Real Time Operating Systems and Middleware

Real-Time Scheduling

Luca Abeni

abeni@dit.unitn.it

Credits: Luigi Palopoli, Giuseppe Lipari, and Marco Di Natale Scuola Superiore Sant'Anna

Pisa -Italy

Definitions

Algorithm \rightarrow logical procedure used to solve a problem

- Program → formal description of an algorithm, using a programming language
- Process \rightarrow instance of a program (program in execution)
 - Program: static entity
 - Process: dynamic entity
- The term task is used to indicate a schedulable entity (either a process or a thread)
 - ${\scriptstyle \bullet} \ \ \, \text{Thread} \rightarrow \text{flow of execution}$
 - Process \rightarrow flow of execution + private resources (address space, file table, etc...)

Scheduling

- Tasks do not run on bare hardware...
 - The OS kernel creates the illusion of virtual CPU
 - One virtual CPU per task
 - Tasks have the illusion of executing concurrently
- Concurrency is implemented by multiplexing tasks on the same CPU...
 - Tasks are alternated on a real CPU...
 - ...And the task scheduler decides which task executes at a given instant in time
- Tasks are associated temporal constraints (deadlines)
 - The scheduler must allocate the CPU to tasks so that their deadlines are respected

Scheduler - 1

- The scheduler is responsible for generating a schedule starting from a set of tasks ready to execute
- Mathematical model
 - Let's start considering an UP system
 - A schedule $\sigma(t)$ is a function mapping time t into an executing task

$$\sigma: t \to \mathcal{T} \cup \tau_{idle}$$

where \mathcal{T} is the set of tasks running in the system

- τ_{idle} is the *idle task*: when it is scheduled, the CPU becomes idle
- For an SMP system (*m* CPUs), $\sigma(t)$ can be extended to map *t* in vectors $\tau \in (\mathcal{T} \cup \tau_{idle})^m$

Scheduler - 2

- The scheduler is responsible for selecting the task to execute
- From an algorithmic point of view
 - Scheduling algorithm → Algorithm used to select for each time instant t a task to be executed on a CPU among the ready task
 - Given a task set T, a scheduling algorithm A generates the schedule $\sigma_A(t)$
- A task set is schedulable by an algorithm A if σ_A does not contain missed deadlines
- Schedulability test \rightarrow check if \mathcal{T} is schedulable by \mathcal{A}

RT Scheduling: Why?

• The task set $\mathcal{T} = \{(1,3), (4,8)\}$ is not schedulable by FCFS

• $\mathcal{T} = \{(1,3), (4,8)\}$ is schedulable with other algorithms

RT Scheduling Anomalies

• Consider jobs $J_{1,1}$ and $J_{1,2}$ using a semaphore...

•
$$r_{1,1} = 2$$
, $c_{1,1} = 6$, $d_{1,1} = 9$

•
$$r_{2,1} = 0$$
, $c_{2,1} = 12$, $d_{2,1} = 24$

• Faster processor ($c_{1,1} = 4.5$, $c_{2,1} = 9$)

Cyclic Executive Scheduling

- Very popular in military and avionics systems
- Also called timeline scheduling or cyclic scheduling
- Originally used for periodic tasks
- Examples:
 - Air traffic control
 - Space Shuttle
 - Boeing 777

The idea

- Static scheduling algorithm
- Jobs are not preemptable
 - A scheduled job executes until termination
- The time axis is divided in time slots
- Slots are statically allocated to the tasks (scheduling table)
- A periodic timer activates execution (allocation of a slot)
 - Major Cycle: least common multiple (lcm) of all the tasks' periods (also called *hyperperiod*)
 - Minor Cycle: greatest common divisor (gcd) of all the tasks' periods
 - \checkmark A timer fires every Minor Cycle Δ

Example

Implementation

Advantages

- Simple implementation (no real-time operating system is required)
 - No real task exist: just function calls
 - One single stack for all the "tasks"
- Non-preemptable scheduling \Rightarrow no need to protect data
 - No need for semaphores, pipes, mutexes, mailboxes, etc.
- Low run-time overhead
- Jitter can be explicitly controlled

Drawbacks

- Not robust during overloads
- Difficult to expand the schedule (static schedule)
 - New task ⇒ the whole schedule must be recomputed
- Not easy to handle aperiodic/sporadic tasks
- All task periods must be a multiple of the minor cycle time
- Difficult to incorporate processes with long periods (big tables)
- Variable computation time \Rightarrow it might be necessary to split tasks into a fixed number of fixed size procedures

Overload Management

What do we do during task overruns?

- Let the task continue? ...
 - Possible domino effect on all the other tasks (timeline break)
- Abort the task?
 - The system can remain in inconsistent states
- \blacksquare \Rightarrow not well suited for soft tasks...

Extensibility

If one or more tasks need to be upgraded, we may have to re-design the whole schedule again

Example: B is updated but $C_A + C_B > \Delta$

Extensibility

• We have to split B into two subtasks (B_1, B_2) and recompute the schedule.

Fixed Priority Scheduling

- Very simple *preemptive* scheduling algorithm
 - Every task τ_i is assigned a fixed priority p_i
 - The active task with the highest priority is scheduled
- Priorities are integer numbers: the higher the number, the higher the priority
 - In the research literature, sometimes authors use the opposite convention: the lowest the number, the highest the priority
- In the following we show some examples, considering periodic tasks, constant execution times, and deadlines equal to the period

Another Example (non-schedulable)

• Consider the following task set: $\tau_1 = (3, 6, 6)$, $p_1 = 3$, $\tau_2 = (2, 4, 8)$, $p_2 = 2$, $\tau_3 = (2, 12, 12)$, $p_3 = 1$

In this case, task τ_2 misses its deadline!

Another Example (non-schedulable)

• Consider the following task set: $\tau_1 = (3, 6, 6)$, $p_1 = 3$, $\tau_2 = (2, 4, 8)$, $p_2 = 2$, $\tau_3 = (2, 12, 12)$, $p_3 = 1$

In this case, task τ_2 misses its deadline!

Another Example (non-schedulable)

• Consider the following task set: $\tau_1 = (3, 6, 6)$, $p_1 = 3$, $\tau_2 = (2, 4, 8)$, $p_2 = 2$, $\tau_3 = (2, 12, 12)$, $p_3 = 1$

In this case, task τ_2 misses its deadline!

Notes about Priority Scheduling

- Some considerations about the schedule shown before:
 - The response time of the task with the highest priority is minimum and equal to its WCET
 - The response time of the other tasks depends on the interference of the higher priority tasks
 - The priority assignment may influence the schedulability of a task set
 - Problem: how to assign tasks' priorities so that a task set is schedulable?
Priority assignment

Priority assignment

- Given a task set, how to assign priorities?
- There are two possible objectives:
 - Schedulability (i.e. find the priority assignment that makes all tasks schedulable)
 - Response time (i.e. find the priority assignment that minimise the response time of a subset of tasks)
- By now we consider the first objective only
- An optimal priority assignment Opt is such that:
 - If the task set is schedulable with another priority assignment, then it is schedulable with priority assignment Opt
 - If the task set is not schedulable with Opt, then it is not schedulable by any other assignment

Optimal Priority Assignment

- Given a periodic task set T with all tasks having relative deadline D_i equal to the period T_i ($\forall i, D_i = T_i$), and with all offsets equal to 0 ($\forall i, r_{i,0} = 0$):
 - The best assignment is the Rate Monotonic (RM) assignment
 - $\ \ \, \bullet \ \ \, Shorter\ period \rightarrow higher\ priority$
- Given a periodic task set with deadline different from periods, and with all offsets equal to 0 ($\forall i$, $r_{i,0} = 0$):
 - The best assignment is the *Deadline Monotonic* assignment
 - Shorter relative deadline \rightarrow higher priority
- For sporadic tasks, the same rules are valid as for periodic tasks with offsets equal to 0

Presence of offsets

- If instead we consider periodic tasks with offsets, then there is no optimal priority assignment
 - In other words,
 - If a task set T_1 is schedulable by priority O_1 and not schedulable by priority assignment O_2 ,
 - It may exist another task set T_2 that is schedulable by O_2 and not schedulable by O_1 .
 - For example, \mathcal{T}_2 may be obtained from \mathcal{T}_1 simply changing the offsets!
- Anyway, all offsets = 0 is the *Worst Case* \Rightarrow if \mathcal{T} is schedulable when $\forall i, r_{i,0} = 0$ then all the task sets obtained from \mathcal{T} by changing offsets are schedulable
- **•** Example: $\mathcal{T} = \{(3, 7, 10), (5, 6, 10)\}$

Example of non-optimality with offsets

Changing the offset:

Example of non-optimality with offsets

Changing the offset:

Scheduling Analysis

Analysis

- Given a task set, how can we guarantee if it is schedulable of not?
- The first possibility is to simulate the system to check that no deadline is missed;
- The execution time of every job is set equal to the WCET of the corresponding task;
 - Periodic tasks with no offsets \Rightarrow sufficient to simulate the schedule until the *hyperperiod* ($H = lcm\{T_i\}$).
 - Offsets $\phi_i = r_{i,0} \Rightarrow$ simulate until $2H + \phi_{max}$.
 - If tasks periods are prime numbers the hyperperiod can be very large!
- Note: RM \rightarrow hyperperiod; Cyclic Executive \rightarrow Major Cycle

Exercise: Compare the hyperperiods of this two task sets:

•
$$T_1 = 8$$
, $T_2 = 12$, $T_3 = 24$

•
$$T_1 = 7, T_2 = 12, T_3 = 25$$

In case of sporadic tasks, we can assume them to arrive at the highest possible rate, so we fall back to the case of periodic tasks with no offsets!

Utilisation Analysis

- In many cases it is useful to have a very simple test to see if the task set is schedulable.
- A sufficient test is based on the Utilisation bound:
 - The *utilisation least upper bound* for scheduling algorithm \mathcal{A} is the smallest possible utilisation U_{lub} such that, for any task set \mathcal{T} , if the task set's utilisation U is not greater than U_{lub} ($U \leq U_{lub}$), then the task set is schedulable by algorithm \mathcal{A}

Utilisation

Each task uses the processor for a fraction of time

$$U_i = \frac{C_i}{T_i}$$

The total processor utilisation is

$$U = \sum_{i} \frac{C_i}{T_i}$$

This is a measure of the processor's load

Necessary Condition

- If U > 1 the task set is surely not schedulable
- However, if U < 1 the task set may or may not be schedulable . . .
- If $U < U_{lub}$, the task set is schedulable!!!
 - "Gray Area" between U_{lub} and 1
 - We would like to have U_{lub} near to 1
 - $U_{lub} = 1$ would be optimal!!!

Least Upper Bound

Utilisation Bound for RM

- We consider n periodic (or sporadic) tasks with relative deadline equal to periods.
- Priorities are assigned with Rate Monotonic;

•
$$U_{lub} = n(2^{1/n} - 1)$$

- U_{lub} is a decreasing function of n;
- For large *n*: $U_{lub} \approx 0.69$

n	U _{lub}	n	U_{lub}
2	0.828	7	0.728
3	0.779	8	0.724
4	0.756	9	0.720
5	0.743	10	0.717
6	0.734	11	

Schedulability Test

Therefore the schedulability test consist in:

- Computing $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$
- if $U \leq U_{lub}$, the task set is schedulable
- if U > 1 the task set is not schedulable
- if $U_{lub} < U \leq 1$, the task set may or may not be schedulable

Task set T composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

Task set T composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

Task set T composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

$$U = 0.75 < U_{lub} = 0.77$$

By increasing the computation time of task τ_3 , the system may still be schedulable

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (5, 16);$$

$$U = 0.81 > U_{lub} = 0.77$$

Utilisation Bound for DM

If relative deadlines are less than or equal to periods, instead of considering $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$, we can consider:

$$U' = \sum_{i=1}^{n} \frac{C_i}{D_i}$$

• Then the test is the same as the one for RM (or DM), except that we must use U' instead of U.

• Idea:
$$\tau = (C, D, T) \rightarrow \tau' = (C, D, D)$$

- au' is a "worst case" for au
- If τ' can be guaranteed, τ can be guaranteed too

Pessimism

- The bound is very pessimistic: most of the times, a task set with $U > U_{lub}$ is schedulable by RM.
- A particular case is when tasks have periods that are harmonic:
 - A task set is *harmonic* if, for every two tasks τ_i, τ_j , either T_i is multiple of T_j or T_j is multiple of T_i .
- For a harmonic task set, the utilisation bound is $U_{lub} = 1$
- In other words, Rate Monotonic is an optimal algorithm for harmonic task sets

Example of Harmonic Task Set

