
The Non-Preemptable Sections

Latency

Luca Abeni
luca.abeni@unitn.it

December 1, 2014



Latency

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 2 / 14

■ Latency: measure of the difference between the theoretical and actual
schedule

◆ Task τ expects to be scheduled at time t . . .

◆ . . . but is scheduled at time t
′

◆ ⇒ Latency L = t
′ − t

■ The latency L can be modelled as a blocking time ⇒ affects the
guarantee test

■ If L is too high, only few task sets result to be schedulable

◆ The latency must be bounded: ∃Lmax
: L < L

max

◆ The latency bound L
max cannot be too high



Sources of Latency

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 3 / 14

■ A task τi is a stream of jobs Ji,j arriving at time ri,j

■ Job Ji,j is scheduled at time t
′
> ri,j

◆ t
′ − ri,j is given by the sum of various components:

1. Ji,j ’s arrival is signalled at time ri,j + L
1

2. Such event is served at time ri,j + L
1
+ L

2

3. Ji,j is actually scheduled at ri,j + L
1
+ L

2
+ L

3

L1 2 L3L



Analysis of the Various Sources

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 4 / 14

■ L = L
1
+ L

2
+ L

3

■ L
3 is the scheduler latency

◆ Interference from higher priority tasks

◆ Already accounted by the guarantee tests → let’s not consider it

■ L
2 is the non-preemptable section latency, called L

np

◆ Due to non-preemptable sections in the kernel, which delays the
response to hardware interrupts

◆ It is composed by various parts: interrupt disabling, bottom halves

delaying, . . .

■ L
1 is due to the delayed interrupt generation



Interrupt Generation Latency

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 5 / 14

■ Hardware interrupts are generated by external devices

■ Sometimes, a device must generate an interrupt at time t . . .

■ . . . but actually generates it at time t
′
= t+ L

int

■ L
int is the Interrupt Generation Latency

◆ It is due to hardware issues

◆ It is generally small compared to L
np

◆ Exception: if the device is a timer device, the interrupt generation
latency can be quite high

■ Timer Resolution Latency L
timer

■ The timer resolution latency L
timer can often be much larger than the

non-preemptable section latency L
np



The Timer Resolution Latency

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 6 / 14

■ Kernel timers are generally implemented by using a hardware device that
produces periodic interrupts

■ Periodic timer interrupt → tick

■ Example: periodic task (setitimer(), Posix timers,
clock nanosleep(), . . .) τi with period Ti

■ At the end of each job, τi sleeps for the next activation

■ Activations are triggered by the periodic interrupt

◆ Periodic tick interrupt, with period T
tick

◆ Every T
tick, the kernel checks if the task must be woken up

◆ If Ti is not multiple of T tick, τi experiences a timer resolution
latency



Non-Preemptable Section Latency

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 7 / 14

■ The non-preemptable section latency L
np is given by the sum of

different components

1. Interrupt disabling

2. Delayed interrupt service

3. Delayed scheduler invocation

■ The first two are mechanisms used by the kernel to guarantee the
consistency of internal structures

■ The third mechanism is sometimes used to reduce the number of
preemptions and increase the system throughput



Disabling Interrupts

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 8 / 14

■ Remember? Before checking if an interrupt fired, the CPU checks if
interrupts are enabled...

Interrupts
Disabled?

No

Yes

Fired?
Interrupt

No

Yes

Hardware Exception

Increment
Program
Counter

Execute
Instruction

Fetch 
Instruction

Process
Interrupt

■ Every CPU has some protected instructions (STI/CLI on x86) for
enabling/disabling interrupts

◆ Only the kernel (or code running in KS) can enable/disable
interrupts

◆ Interrupts disabled for a time T
cli → L

np ≥ T
cli

■ Interrupt disabling is used to enforce mutual exclusion between sections
of the kernel and ISRs



Delayed Interrupt Service - 1

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 9 / 14

■ When the interrupt fire, the ISR is executed, but the kernel can delay
interrupt service some more...

◆ ISRs are generally small, and do only few things

◆ An ISR can set some kind of software flag, to notify that the
interrupt fired

◆ Later, the kernel can check such flag and run a larger (and more
complex) interrupt handler

■ Some sort of “software interrupts”...

■ Advantages:

◆ ISRs generally run with interrupts disabled

◆ But software interrupt handlers can re-enable hardware interrupts

◆ Enabling/Disabling software interrupt handlers is simpler / cheaper



Delayed Interrupt Service - 2

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 10 / 14

■ Software interrupt handlers are good for throughput...

■ ...But can be bad for real-time / latency:

◆ Interrupt response latency is increased: Lnp
>> T

cli

◆ Software interrupt handlers are often non-preemptable increasing
the latency for other tasks too...

■ Large, non-schedulable, active entities executing inside the kernel...



Deferred Scheduling

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 11 / 14

■ Scheduler: invoked only when returning from KS to US

■ For efficiency reasons, the kernel might want to return to user tasks only
after performing a lot of activities

◆ Try to reduce the number of KS ↔ US switches

◆ Reduce the number of context switches

◆ Throughput vs low latency: opposite requirements

■ So, maybe the ISR runs at the correct time, the delayed interrupt handler
is executed immediately, but the scheduler is invoked after some time...

Event Time

Scheduler

Latency

Event Delivery

Handlers

KS

US



Latency in the Standard Kernel

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 12 / 14

 1

 10

 100

 1000

 10000

 100000

 20000 17000 11000 10000 9000 8000 7000 1000

La
te

nc
y 

(u
se

c)

Elapsed Time (msec)

m
em

or
y

ca
ps

 o
n

ca
ps

 o
ff

ch
vt

 3
ch

vt
 2

i/o pr
oc

 r
ea

d

fo
rk



Summing Up

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 13 / 14

■ L
np depends on some different factors

■ In general, no hw reasons → it almost entirely depends on the kernel

structure

◆ Non-preemptable section latency is generally the result of the
strategy used by the kernel for ensuring mutual exclusion on its
internal data structures

◆ To analyze / reduce L
np, we need to understand such strategies

◆ Different kernels, based on different structures, work in different
ways

■ Some of the problems:

◆ Interrupt Handling (Device Drivers)

◆ Management of the parallelism



Data Structures Consistency

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency – 14 / 14

■ Hardware interrupt: breaks the regular execution flow

◆ If the CPU is executing in US, switch to KS

◆ If execution is already in KS, possible problems

■ Example:

1. The kernel is updating a linked list

2. IRQ While the list is in an inconsistent state

3. Jump to the ISR, that needs to access the list...

■ The kernel must disable the interrupts while updating the list!

■ Similar interrupt disabling is also used in spinlocks and mutex
implementations...


	Latency
	Sources of Latency
	Analysis of the Various Sources
	Interrupt Generation Latency
	The Timer Resolution Latency
	Non-Preemptable Section Latency
	Disabling Interrupts
	Delayed Interrupt Service - 1
	Delayed Interrupt Service - 2
	Deferred Scheduling
	Latency in the Standard Kernel
	Summing Up
	Data Structures Consistency

