
Real Time Operating Systems and
Middleware

Real-Time Programming Interfaces

Luca Abeni

abeni@dit.unitn.it

Real Time Operating Systems and Middleware – p. 1



Needs for a Real-Time Interface

Real-Time applications might need to:
Implement a periodic / sporadic behaviour
Schedule themselves with fixed priorities (RM, DM,
etc...)
Disable paging for their memory (or disable
mechanisms that introduce unpredictabilities)

Which Application Programming Interface (API) is
needed?

Which are the requirements for real-time
applications?
For example: is the standard Unix API enough?
How should we extend it to support real-time
applications?

Real Time Operating Systems and Middleware – p. 2



A Real-Time API

API: Application Programming Interface

Source code interface
Provides functions, data structures, macros, ...
Specified in a programming language

We use C

Of course, we want to use a standard API
A program written by using a standard API can be
easily ported to new architectures (often, a simple
recompilation is needed)

Refrasing our previous question: is any standard API
capable to support real-time applications?

Real Time Operating Systems and Middleware – p. 3



POSIX

POSIX: Portable Operating System Interface
Family of IEEE / ISO / IEC standards defining the
API, services, and standard applications provided by
a unix like OS
Original standard: IEEE 1003.1-1988; today, more
than 15 standards
Interaction with “Single UNIX Specification” ⇒
information available at
http://opengroup.org/onlinepubs/009695399

Real-Time POSIX: POSIX.1b, Real-time extensions
Priority Scheduling
Clocks and Timers, Real-Time Signals
...

Real Time Operating Systems and Middleware – p. 4

http://opengroup.org/onlinepubs/009695399


Implementing Periodic Tasks

Clocks and Timers can be used for implementing
peridic tasks
1 void *PeriodicTask(void *arg)
2 {
3 <initialization>;
4 <start periodic timer, period = T>;
5 while (cond) {
6 <read sensors>;
7 <update outputs>;
8 <update state variables>;
9 <wait next activation>;

10 }
11 }

How can it be implemented using the C language?

Which kind of API is needed to fill the following blocks:
<start periodic timer>

<wait next activation>

Real Time Operating Systems and Middleware – p. 5



Sleeping for the Next Job

0 2 4 6 8 10 12 14 16 18 20

τ1

First idea: on job termination, sleep until the next
release time

<wait next activation>:
Read current time
δ = next activation time - current time
usleep(δ)

1 void wait_next_activation(void);
2 {
3 gettimeofday(&tv, NULL);
4 d = nt - (tv.tv_sec * 1000000 + tv.tv_usec);
5 nt += period; usleep(d);
6 }

Real Time Operating Systems and Middleware – p. 6



Problems with Relative Sleeps

Preemption can happen in wait next activation()

0 2 4 6 8 10

τ1

If preemption happens between gettimeofday() and
usleep()...

...The task ends up sleeping for the wrong amount of
time!!!

0 2 4 6 8 10

τ1

Correctly sleeps for 2ms

0 2 4 6 8 10

τ1

Sleeps for 2ms; should
sleep for 0.5ms

Real Time Operating Systems and Middleware – p. 7



Using Periodic Signals

The “relative sleep” problem can be solved by a call
implementing a periodic behaviour

Unix systems provide a system call for setting up a
periodic timer
setitimer(int which, const struct itimerval *value,

struct itimerval *ovalue)

ITIMER REAL: timer fires after a specified real time.
SIGALRM is sent to the process
ITIMER VIRTUAL: timer fires after the process
consumes a specified amount of time
ITIMER PROF: process time + system calls

<start periodic timer> can use setitimer()

Real Time Operating Systems and Middleware – p. 8



Using Periodic Signals - setitimer()

1 #define wait_next_activation pause
2
3 static void sighand(int s)
4 {
5 }
6
7 int start_periodic_timer(uint64_t offs, int period)
8 {
9 struct itimerval t;

10
11 t.it_value.tv_sec = offs / 1000000;
12 t.it_value.tv_usec = offs % 1000000;
13 t.it_interval.tv_sec = period / 1000000;
14 t.it_interval.tv_usec = period % 1000000;
15
16 signal(SIGALRM, sighand);
17
18 return setitimer(ITIMER_REAL, &t, NULL);
19 }

Try www.dit.unitn.it/~abeni/RTOS/periodic-1.c

Real Time Operating Systems and Middleware – p. 9

www.dit.unitn.it/~abeni/RTOS/periodic-1.c


Enhancements

The previous example uses an empty handler for
SIGALRM

This can be avoided by using sigwait()

int sigwait(const sigset_t *set, int *sig)

Select a pending signal from set

Clear it
Return the signal number in sig

If no signal in set is pending, the thread is
suspended

Real Time Operating Systems and Middleware – p. 10



setitimer() + sigwait()

1 void wait_next_activation(void)
2 {
3 int dummy;
4
5 sigwait(&sigset, &dummy);
6 }
7
8 int start_periodic_timer(uint64_t offs, int period)
9 {

10 struct itimerval t;
11
12 t.it_value.tv_sec = offs / 1000000;
13 t.it_value.tv_usec = offs % 1000000;
14 t.it_interval.tv_sec = period / 1000000;
15 t.it_interval.tv_usec = period % 1000000;
16
17 sigemptyset(&sigset);
18 sigaddset(&sigset, SIGALRM);
19 sigprocmask(SIG_BLOCK, &sigset, NULL);
20
21 return setitimer(ITIMER_REAL, &t, NULL);
22 }

Real Time Operating Systems and Middleware – p. 11



Enhancements

Periodic timers have a big problem:
“Timers will never expire before the requested time,
instead expiring some short, constant time
afterwards, dependent on the system timer
resolution”

Try
www.dit.unitn.it/~abeni/RTOS/periodic-2.c

The period is 6ms instead of 5ms!!!
HZ = 1000 ⇒ up to 1ms error in itimer (accumulates)

Solution: decrease period by half jiffy
1 int start_periodic_timer(uint64_t offs, int period)
2 {
3 struct itimerval t;
4
5 period -= 500;
6 t.it_value.tv_sec = offs / 1000000;
7 ...

Real Time Operating Systems and Middleware – p. 12

www.dit.unitn.it/~abeni/RTOS/periodic-2.c


Clocks & Timers

Let’s look at the first setitimer() parameter:
ITIMER REAL

ITIMER VIRTUAL

ITIMER PROF

It selects the timer: every process has 3 interval timers

timer: abstraction modelling an entity which can
generate events (interrupts, or signal, or asyncrhonous
calls, or...)

clock: abstraction modelling an entity which provides
the current time

Clock: “what time is it?”
Timer: “wake me up at time t”

Real Time Operating Systems and Middleware – p. 13



POSIX Clocks & Timers

The traditional Unix API provides each process with
three interval timers, connected to three different clocks

Real time
Process time
Profiling

⇒ only one real-time timer per process!!!

POSIX (Portable Operating System Interface):
Different clocks (must provide at least
CLOCK REALTIME, can provide CLOCK MONOTONIC)
Multiple timers per process (each process can
dynamically allocate and start timers)
A timer firing generates an asyncrhonous event
which is configurable by the program

Real Time Operating Systems and Middleware – p. 14



POSIX Timers

POSIX timers are per process

A process can create a timer with timer create()
int timer_create(clockid_t c_id, struct sigevent *e, timer_t *t_id)

c id specifies the clock to use as a timing base
e describes the asynchronous notification to occur
when the timer fires
On success, the ID of the created timer is returned in
t id

A timer can be armed (started) with timer settime()
int timer_settime(timer_t timerid, int flags,

const struct itimerspec *v, struct itimerspec *ov)

flags: TIMER ABSTIME

Real Time Operating Systems and Middleware – p. 15



POSIX Timers

POSIX Clocks and POSIX Timers are part of RT-POSIX

To use them in real programs, librt has to be linked
1. Get

www.dit.unitn.it/~abeni/RTOS/periodic-3.c

2. gcc -Wall periodic-3.c -lrt -o ptest

3. The -lrt option links librt, that provides
timer create(), timer settime(), etc...

On some distributions, libc does not properly support
these “recent” calls ⇒ we can work around this problem
by providing missing prototypes, etc... (see periodic-3.c)

Real Time Operating Systems and Middleware – p. 16

www.dit.unitn.it/~abeni/RTOS/periodic-3.c


POSIX Timers & Periodic Tasks

1 int start_periodic_timer(uint64_t offs, int period)
2 {
3 struct itimerspec t;
4 struct sigevent sigev;
5 timer_t timer;
6 const int signal = SIGALRM;
7 int res;
8
9 t.it_value.tv_sec = offs / 1000000;

10 t.it_value.tv_nsec = (offs % 1000000) * 1000;
11 t.it_interval.tv_sec = period / 1000000;
12 t.it_interval.tv_nsec = (period % 1000000) * 1000;
13
14 sigemptyset(&sigset); sigaddset(&sigset, signal);
15 sigprocmask(SIG_BLOCK, &sigset, NULL);
16
17 memset(&sigev, 0, sizeof(struct sigevent));
18 sigev.sigev_notify = SIGEV_SIGNAL; sigev.sigev_signo = signal;
19 res = timer_create(CLOCK_MONOTONIC, &sigev, &timer);
20 if (res < 0) {
21 return res;
22 }
23 return timer_settime(timer, 0, &t, NULL);
24 }

Real Time Operating Systems and Middleware – p. 17



Using Absolute Time

POSIX clocks and timers provide Absolute Time
The “relative sleeping problem” can be easily solved
Instead of reading the current time and computing δ

based on it, wait next activation() can directly
wait for the absolute arrival time of the next job

The clock nanosleep() function must be used
int clock_nanosleep(clockid_t c_id, int flags,

const struct timespec *rqtp,
struct timespec *rmtp)

The TIMER ABSTIME flag must be set
The next activation time must be explicitly computed
and set in rqtp

In this case, the rmtp parameter is not important

Real Time Operating Systems and Middleware – p. 18



Implementation with clock_nanosleep

1 static struct timespec r;
2 static int period;
3
4 static void wait_next_activation(void)
5 {
6 clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &r, NULL);
7 timespec_add_us(&r, period);
8 }
9

10 int start_periodic_timer(uint64_t offs, int t)
11 {
12 clock_gettime(CLOCK_REALTIME, &r);
13 timespec_add_us(&r, offs);
14 period = t;
15
16 return 0;
17 }

clock gettime is used to initialize the arrival time

The example code uses global variables r (next arrival
time) and period. Do not do it in real code!

Real Time Operating Systems and Middleware – p. 19



Some Final Notes

Usual example; periodic tasks implemented by sleeping
fo an absolute time:
www.dit.unitn.it/~abeni/RTOS/periodic-4.c

Exercize: how can we remove global variables?

Summing up, periodic tasks can be implemented by
Using periodic timers
Sleeping for an absolute time

Timers often have a limited resolution (generally
multiple of a system tick)

In system’s periodic timers (itimer(), etc...) the error
often sums up

In modern systems, clock resolution is generally not a
problem

Real Time Operating Systems and Middleware – p. 20

www.dit.unitn.it/~abeni/RTOS/periodic-4.c


Exercize: Cyclic Executive

Implement a simple cyclic executive
Three tasks, with periods T1 = 50ms, T2 = 100ms,
and T3 = 150ms

Tasks’ bodies are in
www.dit.unitn.it/~abeni/RTOS/cyclic_test.c

Use the mechanism you prefer for implementing the
periodic event (minor cycle)

Some hints:
Compute the minor cycle
Compute the major cycle
So, we need a periodic event every ... ms

What should be done when this timer fires?

Done? So, try T1 = 60ms, T2 = 80ms, and T3 = 120ms

Real Time Operating Systems and Middleware – p. 21

www.dit.unitn.it/~abeni/RTOS/cyclic_test.c


Remember?

Real Time Operating Systems and Middleware – p. 22



Implementation

Real Time Operating Systems and Middleware – p. 23


	Needs for a Real-Time Interface
	A Real-Time API
	POSIX
	Implementing Periodic Tasks
	Sleeping for the Next Job
	Problems with Relative Sleeps
	Using Periodic Signals
	Using Periodic Signals - setitimer()
	Enhancements
	setitimer()
+ sigwait()
	Enhancements
	Clocks & Timers
	POSIX Clocks & Timers
	POSIX Timers
	POSIX Timers
	POSIX Timers & Periodic Tasks
	Using Absolute Time
	Implementation with clock_nanosleep
	Some Final Notes
	Exercize: Cyclic Executive
	Remember?
	Implementation

