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■ Latency: measure of the difference between the theoretical and actual
schedule

◆ Task τ expects to be scheduled at time t . . .

◆ . . . but is scheduled at time t
′

◆ ⇒ Latency L = t
′ − t

■ The latency L can be modelled as a blocking time ⇒ affects the
guarantee test

■ If L is too high, only few task sets result to be schedulable

◆ The latency must be bounded: ∃Lmax
: L < L

max

◆ The latency bound L
max cannot be too high



Sources of Latency
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■ A task τi is a stream of jobs Ji,j arriving at time ri,j

■ Job Ji,j is scheduled at time t
′
> ri,j

◆ t
′ − ri,j is given by the sum of various components:

1. Ji,j ’s arrival is signalled at time ri,j + L
1

2. Such event is served at time ri,j + L
1
+ L

2

3. Ji,j is actually scheduled at ri,j + L
1
+ L

2
+ L

3

L1 2 L3L



Analysis of the Various Sources
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■ L = L
1
+ L

2
+ L

3

■ L
3 is the scheduler latency

◆ Interference from higher priority tasks

◆ Already accounted by the guarantee tests → let’s not consider it

■ L
2 is the non-preemptable section latency, called L

np

◆ Due to non-preemptable sections in the kernel, which delays the
response to hardware interrupts

◆ It is composed by various parts: interrupt disabling, bottom halves

delaying, . . .

■ L
1 is due to the delayed interrupt generation



Interrupt Generation Latency
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■ Hardware interrupts are generated by external devices

■ Sometimes, a device must generate an interrupt at time t . . .

■ . . . but actually generates it at time t
′
= t+ L

int

■ L
int is the Interrupt Generation Latency

◆ It is due to hardware issues

◆ It is generally small compared to L
np

◆ Exception: if the device is a timer device, the interrupt generation
latency can be quite high

■ Timer Resolution Latency L
timer

■ The timer resolution latency L
timer can often be much larger than the

non-preemptable section latency L
np



The Timer Resolution Latency
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■ Kernel timers are generally implemented by using a hardware device that
produces periodic interrupts

■ Periodic timer interrupt → tick

■ Example: periodic task (setitimer(), Posix timers,
clock nanosleep(), . . .) τi with period Ti

■ At the end of each job, τi sleeps for the next activation

■ Activations are triggered by the periodic interrupt

◆ Periodic tick interrupt, with period T
tick

◆ Every T
tick, the kernel checks if the task must be woken up

◆ If Ti is not multiple of T tick, τi experiences a timer resolution
latency



Non-Preemptable Section Latency
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■ The non-preemptable section latency L
np is given by the sum of

different components

1. Interrupt disabling

2. Delayed interrupt service

3. Delayed scheduler invocation

■ The first two are mechanisms used by the kernel to guarantee the
consistency of internal structures

■ The third mechanism is sometimes used to reduce the number of
preemptions and increase the system throughput



Disabling Interrupts
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■ Remember? Before checking if an interrupt fired, the CPU checks if
interrupts are enabled...

Interrupts
Disabled?
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Interrupt

No

Yes

Hardware Exception

Increment
Program
Counter

Execute
Instruction

Fetch 
Instruction

Process
Interrupt

■ Every CPU has some protected instructions (STI/CLI on x86) for
enabling/disabling interrupts

◆ Only the kernel (or code running in KS) can enable/disable
interrupts

◆ Interrupts disabled for a time T
cli → L

np ≥ T
cli

■ Interrupt disabling is used to enforce mutual exclusion between sections
of the kernel and ISRs



Delayed Interrupt Service - 1
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■ When the interrupt fire, the ISR is executed, but the kernel can delay
interrupt service some more...

◆ ISRs are generally small, and do only few things

◆ An ISR can set some kind of software flag, to notify that the
interrupt fired

◆ Later, the kernel can check such flag and run a larger (and more
complex) interrupt handler

■ Some sort of “software interrupts”...

■ Advantages:

◆ ISRs generally run with interrupts disabled

◆ But software interrupt handlers can re-enable hardware interrupts

◆ Enabling/Disabling software interrupt handlers is simpler / cheaper



Delayed Interrupt Service - 2
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■ Software interrupt handlers are good for throughput...

■ ...But can be bad for real-time / latency:

◆ Interrupt response latency is increased: Lnp
>> T

cli

◆ Software interrupt handlers are often non-preemptable increasing
the latency for other tasks too...

■ Large, non-schedulable, active entities executing inside the kernel...



Deferred Scheduling

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 11 / 14

■ Scheduler: invoked only when returning from KS to US

■ For efficiency reasons, the kernel might want to return to user tasks only
after performing a lot of activities

◆ Try to reduce the number of KS ↔ US switches

◆ Reduce the number of context switches

◆ Throughput vs low latency: opposite requirements

■ So, maybe the ISR runs at the correct time, the delayed interrupt handler
is executed immediately, but the scheduler is invoked after some time...

Event Time

Scheduler

Latency

Event Delivery

Handlers
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Latency in the Standard Kernel
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Summing Up
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■ L
np depends on some different factors

■ In general, no hw reasons → it almost entirely depends on the kernel

structure

◆ Non-preemptable section latency is generally the result of the
strategy used by the kernel for ensuring mutual exclusion on its
internal data structures

◆ To analyze / reduce L
np, we need to understand such strategies

◆ Different kernels, based on different structures, work in different
ways

■ Some of the problems:

◆ Interrupt Handling (Device Drivers)

◆ Management of the parallelism



Data Structures Consistency
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■ Hardware interrupt: breaks the regular execution flow

◆ If the CPU is executing in US, switch to KS

◆ If execution is already in KS, possible problems

■ Example:

1. The kernel is updating a linked list

2. IRQ While the list is in an inconsistent state

3. Jump to the ISR, that needs to access the list...

■ The kernel must disable the interrupts while updating the list!

■ Similar interrupt disabling is also used in spinlocks and mutex
implementations...
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