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Latency
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■ Latency: measure of the difference between the theoretical and actual
schedule

◆ Task τ expects to be scheduled at time t . . .

◆ . . . but is scheduled at time t′

◆ ⇒ Latency L = t′ − t

■ The latency L can be modelled as a blocking time ⇒ affects the
guarantee test

■ If L is too high, only few task sets result to be schedulable

◆ The latency must be bounded: ∃Lmax : L < Lmax

◆ The latency bound Lmax cannot be too high



Sources of Latency
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■ A task τi is a stream of jobs Ji,j arriving at time ri,j

■ Job Ji,j is scheduled at time t′ > ri,j

◆ t′ − ri,j is given by the sum of various components:

1. Ji,j ’s arrival is signalled at time ri,j + L1

2. Such event is served at time ri,j + L1 + L2

3. Ji,j is actually scheduled at ri,j + L1 + L2 + L3

L1 2 L3L



Analysis of the Various Sources
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■ L = L1 + L2 + L3

■ L3 is the scheduler latency

◆ Interference from higher priority tasks

◆ Already accounted by the guarantee tests → let’s not consider it

■ L2 is the non-preemptable section latency, called Lnp

◆ Due to non-preemptable sections in the kernel, which delays the
response to hardware interrupts

◆ It is composed by various parts: interrupt disabling, bottom halves

delaying, . . .

■ L1 is due to the delayed interrupt generation



Interrupt Generation Latency
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■ Hardware interrupts are generated by external devices

■ Sometimes, a device must generate an interrupt at time t . . .

■ . . . but actually generates it at time t′ = t+ Lint

■ Lint is the Interrupt Generation Latency

◆ It is due to hardware issues

◆ It is generally small compared to Lnp

◆ Exception: if the device is a timer device, the interrupt generation
latency can be quite high

■ Timer Resolution Latency Ltimer

■ The timer resolution latency Ltimer can often be much larger than the
non-preemptable section latency Lnp



The Timer Resolution Latency
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■ Kernel timers are generally implemented by using a hardware device that
produces periodic interrupts

■ Periodic timer interrupt → tick

■ Example: periodic task (setitimer(), Posix timers,
clock nanosleep(), . . .) τi with period Ti

■ At the end of each job, τi sleeps for the next activation

■ Activations are triggered by the periodic interrupt

◆ Periodic tick interrupt, with period T tick

◆ Every T tick, the kernel checks if the task must be woken up

◆ If Ti is not multiple of T tick, τi experiences a timer resolution
latency



The Periodic Tick
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■ Traditional operating systems: timer device programmed to generate a
periodic interrupt

◆ Example: in a PC, the Programmable Interval Timer (PIT) is
programmed in periodic mode

■ At every tick the execution enter kernel space

■ The kernel executes and can

◆ Wake up tasks

◆ Adjust tasks priorities

◆ Run the scheduler, when returning to user space → possible
preemption

■ The timer interrupt period is a trade-off between responsiveness (low
latency) and throughput (low overhead)



Tick Tradeoff
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■ Large T tick → large timer resolution latency

■ Small T tick → high number of interrupts

◆ More switches between US and KS

◆ Tasks are interrupted more often

◆ ⇒ Larger overhead

■ For non real-time systems, it is possible to find a reasonable tradeoff

◆ Linux 2.4: 10ms (HZ = 100)

◆ Linux 2.6: HZ = 100, 250, or 1000

◆ Other systems: T tick = 1/1024



Timer Resolution Latency
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■ Experienced by all tasks that want to sleep for a specified time T

T tick

timerL timerL

■ τi must wake up at time ri,j = jTi

■ But is woken up at time t′ =
⌈ ri,j
T tick

⌉

T tick

■ So, the timer resolution latency is bounded:

Ltimer = t′ − ri,j =
⌈ ri,j
T tick

⌉

T tick − ri,j =

=
(⌈ ri,j

T tick

⌉

−
ri,j
T tick

)

T tick ≤ T tick



Problems with Periodic Ticks
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■ Reducing T tick below 1ms is generally not acceptable. . .

■ . . .So, periodic tasks can expect a blocking time due to Ltimer up to
1ms

◆ How large is the effect on the schedulability tests?

■ Additional problems:

◆ Tasks’ periods are rounded to multiples of T tick

◆ Limit on the minimum task period: ∀i, Ti ≥ T tick

◆ A lot of useless timer interrupts might be generated

T tick



Timers and Clocks
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■ Remember?

◆ Timer: generate an event at a specified time t

◆ Clock: keep track of the current system time

■ A timer can be used to wake up a periodic task τ , a clock can be used
to read the system time (gettimeofday())

■ Timer Resolution: minimum interval at which a periodic timer can fire

◆ If periodic ticks are used, the timer resolution is T tick

■ Clock Resolution: minimum difference between two different times
returned by the clock

◆ What’s the expected clock resolution?



Clock Resolution
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■ Traditional systems use a “tick counter” to keep track of the time

◆ Very fast clock: return the number of ticks (jiffies in Linux) from
the system boot

◆ Clock Resolution: T tick

■ Modern PCs also provide higher resolution time sources...

◆ For example, the TSC (TimeStamp Counter) on x86

◆ High-Resolution clock: use the TSC (or higher resolution time
source) for computing the time since the last timer tick...

■ Summary: High-Resolution clocks are easy!

◆ Every modern OS kernel provide them



Clock Resolution vs Timer Resolution
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■ Even using a “traditional” periodic timer tick, it is easy to provide
high-resolution clocks

◆ Time can be easily read with a high accuracy

■ On the other hand, timer resolution is limited by the system tick T tick

(= 1 / HZ)

◆ It is impossible to generate events at arbitrary instants in time,
without latencies



Timer Devices

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 14 / 24

■ The timer device (example: the PIT - i8254 - on PCs) generally provides
two operational modes: periodic and one-shot

■ Programmed writing a value C in a counter register

■ The counter register is decremented at a fixed rate

■ When the counter is 0, an interrupt is generated

◆ If the device is programmed in periodic mode, the counter register
is automatically reset to the programmed value

◆ If the device is programmed in one-shot mode, the kernel has to
explicitly reprogram the device (setting the counter register to a
new value)



Using the One-Shot Mode
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■ The periodic mode is easier to use! This is why most kernels use it

■ When using one-shot mode, the timer interrupt handler must:

1. Acknowledge the interrupt handler, as usual

2. Check if a timer expired, and do its usual stuff...

3. Compute when the next timer must fire

4. Reprogram the timer device to generate an interrupt at the correct
time

■ Steps 3 and 4 are particularly critical and difficult



Reprogramming the Timer Device - 1
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■ When the kernel reprograms the timer device (step 4), it must know the
current time...

■ ...But the last known time is the time when the interrupt fired (before
step 1)...

■ Example:

◆ A timer interrupt fires at time t1

◆ The interrupt handler starts (execution enters KS) at time t′
1

◆ Before returning to US, the timer must be reprogrammed, at time
t′′
1

◆ Next interrupt must fire at time t2; the counter register is loaded
with t2 − t1

◆ Next interrupt will fire at t2 + (t′′
1
− t1)



Reprogramming the Timer Device - 2
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■ The error described previously accumulates

■ ⇒ There is the risk to have a drift between real time and system time

■ A free run counter which is not stopped at time t1 is needed

■ The counter is synchronised with the timer device ⇒ the value of the
counter at time t1 is known

■ This permits to know the time t′′
1
⇒ the new counter register value can

be computed correctly

■ On a PC, the second PIT counter, or the TSC, or the APIC timer can
be used as a free run counter

■ Final note: reprogramming the PIC is an expensive operation ⇒ it is
better to use other timer devices



High Resolution Timers
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■ Serious real-time kernels implement High-Resolution Timers

programming the device in one-shot mode

◆ Already implemented in RT-Mach

◆ Also implemented in RTLinux, Resource Kernels, RTAI, SHaRK,
etc...

■ General-Purpose kernels are more concerned about stability and
overhead

■ Some techniques have been proposed to reduce the overhead

◆ Soft Timers

◆ Firm Timers

■ HRT entered the Linux kernel in version 2.6.21



HRT and Timer Ticks
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■ Compatibility with “traditional” kernels:

◆ The tick event can be emulated through high-resolution timers

◆ ⇒ Timer device programmed to generate interrupts both:

■ When needed to serve a timer, and

■ At tick boundaries

■ ...But the “tick” concept is now useless

◆ Tickless (or NO HZ) system

◆ Good for saving power

■ In some lucky situations, average of 1 timer interrupt per
second!

◆ The implementation still has some limitations, but is possible in
theory



Some Notes on Linux Timers
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■ Terminology:

◆ Timer → Clock Event Source

■ Traditional architecture:

◆ Clocks and clock event sources are “scorrelated”

◆ Implemented in architecture code (linux/arch/xxx/kernel/...)
⇒ lot of code duplication

■ The (architecture dependend) clock event source code provides periodic
ticks invoking generic (linux/kernel) code that:

◆ Performs process execution time accounting

◆ Increase the system jiffies

◆ Handles system timers



Linux Timers Handling
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■ System timers stored in a timer wheel structure...

◆ Optimized for insertion / extraction (O(1))

◆ Scales well with the number of timers

■ Periodic check for expired timers can be inefficient

◆ Structure based on a set of arrays

◆ The first timers to expire are in the base array

◆ When a time expire it might be necessary to move timers from an
array to the previous one (timers cascading)

■ See linux/kernel/timer.c

■ Cascading works well when a lot of timers expire together (timers
clustering - on a tick boundary)



Efficient High-Resolution Timers
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■ Timer wheel → inefficient in storing / handling high-resolution timers

◆ High resolution timers tend to expire “too often” (no clustering)

■ Some form of clustering is needed for supporting efficient structures

◆ Dedicated real-time systems do not care, but Linux must have a
scalable timers subsystem

◆ Early high-resolution timers implementations on Linux (KURT,
Montavista high-res timers, etc...) failed on this

■ A distinction between timers that need high resolution and timers that
can be clustered helps...



Timers and Timeouts
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■ Most of the system timers really are timeouts

◆ Used to detect anomalies and error conditions

◆ Do not fire in general

◆ Must be possible to efficiently insert and remove them from the
timer list

◆ Do not need high resolution (can be clustered)

■ Other timers need high resolution

◆ They generally expire

◆ No need to efficiently remove them from the timer list



HRTimers in Linux
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■ hrtimers: Rework the timer wheel to allow efficient handling of
high-resolution timers

■ GTOD (Generic Time of Day): rework the clock subsystem moving most
of the code from architecture-dependent to generic code

◆ Remove code duplication

◆ Remove dependency on periodic tick

■ clockevents: generic (non arch-dependent) infrastructure for handling
clock event sources

◆ Remove code duplication

◆ Make it possible to reprogram the timer device
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