
Real-Time OS Kernels

Luca Abeni
luca.abeni@unitn.it

December 15, 2014



Real-Time Executives

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 2 / 22

■ Executive: Library code that can be directly linked to applications

■ Implements functionalities generally provided by kernels

■ Generally, no distinction between US and KS

◆ No CPU privileged mode, or application executes in privileged mode

◆ “kernel” functionalities are invoked by direct function call

◆ Applications can execute privileged instructions

■ Advantages:

◆ Simple, small, low overhead

◆ Only the needed code is linked in the final image



Real-Time Executives - 2

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 3 / 22

■ Disadvantages:

◆ No protection

◆ Applications can even disable interrupts → Lnp risks to be
unpredictable

■ Examples:

◆ RTEMS http://www.rtems.org

◆ SHaRK http://shark.sssup.it

■ Consistency of the internal structures is generally ensured by disabling
interrupts: Lnp is bounded by the maximum amount of time interrupts
are disabled

■ Generally used only when memory footprint is important, or when the
CPU does not provide a privileged mode

http://www.rtems.org
http://shark.sssup.it


Monolithic Kernels

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 4 / 22

■ Traditional Unix-like structure

■ Protection: distinction between Kernel (running in KS) and User
Applications (running in US)

■ The kernel behaves as a single-threaded program

◆ Only one single execution flow runs in KS at each time

◆ This greatly simplifies ensuring the consistency of internal kernel
structures

■ Execution enters the kernel in two ways:

◆ Coming from up (system calls)

◆ Coming from down (hardware interrupts)



Single-Threaded Kernels

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 5 / 22

■ Only one single execution flow (thread) can execute in the kernel

◆ It is not possible to execute more than 1 system call at time

■ Non-preemptable system calls

■ In SMP systems, syscalls are critical sections (execute in mutual
exclusion)

◆ Interrupt handlers execute in the context of the interrupted task

■ Interrupt handlers split in two parts

◆ Short and fast ISR

◆ Deferred handler: Bottom Half (BH) (AKA Deferred Procedure
Call - DPC - in Windows)



Synchronizing System Calls and BHs

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 6 / 22

■ Synchronization with ISRs by disabling interrupts

■ Synchronization with BHs is almost automatic: BHs execute at the end
of the system call, before invoking the scheduler for returning to US

■ BHs execute atomically (a BH cannot interrupt another BH)

■ Kernels working in this way are often called non-preemptable kernels

■ Lnp is upper-bounded by the maximum amount of time spent in KS

◆ Maximum system call length

◆ Maximum amount of time spent serving interrupts



Evolution of the Monolithic Structure

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 7 / 22

■ Monolithic kernels are single-threaded: how to run then on
multiprocessor?

◆ The kernel is a critical section: Big Kernel Lock protecting every
system call

◆ This solution does not scale well: a more fine-grained locking is
needed!

■ Tasks cannot block on these locks → not mutexes, but spinlocks!

■ Fine-grained locking allows more execution flows in the kernel
simultaneously

◆ More parallelism in the kernel...

◆ ...But tasks executing in kernel mode are still non-preemptable



Preemptable Kernels

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 8 / 22

■ Multithreaded kernel

◆ Fine-grained critical sections inside the kernel

◆ Kernel code is still non-preemptable

■ Idea: When the kernel is not in critical section, preemptions can occurr

◆ Check for preemptions when exiting kernel’s critical sections

■ In a preemptable kernel, Lnp is upper bounded by the maximum size of
a kernel critical section

■ NOTE: critical section = non-preemptable code... This is NPP!!!



Latency in a Preemptable Kernel

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 9 / 22

1

10

100

1000

10000

100000
10

00

70
00

80
00

90
00

10
00

0
11

00
0

17
00

0

20
00

0

La
te

nc
y 

(u
se

c)

Elapsed Time (msec)

m
em

or
y

ca
ps

 o
n

ca
ps

 o
ff

ch
vt

 3

ch
vt

 2

i/o pr
oc

 r
ea

d

fo
rk



µKernels

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 10 / 22

■ Basic idea: simplify the kernel

◆ Reduce to the minimum the number of abstractions exported by
the kernel

■ Address Spaces

■ Threads

■ IPC mechanisms (channels, ports, etc...)

◆ Most of the “traditional” kernel functionalities implemented in user
space

◆ Even device drivers can be in user space

■ Interactions via IPC (IRQs to drivers as messages, ...)

■ Servers: US processes implementing OS functionalities

◆ Single-server OSs vs Multi-server OSs



µKernels vs Multithreaded Kernels

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 11 / 22

■ µKernels are known to be “more modular” (servers can be stopped /
started at run time)

■ All the modern monolithic kernels provide a module mechanism

■ Modules are linked into the kernel, servers are separate programs
running in US

■ Key difference between µKernels and traditional kernels: each server
runs in its own address space

■ In some “µKernel systems”, some servers share the same address space
for some servers to avoid the IPC overhead

■ What’s the difference with multithreaded monolithic kernels?



Latency in µKernel-Based Systems

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 12 / 22

■ Non-preemptable sections latency is similar to monolithic kernels

◆ Lnp is upper-bounded by the maximum amount of time spent in
the µKernel...

◆ ...But µKernels are simpler than monolithic kernels!

◆ System calls and ISRs should be shorter ⇒ the latency in a µKernel
is generally smaller than in a monolithic kernel

■ Unfortunately, the latency reduction achieved by the µKernel structure is
often not sufficient for real-time systems

◆ Even µKernels have to be modified like monolithic kernels for
obtaining good real-time performance



2
nd Generation µKernels

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 13 / 22

■ Problems with Mach-like “fat µKernels”

◆ The kernel is too big → does not fit in cache memory

◆ Unefficient IPC mechanisms

■ Second generation of µKernels (“MicroKernels Can and Must be
Small”): L4

◆ Very simple kernel (only few syscalls)

◆ Small (fits in cache memory)

◆ Super-optimized IPC (designed to be efficient, not powerful)

■ Linux ported to L4 (l4linux): only 10% performance penalty

■ Real-time performance: not so good. L4 heavily modified (introducing
preemption points) to provide low latencies (Fiasco)



L4Linux and Real-Time

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 14 / 22

■ l4linux: single-server OS, providing the Linux ABI

◆ Linux applications run unmodified on it

◆ Actually the server is the Linux kernel (ported to a new “l4”
architecture)

■ Real-Time OS: DROPS

◆ Non real-time applications run on l4linux (regular Linux
applications)

◆ Real-time applications directly run on L4

◆ The l4linux server should not disable interrupts, or contain
non-preemptable sections

■ Use HLP instead of NPP



“Tamed” L4Linux

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 15 / 22

■ The Linux kernel often disables interrupts (example: spin lock irq())
or preemption...

■ ...So, l4linux risks to increase the latency for L4...

■ Solution: in the “L4 architecture”, interrupt disabling can be remapped
to a soft interrupt disabling

◆ l4linux disables interrupts → no real cli

◆ IPCs notifying interrupts to l4linux are disabled

◆ When l4linux re-enables interrupts, pending interrupts can be
notified to the l4linux server via IPC

■ As a result, Lnp is high for the l4linux server (and for Linux
applications), but is very low for L4 applications

◆ l4linux cannot affect the latency experienced by L4 applications



Dual Kernel Approach

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 16 / 22

■ Idea: Linux applications are non real-time; real-time applications run at
lower level

■ Try to mix the real-time executive approach with the monolithic
approach

◆ A Low-level real-time kernel runs at low level and directly handle
interrupts and manage the hardware

◆ Non real-time interrupts are forwarded to the linux kernel only when
they do not interfere with real-time activities

◆ Linux cannot disable interrupts (no cli), but can only disable (or
delay) the forwarding of interrupts from the low-level real-time
kernel

■ Real-time applications cannot use the Linux kernel



RTLinux, RTAI & Friends - I

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 17 / 22

■ Dual kernel approach: initially used by RTLinux

◆ Patch for the Linux kernel to intercept the interrupts

◆ Small module implementing a real-time executive

■ Intercept interrupts and real-time ones (low latency)

■ Forward non real-time interrupts to Linux

■ Provide real-time functionalities (POSIX API)

◆ Real-time applications are kernel modules

■ There is a patent on interrupt forwarding ???

◆ RTAI: “Free” implementation of a dual-kernel approach

◆ Better maintained than RTLinux

◆ Real-time applications are Linux modules: must have an (L)GPL
compatible license



RTLinux, RTAI & Friends - II

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 18 / 22

■ I-Pipes: Interrupt Pipelines

◆ A small nanokernel handles interrupts by sending them to pipelines
of applications / kernels that actually manage them

◆ Real-time application come first in the pipeline

◆ Same functionalities as RTLinux interrupt forwarding

■ Described in a paper that has been published before the RTLinux patent
→ patent free

■ Adeos nanokernel: implements interrupt pipelines (similar to RTLinux)

■ Xenomai: similar to RTAI; based on Adeos

◆ Provides different real-time APIs

◆ Allows some form of real-time in US



Summing Up...

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 19 / 22

■ Monolithic kernel: high latencies (no real-time)

■ Preemptable kernel: kernel critical sections → Use NPP to protect them

◆ Upper bound for Lnp, but might be too high (remember the NPP
issue)

■ µkernel based systems and dual-kernel systems: use HLP instead of NPP

◆ HLP requires to know in advance which tasks will use a resource

◆ Distinction between real-time and non real-time tasks!

■ Can we do better? Priority Inheritance???



Real-Time in Linux User Space

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 20 / 22

■ Real-Time performance to Linux processes ⇒ need to reduce Lnp for
the Linux kernel, not for low-level applications running under it

■ Linux is a multithreaded kernel ⇒ need:

1. Fine-grained locking

2. Preemptable kernel

3. Schedulable ISRs and BHs ⇒ threaded interrupt handling

4. Replacing spinlocks with mutexes

5. A real-time synchronisation protocol to avoid priority inversion

■ Remember Linux already provides high-resolution timers (since 2.6.21)



Using Threads for BHs and ISRs

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 21 / 22

■ Using threads for serving BHs and ISRs, it is possible to schedule them

■ The priority of interrupts not needed by real-time applications can be
decreased, to reduce Lnp

■ Non-threaded ISRs ⇒ spinlocks must be used for protecting internal
data structures accessed by the ISR

◆ The ISR executes in the interrupted process context ⇒ it cannot
block

■ When using threaded ISRs, a lot of spinlocks can be replaced by
mutexes

■ Spinlocks implicitly use NPP, mutexes do not use any real-time
synchronisation protocol

◆ At least PI is needed



The Preempt-RT Patch

Real-Time Operating Systems and Middleware Real-Time OS Kernels – 22 / 22

■ The features presented in the previous slides can surprisingly be
implemented with a fairly small kernel patch

■ Preempt-RT patch, started by Ingo Molnar and other Linux developers;
now maintained by Thomas Gleixner

■ https://www.kernel.org/pub/linux/kernel/projects/rt: about
700KB of code

■ Most of the code is needed for changing spinlocks in mutexes

■ Various real-time features can be enabled / disabled at kernel
configuration time

■ The worst case total kernel latency is less than 50µs

◆ Remember: it was more than 10ms on a stock kernel

https://www.kernel.org/pub/linux/kernel/projects/rt

	Real-Time Executives
	Real-Time Executives - 2
	Monolithic Kernels
	Single-Threaded Kernels
	Synchronizing System Calls and BHs
	Evolution of the Monolithic Structure
	Preemptable Kernels
	Latency in a Preemptable Kernel
	Kernels
	Kernels vs Multithreaded Kernels
	Latency in Kernel-Based Systems
	2nd Generation Kernels
	L4Linux and Real-Time
	``Tamed'' L4Linux
	Dual Kernel Approach
	RTLinux, RTAI & Friends - I
	RTLinux, RTAI & Friends - II
	Summing Up...
	Real-Time in Linux User Space
	Using Threads for BHs and ISRs
	The Preempt-RT Patch

