
Real Time Operating Systems and
Middleware

Introduction to Real-Time Systems

Luca Abeni

luca.abeni@unitn.it

Credits: Luigi Palopoli, Giuseppe Lipari, Marco Di Natale, and Giorgio Buttazzo

Real Time Operating Systems and Middleware – p. 1



Some Information

Slides available from
http://www.disi.unitn.it/~abeni/RTOS

Interested students can have a look at:
Giorgio Buttazzo, “HARD REAL-TIME COMPUTING
SYSTEMS: Predictable Scheduling Algorithms and
Applications” , Second Edition, Springer, 2005

Exam: Written Exam
4 questions, 30 minutes per question
Each answer gets a score from 0 to 30

OPTIONAL project.

Prerequisites:
Programming skills: C, maybe C++
Knowledge about Operating Systems

Real Time Operating Systems and Middleware – p. 2

http://www.disi.unitn.it/~abeni/RTOS


Prerequisites

You must know how to code in C (optionally C++)
This is not about knowing the C syntax...
It is about writing good and clean C code
If you do not feel confident enough with C, have a
look at “The C Programming Language” by Kerrigan and
Ritchie
Some notes about C programming are available on
the course web site

About Operating Systems:
“Sistemi Operativi I”, or similar exams
References: a good OS book (Stallings, ...)
How to use a shell, basic POSIX commands, make,
how to compile, ...

Real Time Operating Systems and Middleware – p. 3



Overview of the Course - 1

Real-Time Systems: what are they?
Real-Time Computing, Temporal Constraints
Definitions and task model
Real-Time scheduling

Notes about real-time programming, RT-POSIX,
pthreads, . . .

Real-Time Scheduling
Fixed Priority scheduling, RM, DM
EDF and dynamic priorities
Resource Sharing (Priority Inversion, etc...)

Real Time Operating Systems and Middleware – p. 4



Overview of the Course - 2

Operating System structure
Notes about traditional kernel structures
Sources of kernel latencies
Some approaches to real-time kernels:

dual kernel approach
interrupt pipes
microkernels
monolithic kernels and RT

Real Time Operating Systems and Middleware – p. 5



Real-Time Operating Systems

Real-Time operating system (RTOS): OS providing
support to Real-Time applications

Real-Time application: the correctness depends not
only on the output values, but also on the time when
such values are produced

Operating System:
Set of computer programs
Interface between applications and hardware
Control the execution of application programs
Manage the hardware and software resources

OS as...
A Service Provider for user programs (interface...)
A Resource Manager

Real Time Operating Systems and Middleware – p. 6



Operating System as a Resource Manager

Process Management

Memory Management

File Management
VFS
File System

Networking

Device Drivers

Graphical Interface

Resources must be managed so that
real-time applications are served properly

Real Time Operating Systems and Middleware – p. 7



Operating System Services

Services (Kernel Space):
Process Synchronisation, Inter-Process
Communication (IPC)
Process / Thread Scheduling
I / O
Virtual Memory

Specialised API?
Resource Manager (device drivers...)

Interrupt Handling
Device Management
...

OS Structure?
Real Time Operating Systems and Middleware – p. 8



Typical Applications

Air traffic control

Flight control systems

Robotics

Telecommunication systems

Nuclear / chemical power plants

Multimedia systems

Automotive systems

by Giorgio Buttazzo – p. 9



Real-Time Systems: What???

Real-Time application: the time when a result is
produced matters

a correct result produced too late is equivalent to a
wrong result, or to no result
characterised by temporal constraints that have to
be respected

Example: mobile vehicle with a software module that
1. Detects obstacles
2. Computes a new trajectory to avoid them
3. Computes the commands for engine, brakes, . . .
4. Sends the commands

by Giorgio Buttazzo – p. 10



Real-Time Systems: What???

If the commands are correctly computed, but are not
sent in time...

...The vehicle crashes into the obstacle before receiving
the commands!

Examples of temporal constraints:
must react to external events in a predictable time
must repeat a given activity at a precise rate
must end an activity before a specified time

Temporal constraints are modelled using the concept of
deadline

by Giorgio Buttazzo – p. 11



Real-Time & Determinism

A Real-Time system is not just a “fast system” . . .

. . . Because speed is always relative to a specific
environment.

Running faster is good, but does not guarantee a
correct behaviour

It must be possible to prove that temporal constraints
are always respected
. . . ⇒ worst-case analysis

In general, fast systems tend to minimise the average
response time of a task set . . .

. . . While a real-time system must guarantee the timing
behaviour of RT tasks!

by Giorgio Buttazzo – p. 12



Processes, Threads, and Tasks

Algorithm → logical procedure used to solve a problem

Program → formal description of an algorithm, using a
programming language

Process → instance of a program (program in
execution)

Thread → flow of execution
Task → process or thread

A task can be seen as a sequence of actions . . .

. . . and a deadline must be associated to each activity!
Some kind of formal model is needed to identify
activities and associate deadlines to them

Real Time Operating Systems – p. 13



Mathematical model of a task - 1

Real-Time task τi: stream of jobs (or instances) Ji,k

Each job Ji,k = (ri,k, ci,k, di,k):

Arrives at time ri,k (activation time)

Executes for a time ci,k

Finishes at time fi,k

Should finish within an absolute deadline di,k

ri,k
fi,k

di,k

ci,k

Real Time Operating Systems – p. 14



Mathematical model of a task - 2

Summing up, a job is an abstraction used to associate
deadlines (temporal constraints) to activities

ri,k is the time when job Ji,k is activated (by an
external event, a timer, an explicit activation, etc...)
ci,k is the time needed by job Ji,k to complete
di,k is the absolute time instant by which job Ji,k must
complete

job Ji,k respects its deadline if fi,k ≤ di,k

the response time of job Ji,k is ρi,k = fi,k − ri,k

Real Time Operating Systems – p. 15



Periodic Tasks

A periodic task τi = (Ci, Di, Ti) is a stream of jobs Ji,k, with

ri,k+1 = ri,k + Ti

di,k = ri,k +Di

Ci = max
k

{ci,k}

Ti is the task period;

Di is the task relative deadline;

Ci is the task worst-case execution time (WCET);

Ri is the worst-case response time:
Ri = maxk{ρi,k} = maxk{fi,k − ri,k};

for the task to be correctly scheduled, it must be
Ri ≤ Di.

Real Time Operating Systems – p. 16



Periodic Task Model

A periodic task has a regular structure (cycle):
activate periodically (period Ti)
execute a computation
suspend waiting for the next period

void *PeriodicTask(void *arg)
{
<initialization>;
<start periodic timer, period = T>;
while (cond) {

<read sensors>;
<update outputs>;
<update state variables>;
<wait next activation>;

}
}

Real Time Operating Systems – p. 17



Graphical representation

Tasks are graphically represented by using a GANNT chart.
For example, the following picture shows a schedule of a
periodic task τ1 = (3, 6, 8) (with WCET1 = 3, D1 = 6, P1 = 8)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

Notice that, while job J1,1 and J1,3 execute for 3 units of time
(WCET), job J1,2 executes for only 2 units of time.

Real Time Operating Systems – p. 18



Aperiodic Tasks

Aperiodic tasks are not characterised by periodic
arrivals:

A minimum interarrival time between activations
does not exist
Sometimes, aperiodic tasks do not have a particular
structure

Aperiodic tasks can model:
Tasks that respond to events that occur rarely.
Example: a mode change.
Tasks that respond to events that happen with an
irregular structure. Example: bursts of packets
arriving from the network.

Real Time Operating Systems – p. 19



Aperiodic Tasks - Example

The following example shows a possible arrival pattern for
an aperiodic task τ1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

Notice that arrivals might be bursty, and there is not a
minimum time between them.

Real Time Operating Systems – p. 20



Sporadic tasks

Sporadic tasks are aperiodic tasks characterised by a
minimum interarrival time between jobs.

In this sense, they are similar to periodic tasks, but...
Periodic task ⇒ activated by a periodic timer
Sporadic task ⇒ activated by an external event (for
example, the arrival of a packet from the network)

void *SporadicTask(void *)
{
<initialization>;
while (cond) {

<computation>;
<wait event>;

}
}

Real Time Operating Systems – p. 21



Mathematical model of a sporadic task

Similar to a periodic task: a sporadic task τi = (Ci, Di, Ti) is
a stream of jobs Ji,k, with

ri,k+1 ≥ ri,k + Ti

di,k = ri,k +Di

Ci = max
k

{ci,k}

Ti is the task minimum interarrival time (MIT);

Di is the task relative deadline;

Ci is the task worst-case execution time (WCET).

Again, for the task to be correctly scheduled it must be
Ri ≤ Di.

Real Time Operating Systems – p. 22



Graphical representation

The following example, shows a possible schedule of a
sporadic task τ1 = (2, 5, 9).

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τ1

Notice that
r1,2 = 12 > r1,1 + T1 = 9

r1,3 = 21 = r1,2 + T1 = 21

Real Time Operating Systems – p. 23



Task Criticality - 1

A deadline is said to be hard if a deadline miss causes
a critical failure in the system

A task is said to be a hard real-time task if all its
deadlines are hard

All the task’s deadlines have to be guaranteed
(∀j, ρi,j ≤ Di ⇒ Ri ≤ Di) a priori, before starting the
task

Examples:
The controller of a mobile robot, must detect
obstacles and react within a time dependent on the
robot speed, otherwise the robot will crash into the
obstacles.

Real Time Operating Systems – p. 24



Task Criticality - 2

A deadline is said to be soft if a deadline miss causes a
degradation in the Quality of Service, but is not a
catastrophic event

A task is said to be a soft real-time task if it has soft
deadlines

Some deadlines can be missed without
compromising the correctness of the system...
... But the number of missed deadlines must be kept
under control, because the “quality” of the results
depend on the number of missed deadlines

Real Time Operating Systems – p. 25



Soft Real-Time Requirements - 1

Characterising a soft real-time task can be difficult...
What’s the tradeoff between “non compromising the
system correctness” and not considering missed
deadlines?
Some way to express the QoS experienced by a
(soft) real-time task is needed

The QoS of a soft task can be expressed in different
ways. Examples are:

no more than X consecutive deadlines can be
missed
no more than X deadlines in an interval of time T

can be missed

Real Time Operating Systems – p. 26



Soft Real-Time Requirements - 2

Other examples of soft real-time constraints:
the deadline miss probability must be less than a
specified value
P{fi,j > di,j} ≤ Rmax

the deadline miss ratio can be used instead

number of missed deadlines
total number of deadlines

≤ Rmax

the maximum tardiness must be less than a
specified value

Ri

Di

< L

...

Real Time Operating Systems – p. 27



Example of Soft Real-Time

Audio / Video player:
fps: 25 ⇒ frame period: 40ms

if a frame is played a little bit too late, the user might
even be unable to notice any degradation in the
QoS...
...but skipped frames can be disturbing

missing a lot of frames by 5ms can be better than
missing only few frames by 40ms!

In some robotic systems, some actuations can be
delayed with little consequences on the control quality

In any case, soft real-time does not mean no guarantee
on deadlines...

Real Time Operating Systems – p. 28



Job Execution Times

Tasks can have variable execution times between
different jobs

Execution times might depend on different factors:
Input data
Hardware issues (cache effects, pipeline stalls,
etc...)
The internal state of the task
...

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

Real Time Operating Systems – p. 29



Variable Execution Times: Video Player

Distribution of the job execution times for a video player
(frame decoding times for an MPEG video)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 2000 4000 6000 8000 10000

pr
ob

ab
ili

ty
 d

en
si

ty

decoding time (microseconds)

Real Time Operating Systems – p. 30


	Some Information
	Prerequisites
	Overview of the Course - 1
	Overview of the Course - 2
	Real-Time Operating Systems
	Operating System as a Resource Manager
	Operating System Services
	Typical Applications
	Real-Time Systems: What???
	Real-Time Systems: What???
	Real-Time & Determinism
	Processes, Threads, and Tasks
	Mathematical model of a task - 1
	Mathematical model of a task - 2
	Periodic Tasks
	Periodic Task Model
	Graphical representation
	Aperiodic Tasks
	Aperiodic Tasks - Example
	Sporadic tasks
	Mathematical model of a sporadic task
	Graphical representation
	Task Criticality - 1
	Task Criticality - 2
	Soft Real-Time Requirements - 1
	Soft Real-Time Requirements - 2
	Example of Soft Real-Time
	Job Execution Times
	Variable Execution Times: Video Player

