
The Timer Resolution Latency

Luca Abeni
luca.abeni@unitn.it

November 24, 2014



Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 2 / 24

■ Latency: measure of the difference between the theoretical and actual
schedule

◆ Task τ expects to be scheduled at time t . . .

◆ . . . but is scheduled at time t′

◆ ⇒ Latency L = t′ − t

■ The latency L can be modelled as a blocking time ⇒ affects the
guarantee test

■ If L is too high, only few task sets result to be schedulable

◆ The latency must be bounded: ∃Lmax : L < Lmax

◆ The latency bound Lmax cannot be too high



Sources of Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 3 / 24

■ A task τi is a stream of jobs Ji,j arriving at time ri,j

■ Job Ji,j is scheduled at time t′ > ri,j

◆ t′ − ri,j is given by the sum of various components:

1. Ji,j ’s arrival is signalled at time ri,j + L1

2. Such event is served at time ri,j + L1 + L2

3. Ji,j is actually scheduled at ri,j + L1 + L2 + L3

L1 2 L3L



Analysis of the Various Sources

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 4 / 24

■ L = L1 + L2 + L3

■ L3 is the scheduler latency

◆ Interference from higher priority tasks

◆ Already accounted by the guarantee tests → let’s not consider it

■ L2 is the non-preemptable section latency, called Lnp

◆ Due to non-preemptable sections in the kernel, which delays the
response to hardware interrupts

◆ It is composed by various parts: interrupt disabling, bottom halves

delaying, . . .

■ L1 is due to the delayed interrupt generation



Interrupt Generation Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 5 / 24

■ Hardware interrupts are generated by external devices

■ Sometimes, a device must generate an interrupt at time t . . .

■ . . . but actually generates it at time t′ = t+ Lint

■ Lint is the Interrupt Generation Latency

◆ It is due to hardware issues

◆ It is generally small compared to Lnp

◆ Exception: if the device is a timer device, the interrupt generation
latency can be quite high

■ Timer Resolution Latency Ltimer

■ The timer resolution latency Ltimer can often be much larger than the
non-preemptable section latency Lnp



The Timer Resolution Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 6 / 24

■ Kernel timers are generally implemented by using a hardware device that
produces periodic interrupts

■ Periodic timer interrupt → tick

■ Example: periodic task (setitimer(), Posix timers,
clock nanosleep(), . . .) τi with period Ti

■ At the end of each job, τi sleeps for the next activation

■ Activations are triggered by the periodic interrupt

◆ Periodic tick interrupt, with period T tick

◆ Every T tick, the kernel checks if the task must be woken up

◆ If Ti is not multiple of T tick, τi experiences a timer resolution
latency



The Periodic Tick

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 7 / 24

■ Traditional operating systems: timer device programmed to generate a
periodic interrupt

◆ Example: in a PC, the Programmable Interval Timer (PIT) is
programmed in periodic mode

■ At every tick the execution enter kernel space

■ The kernel executes and can

◆ Wake up tasks

◆ Adjust tasks priorities

◆ Run the scheduler, when returning to user space → possible
preemption

■ The timer interrupt period is a trade-off between responsiveness (low
latency) and throughput (low overhead)



Tick Tradeoff

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 8 / 24

■ Large T tick → large timer resolution latency

■ Small T tick → high number of interrupts

◆ More switches between US and KS

◆ Tasks are interrupted more often

◆ ⇒ Larger overhead

■ For non real-time systems, it is possible to find a reasonable tradeoff

◆ Linux 2.4: 10ms (HZ = 100)

◆ Linux 2.6: HZ = 100, 250, or 1000

◆ Other systems: T tick = 1/1024



Timer Resolution Latency

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 9 / 24

■ Experienced by all tasks that want to sleep for a specified time T

T tick

timerL timerL

■ τi must wake up at time ri,j = jTi

■ But is woken up at time t′ =
⌈ ri,j
T tick

⌉

T tick

■ So, the timer resolution latency is bounded:

Ltimer = t′ − ri,j =
⌈ ri,j
T tick

⌉

T tick − ri,j =

=
(⌈ ri,j

T tick

⌉

−
ri,j
T tick

)

T tick ≤ T tick



Problems with Periodic Ticks

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 10 / 24

■ Reducing T tick below 1ms is generally not acceptable. . .

■ . . .So, periodic tasks can expect a blocking time due to Ltimer up to
1ms

◆ How large is the effect on the schedulability tests?

■ Additional problems:

◆ Tasks’ periods are rounded to multiples of T tick

◆ Limit on the minimum task period: ∀i, Ti ≥ T tick

◆ A lot of useless timer interrupts might be generated

T tick



Timers and Clocks

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 11 / 24

■ Remember?

◆ Timer: generate an event at a specified time t

◆ Clock: keep track of the current system time

■ A timer can be used to wake up a periodic task τ , a clock can be used
to read the system time (gettimeofday())

■ Timer Resolution: minimum interval at which a periodic timer can fire

◆ If periodic ticks are used, the timer resolution is T tick

■ Clock Resolution: minimum difference between two different times
returned by the clock

◆ What’s the expected clock resolution?



Clock Resolution

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 12 / 24

■ Traditional systems use a “tick counter” to keep track of the time

◆ Very fast clock: return the number of ticks (jiffies in Linux) from
the system boot

◆ Clock Resolution: T tick

■ Modern PCs also provide higher resolution time sources...

◆ For example, the TSC (TimeStamp Counter) on x86

◆ High-Resolution clock: use the TSC (or higher resolution time
source) for computing the time since the last timer tick...

■ Summary: High-Resolution clocks are easy!

◆ Every modern OS kernel provide them



Clock Resolution vs Timer Resolution

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 13 / 24

■ Even using a “traditional” periodic timer tick, it is easy to provide
high-resolution clocks

◆ Time can be easily read with a high accuracy

■ On the other hand, timer resolution is limited by the system tick T tick

(= 1 / HZ)

◆ It is impossible to generate events at arbitrary instants in time,
without latencies



Timer Devices

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 14 / 24

■ The timer device (example: the PIT - i8254 - on PCs) generally provides
two operational modes: periodic and one-shot

■ Programmed writing a value C in a counter register

■ The counter register is decremented at a fixed rate

■ When the counter is 0, an interrupt is generated

◆ If the device is programmed in periodic mode, the counter register
is automatically reset to the programmed value

◆ If the device is programmed in one-shot mode, the kernel has to
explicitly reprogram the device (setting the counter register to a
new value)



Using the One-Shot Mode

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 15 / 24

■ The periodic mode is easier to use! This is why most kernels use it

■ When using one-shot mode, the timer interrupt handler must:

1. Acknowledge the interrupt handler, as usual

2. Check if a timer expired, and do its usual stuff...

3. Compute when the next timer must fire

4. Reprogram the timer device to generate an interrupt at the correct
time

■ Steps 3 and 4 are particularly critical and difficult



Reprogramming the Timer Device - 1

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 16 / 24

■ When the kernel reprograms the timer device (step 4), it must know the
current time...

■ ...But the last known time is the time when the interrupt fired (before
step 1)...

■ Example:

◆ A timer interrupt fires at time t1

◆ The interrupt handler starts (execution enters KS) at time t′
1

◆ Before returning to US, the timer must be reprogrammed, at time
t′′
1

◆ Next interrupt must fire at time t2; the counter register is loaded
with t2 − t1

◆ Next interrupt will fire at t2 + (t′′
1
− t1)



Reprogramming the Timer Device - 2

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 17 / 24

■ The error described previously accumulates

■ ⇒ There is the risk to have a drift between real time and system time

■ A free run counter which is not stopped at time t1 is needed

■ The counter is synchronised with the timer device ⇒ the value of the
counter at time t1 is known

■ This permits to know the time t′′
1
⇒ the new counter register value can

be computed correctly

■ On a PC, the second PIT counter, or the TSC, or the APIC timer can
be used as a free run counter

■ Final note: reprogramming the PIC is an expensive operation ⇒ it is
better to use other timer devices



High Resolution Timers

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 18 / 24

■ Serious real-time kernels implement High-Resolution Timers

programming the device in one-shot mode

◆ Already implemented in RT-Mach

◆ Also implemented in RTLinux, Resource Kernels, RTAI, SHaRK,
etc...

■ General-Purpose kernels are more concerned about stability and
overhead

■ Some techniques have been proposed to reduce the overhead

◆ Soft Timers

◆ Firm Timers

■ HRT entered the Linux kernel in version 2.6.21



HRT and Timer Ticks

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 19 / 24

■ Compatibility with “traditional” kernels:

◆ The tick event can be emulated through high-resolution timers

◆ ⇒ Timer device programmed to generate interrupts both:

■ When needed to serve a timer, and

■ At tick boundaries

■ ...But the “tick” concept is now useless

◆ Tickless (or NO HZ) system

◆ Good for saving power

■ In some lucky situations, average of 1 timer interrupt per
second!

◆ The implementation still has some limitations, but is possible in
theory



Some Notes on Linux Timers

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 20 / 24

■ Terminology:

◆ Timer → Clock Event Source

■ Traditional architecture:

◆ Clocks and clock event sources are “scorrelated”

◆ Implemented in architecture code (linux/arch/xxx/kernel/...)
⇒ lot of code duplication

■ The (architecture dependend) clock event source code provides periodic
ticks invoking generic (linux/kernel) code that:

◆ Performs process execution time accounting

◆ Increase the system jiffies

◆ Handles system timers



Linux Timers Handling

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 21 / 24

■ System timers stored in a timer wheel structure...

◆ Optimized for insertion / extraction (O(1))

◆ Scales well with the number of timers

■ Periodic check for expired timers can be inefficient

◆ Structure based on a set of arrays

◆ The first timers to expire are in the base array

◆ When a time expire it might be necessary to move timers from an
array to the previous one (timers cascading)

■ See linux/kernel/timer.c

■ Cascading works well when a lot of timers expire together (timers
clustering - on a tick boundary)



Efficient High-Resolution Timers

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 22 / 24

■ Timer wheel → inefficient in storing / handling high-resolution timers

◆ High resolution timers tend to expire “too often” (no clustering)

■ Some form of clustering is needed for supporting efficient structures

◆ Dedicated real-time systems do not care, but Linux must have a
scalable timers subsystem

◆ Early high-resolution timers implementations on Linux (KURT,
Montavista high-res timers, etc...) failed on this

■ A distinction between timers that need high resolution and timers that
can be clustered helps...



Timers and Timeouts

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 23 / 24

■ Most of the system timers really are timeouts

◆ Used to detect anomalies and error conditions

◆ Do not fire in general

◆ Must be possible to efficiently insert and remove them from the
timer list

◆ Do not need high resolution (can be clustered)

■ Other timers need high resolution

◆ They generally expire

◆ No need to efficiently remove them from the timer list



HRTimers in Linux

Real-Time Operating Systems and Middleware The Timer Resolution Latency – 24 / 24

■ hrtimers: Rework the timer wheel to allow efficient handling of
high-resolution timers

■ GTOD (Generic Time of Day): rework the clock subsystem moving most
of the code from architecture-dependent to generic code

◆ Remove code duplication

◆ Remove dependency on periodic tick

■ clockevents: generic (non arch-dependent) infrastructure for handling
clock event sources

◆ Remove code duplication

◆ Make it possible to reprogram the timer device


	Latency
	Sources of Latency
	Analysis of the Various Sources
	Interrupt Generation Latency
	The Timer Resolution Latency
	The Periodic Tick
	Tick Tradeoff
	Timer Resolution Latency
	Problems with Periodic Ticks
	Timers and Clocks
	Clock Resolution
	Clock Resolution vs Timer Resolution
	Timer Devices
	Using the One-Shot Mode
	Reprogramming the Timer Device - 1
	Reprogramming the Timer Device - 2
	High Resolution Timers
	HRT and Timer Ticks
	Some Notes on Linux Timers
	Linux Timers Handling
	Efficient High-Resolution Timers
	Timers and Timeouts
	HRTimers in Linux

