
Implementation of Real-Time

Scheduling Algorithms

Luca Abeni
luca.abeni@unitn.it

November 2, 2014



Implementation of Fixed Priorities

Real-Time Operating Systems and Middleware Implementing Scheduling Algorithms – 2 / 5

■ When implementing fixed priority it is possible to have an array of
queues (one for each priority level)

■ Insertion into the queue is O(1) operation

■ Extracting from the queue would entail O(n) search on the different
priority levels to find the first nonempty queue

■ However, we can use a bitmap (i.e., an array of bits) to tag the queues
that are non-empty

■ Extraction becomes O(1) if we have a microinstruction that returns the
first 1 bit in a word (CLZ)

■ If not we can use a table to implement the operation ⌈logw⌉, but we
need as many entries as the bits in the table



Implementation of fixed priority - I

Real-Time Operating Systems and Middleware Implementing Scheduling Algorithms – 3 / 5



Implementing EDF

Real-Time Operating Systems and Middleware Implementing Scheduling Algorithms – 4 / 5

■ EDF queueing is more complex

◆ Dynamic priorities → cannot use the “bitmask trick”

◆ No O(1) complexity

■ Can EDF be implemented with something better than O(n) complexity?

■ Data structure storing ordered keys, with efficient:

◆ Insertion

◆ Selection of the first entry

◆ Removal of the first entry

◆ Efficient removal of non-first entries is not too important

◆ Efficient search of specific entries is not too important



Red/Black Trees

Real-Time Operating Systems and Middleware Implementing Scheduling Algorithms – 5 / 5

■ The deadline queue can be implemented using a Red/Black tree

◆ Self-balancing tree, based on nodes colouring

◆ O(log(n)) on all the operations

■ Not too bad, if n is not too large!

■ ⇒ Red/Black trees make EDF implementable in practice (without too
much overhead)!


	Implementation of Fixed Priorities
	Implementation of fixed priority - I
	Implementing EDF
	Red/Black Trees

