
- Complex analysis, not explained here (see old slides if you are curious)

Reservation-Based Scheduling

From Theory...

✤...To Practice

The WCET

Sensitivity
 Analysis

 Reservation-Based
 Scheduling

Implementing
 Temporal Protection

Aperiodic Servers

MultiprocessorScheduling

• Force the task not to demand more time than a periodic (or sporadic!) (Q, T) task

How to enforce this?

- Measure the demanded time, and deschedule the task when it's too much
- Similar to "traffic shaping used in networks"
- Temporal Protection!!!
 - If task τ_i executes for more than $Q_i = C_i$, it will be blocked...
 - ... τ_i will miss a deadline (not other tasks!!!)
 - Similar to memory protection...

Implementing Temporal Protection

From Theory...

✤...To Practice

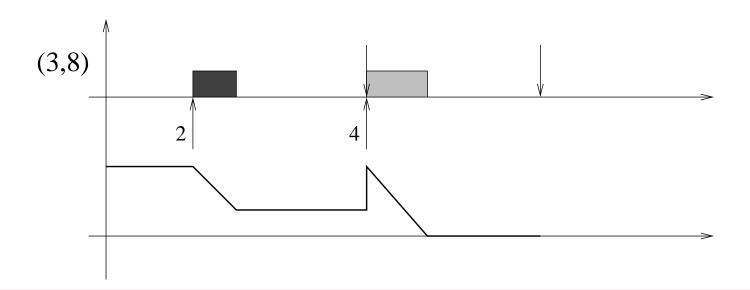
The WCET

Sensitivity
 Analysis

 Reservation-Based
 Scheduling

Implementing
 Temporal Protection

Aperiodic Servers


Multiprocessor
 Scheduling

• Budget q, consumed when the task executes

When the budget is 0 the task cannot be scheduled

• Budget

- Accounting (Enforcement)
- Replenishment

Aperiodic Servers

- From Theory...
- ✤...To Practice
- ✤ The WCET
- Sensitivity
 Analysis
- Reservation Based
 Scheduling
- Implementing
 Temporal Protection
- ♦ Aperiodic Servers
- Multiprocessor
 Scheduling

- How to cope with the MIT?
 - Aperiodic tasks: no particular structure (no knowledge about the MIT)
- Traditional solution: use a periodic (or sporadic) task to serve aperiodic requests...
- Aperiodic Servers

. . .

- Polling Server, Deferrable Server, Sporadic Server,
- Implementation: use a budget...
 - We end up with resource reservations, again!!!

Multiprocessor Scheduling

From Theory...

- ✤...To Practice
- The WCET
- Sensitivity
 Analysis
- Reservation-Based
- Scheduling
- ImplementingTemporal Protection
- Aperiodic Servers
- Multiprocessor
 Scheduling

- Real-Time scheduling with more than 1 processor?
- Trivial solution: partitioned scheduling
 - Statically assign tasks to CPUs
 - Reduce the problem of scheduling on M CPUs to
 M instances of uniprocessor scheduling
 - Problem: system underutilisation
- Global scheduling
 - One single ready task queue
 - Select the first M tasks from the queue
 - Problem: migrations...