Real-Time Scheduling

Real Time Operating Systems and Middleware

Luca Abeni luca.abeni@unitn.it

Definitions

- Algorithm \rightarrow logical procedure used to solve a problem
- Program → formal description of an algorithm, using a programming language
- Process \rightarrow instance of a program (program in execution)
 - Program: static entity
 - Process: dynamic entity
- The term *task* is used to indicate a schedulable entity (either a process or a thread)
 - Thread \rightarrow flow of execution
 - Process → flow of execution + private resources (address space, file table, etc...)

Scheduling

- Tasks do not run on bare hardware...
 - How can multiple tasks execute on one single CPU?
 - The OS OS kernel creates the illusion of having more CPUs, so that multiple tasks execute in parallel
 - Tasks have the illusion of executing concurrently
 - A dedicated CPU per task
- Concurrency is implemented by multiplexing tasks on the same CPU...
 - Tasks are alternated on a real CPU...
 - ...And the task scheduler decides which task executes at a given instant in time
- Tasks are associated temporal constraints (deadlines)
 - The scheduler must allocate the CPU to tasks so that their deadlines are respected

Real-Time Operating Systems and Middleware

Scheduler - 1

- Scheduler: responsible for generating a *schedule* from a set of ready tasks
 - Interesting definition: the scheduler is the thing that generates the schedule
- Let's be serious... Start from a mathematical model
 - First, consider UP systems (simpler definition)
 - A schedule $\sigma(t)$ is a function mapping time t into an executing task

 $\sigma: t \to \mathcal{T} \cup \tau_{idle}$

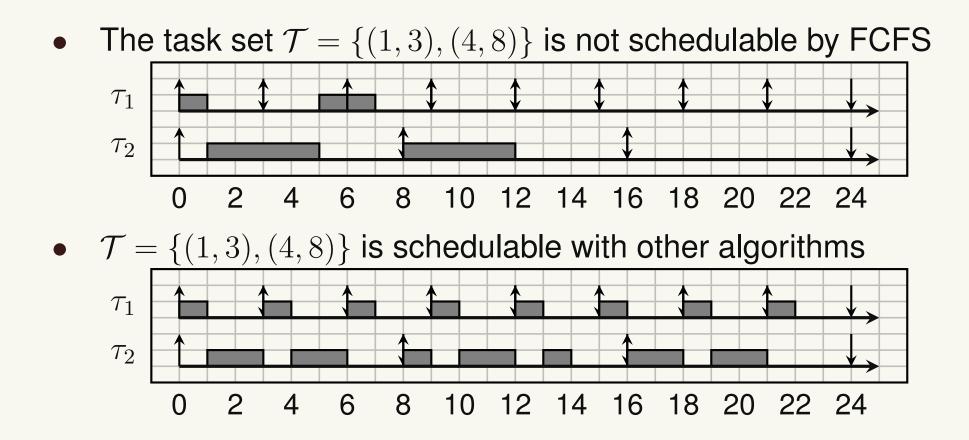
where ${\mathcal T}$ is the set of tasks in the system

- τ_{idle} is the *idle task*: when it is scheduled, the CPU becomes idle
- For an SMP system (*m* CPUs), $\sigma(t)$ can be extended to map t in vectors $\tau \in (\mathcal{T} \cup \tau_{idle})^m$

Real-Time Operating Systems and Middleware

- Scheduler: implements $\sigma(t)$
 - The scheduler is responsible for selecting the task to execute at time *t*
- From an algorithmic point of view
 - Scheduling algorithm → Algorithm used to select for each time instant t a task to be executed on a CPU among the ready task
 - Given a task set T, a scheduling algorithm A generates the schedule $\sigma_A(t)$
- A task set is schedulable by an algorithm \mathcal{A} if $\sigma_{\mathcal{A}}$ does not contain missed deadlines
- Schedulability test \rightarrow check if \mathcal{T} is schedulable by \mathcal{A}

RT Scheduling: Why?



Real-Time Operating Systems and Middleware

Cyclic Executive Scheduling

- Very low overhead (scheduling decisions taken off-line)
- Very simple and well-tested
 - Mainly used in legacy applications and where reliability is fundamental
 - Example: military and avionics systems
 - Air traffic control
 - Space Shuttle
 - Boeing 777
- Also called timeline scheduling or cyclic scheduling
- Originally used for periodic tasks

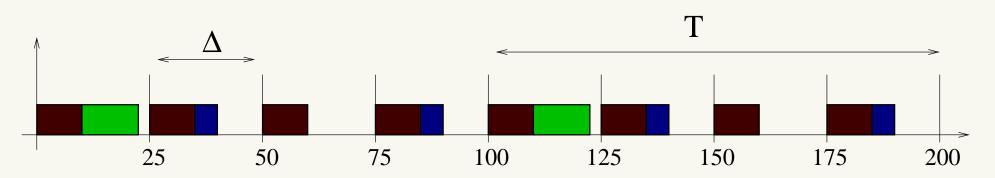
The idea

- Static scheduling algorithm
- Jobs are not preemptable
 - A scheduled job executes until termination
- The time axis is divided in time slots
- Slots are statically allocated to the tasks (scheduling table)
- A periodic timer activates execution (allocation of a slot)
 - Major Cycle: least common multiple (lcm) of all the tasks' periods (also called *hyperperiod*)
 - Minor Cycle: greatest common divisor (gcd) of all the tasks' periods
 - A timer fires every Minor Cycle Δ

Example

- Consider a taskset $\Gamma = \{\tau_1, \tau_2, \tau_3\}$
 - Periodic tasks $\tau_i = (C_i, D_i, T_i)$, $D_i = T_i$
 - $T_1 = 25ms$, $T_2 = 50ms$, $T_3 = 100ms$
- 1. Minor Cycle $\Delta = gcd(25, 50, 100) = 25ms$
- 2. Major Cycle T = lcm(25, 50, 100) = 100ms
- 3. Compute a schedule that respects the task periods
 - Allocate tasks in slots of size $\Delta = 25ms$
 - The schedule repeats every T = 100ms
 - τ_1 must be scheduled every 25ms, τ_2 must be scheduled every 50ms, τ_3 must be scheduled every 100ms
 - In every minor cycle, the tasks must execute for less than 25ms

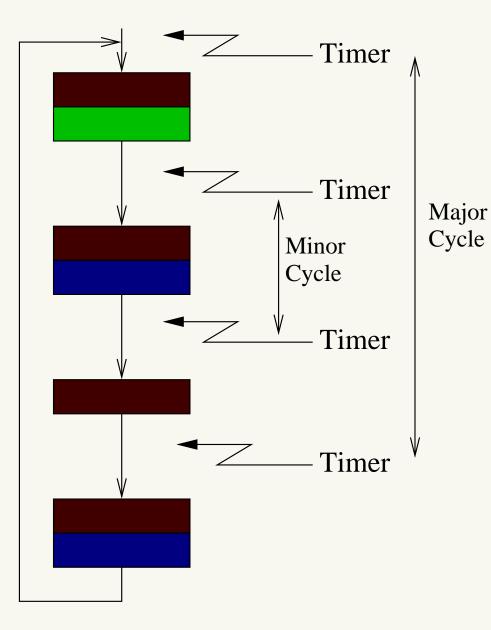
- The schedule repeats every 4 minor cycles
 - τ_1 must be scheduled every $25ms \Rightarrow$ scheduled in every minor cycle
 - au_2 must be scheduled every $50ms \Rightarrow$ scheduled every 2 minor cycles
 - τ_3 must be scheduled every $100ms \Rightarrow$ scheduled every 4 minor cycles



- First minor cycle: $C_1 + C_3 \le 25ms$
- Second minor cycle: $C_1 + C_2 \le 25ms$

Real-Time Operating Systems and Middleware

Implementation



- Periodic timer firing every minor cycle
- Every time the timer fires...
- ...Read the scheduling table and execute the appropriate tasks
- Then, sleep until next minor cycle

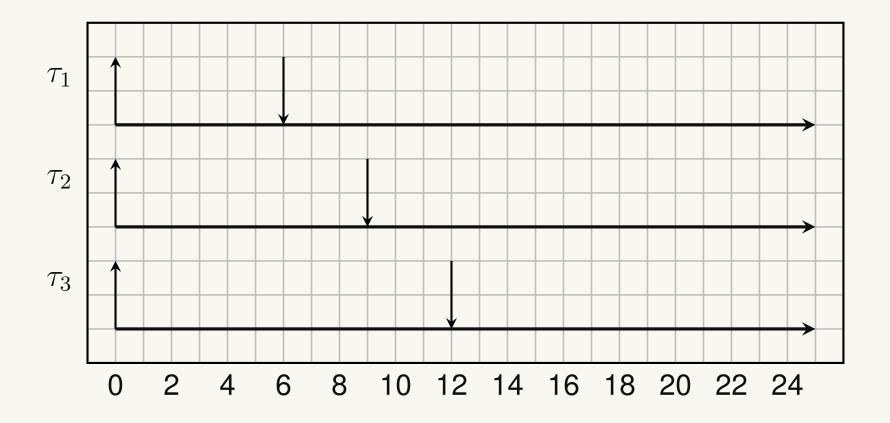
Advantages

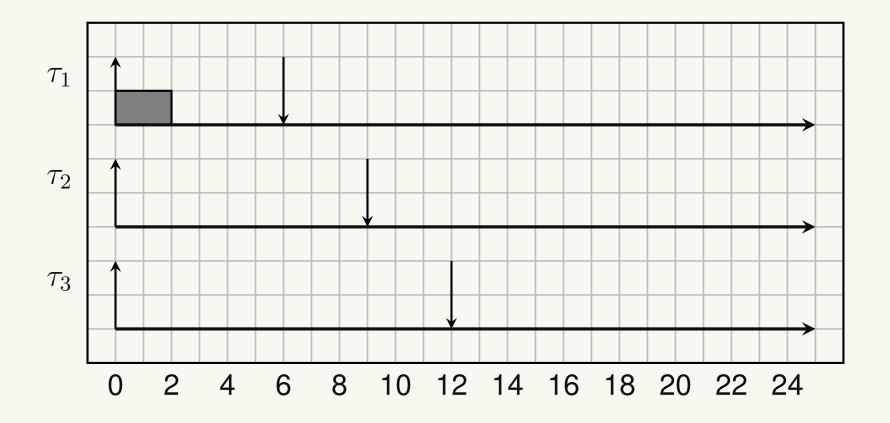
- Simple implementation (no real-time operating system is required)
 - No real task exist: just function calls
 - One single stack for all the "tasks"
- Non-preemptable scheduling \Rightarrow no need to protect data
 - No need for semaphores, pipes, mutexes, mailboxes, etc.
- Low run-time overhead
- Jitter can be explicitly controlled

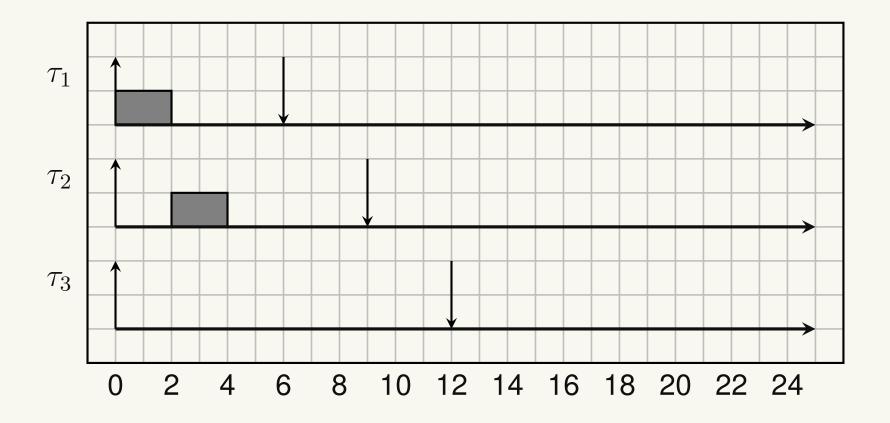
Drawbacks

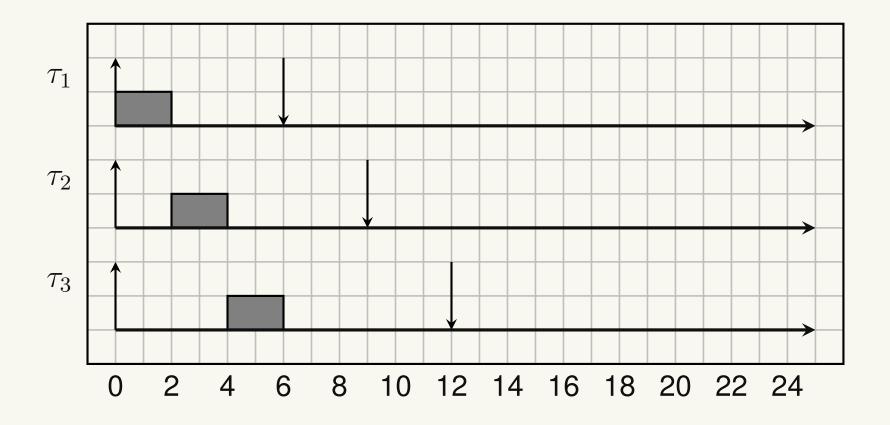
- Not robust during overloads
- Difficult to expand the schedule (static schedule)
 - New task \Rightarrow the whole schedule must be recomputed
- Not easy to handle aperiodic/sporadic tasks
- All task periods must be a multiple of the minor cycle time
- Difficult to incorporate processes with long periods (big tables)
- Variable computation time ⇒ it might be necessary to split tasks into a fixed number of fixed size procedures

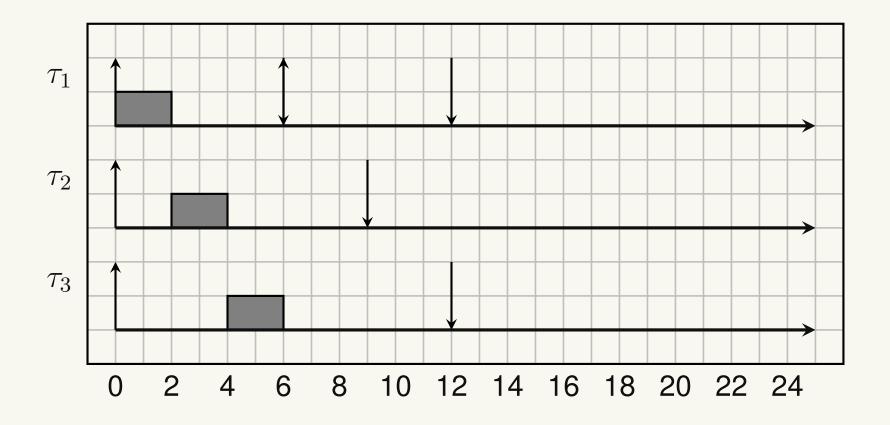
- Very simple *preemptive* scheduling algorithm
 - Every task τ_i is assigned a fixed priority p_i
 - The active task with the highest priority is scheduled
- Priorities are integer numbers: the higher the number, the higher the priority
 - In the research literature, sometimes authors use the opposite convention: the lowest the number, the highest the priority
- In the following we show some examples, considering periodic tasks, constant execution times, and deadlines equal to the period

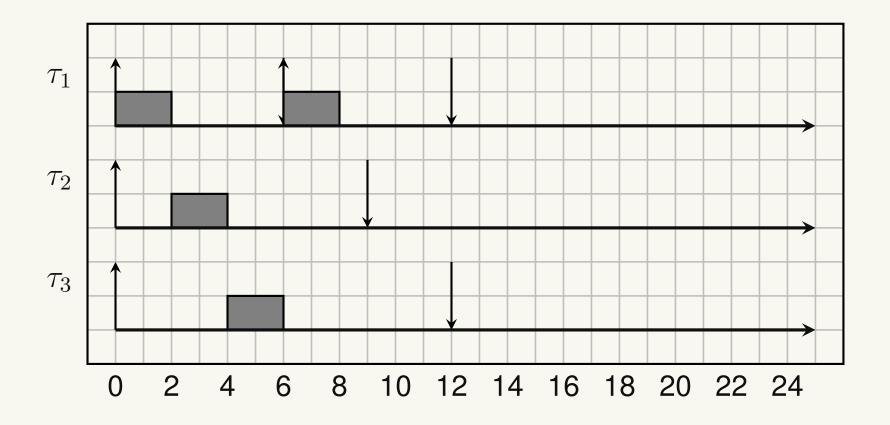


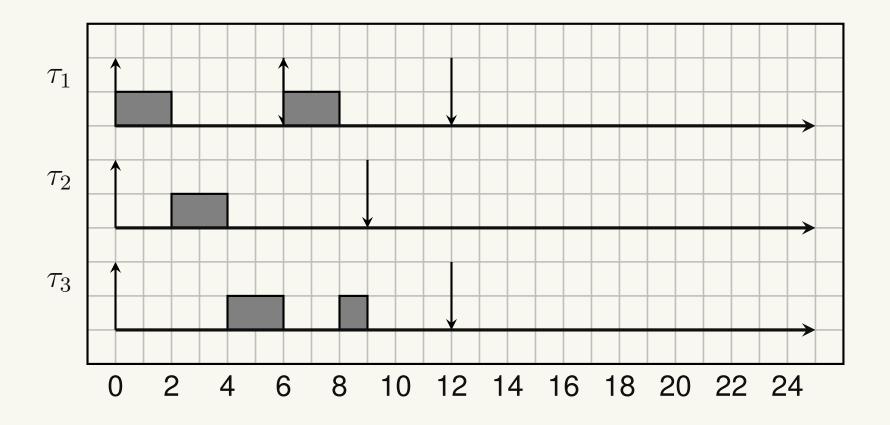


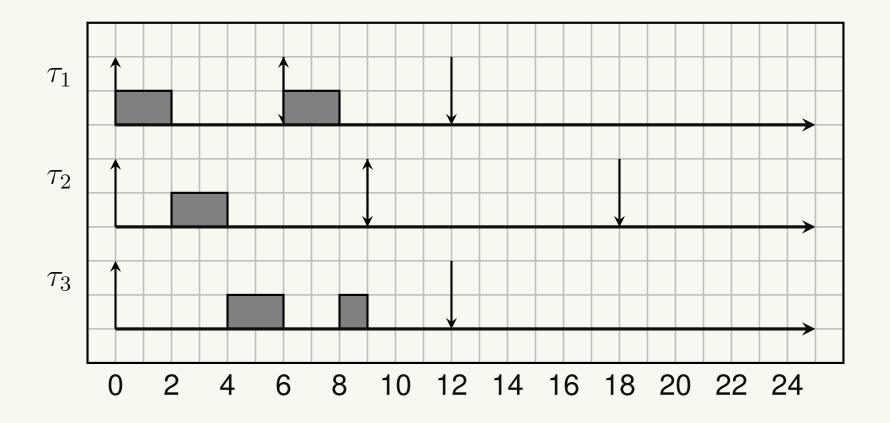


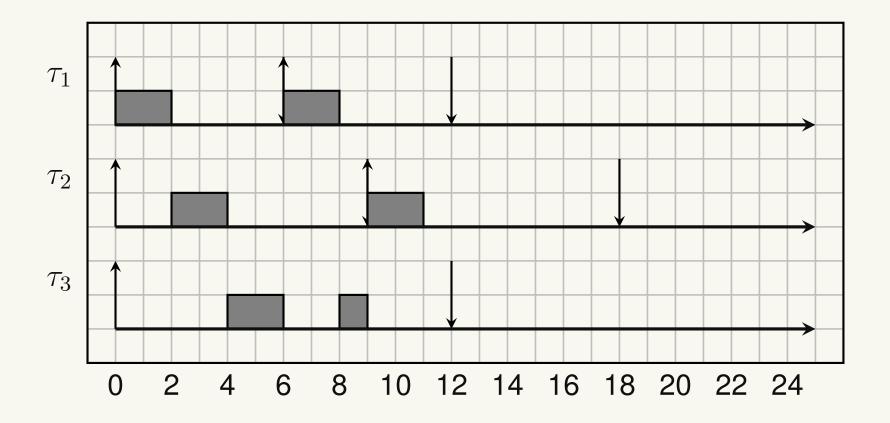


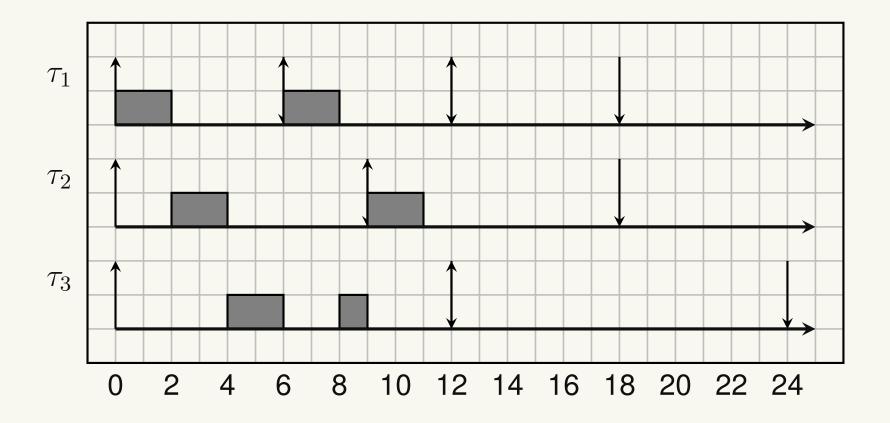


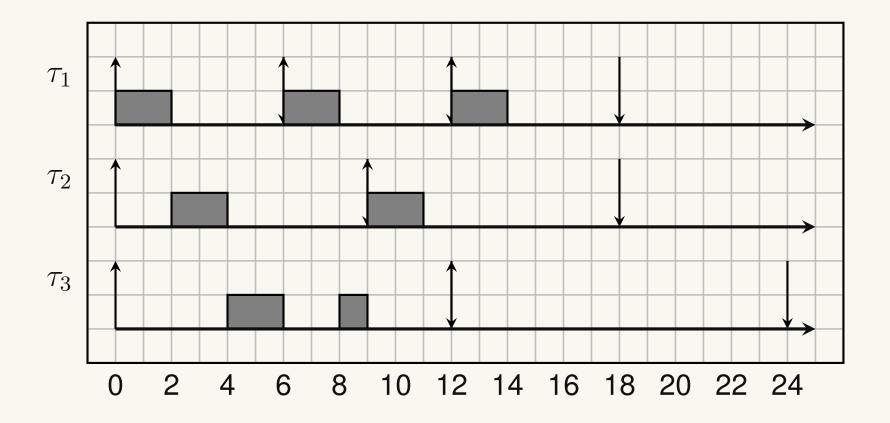


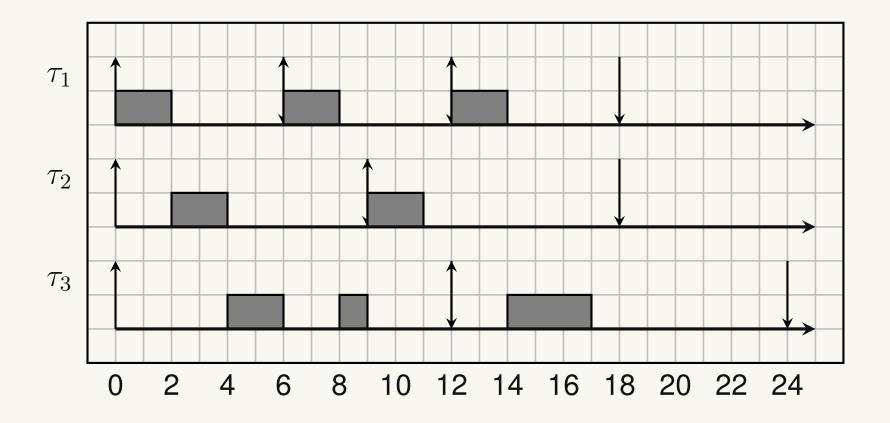


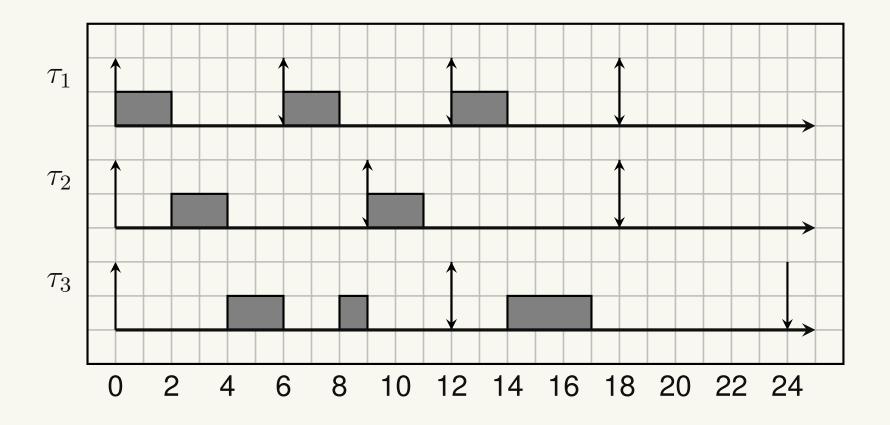


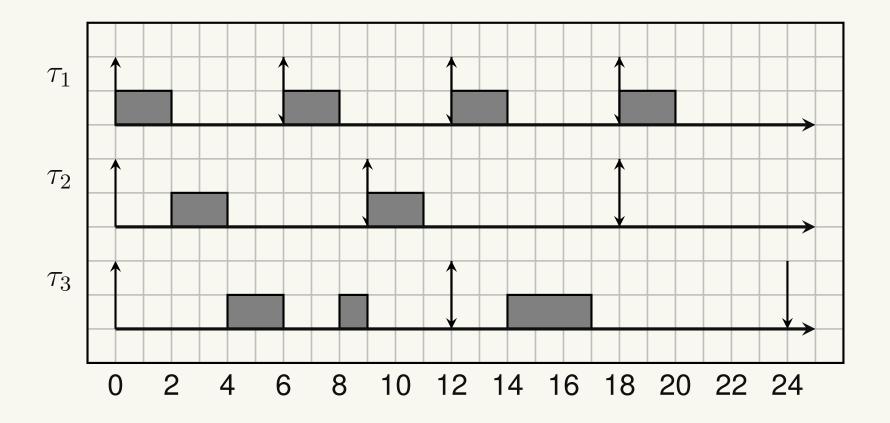


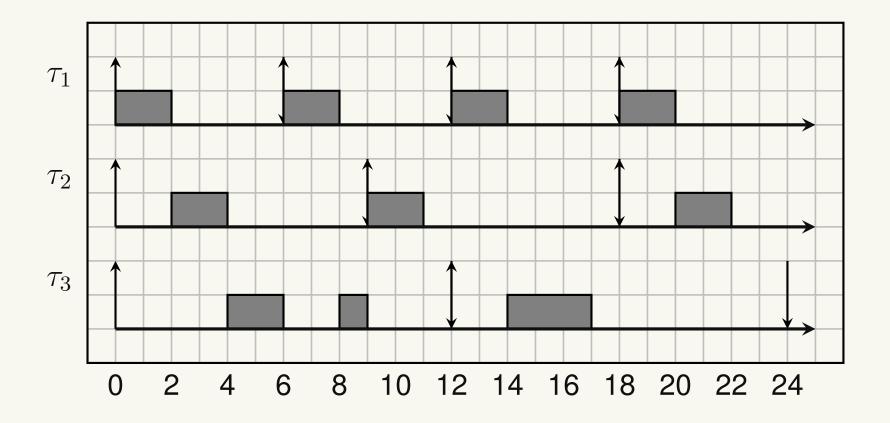






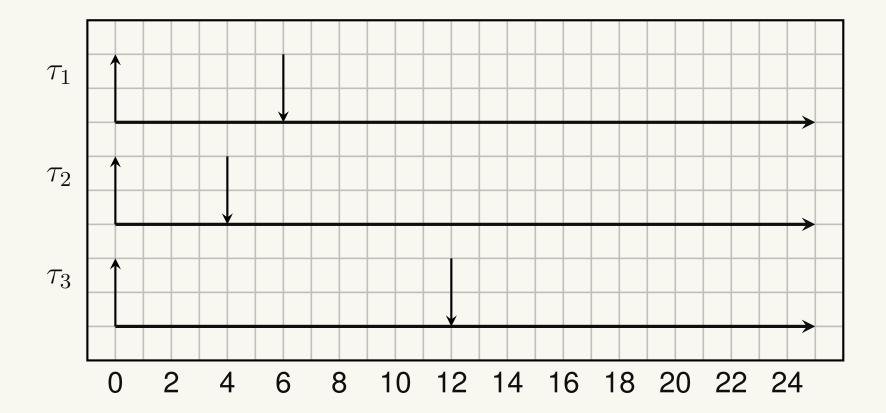






Another Example (non-schedulable)

• Consider the following task set: $\tau_1 = (3, 6, 6)$, $p_1 = 3$, $\tau_2 = (2, 4, 8)$, $p_2 = 2$, $\tau_3 = (2, 12, 12)$, $p_3 = 1$

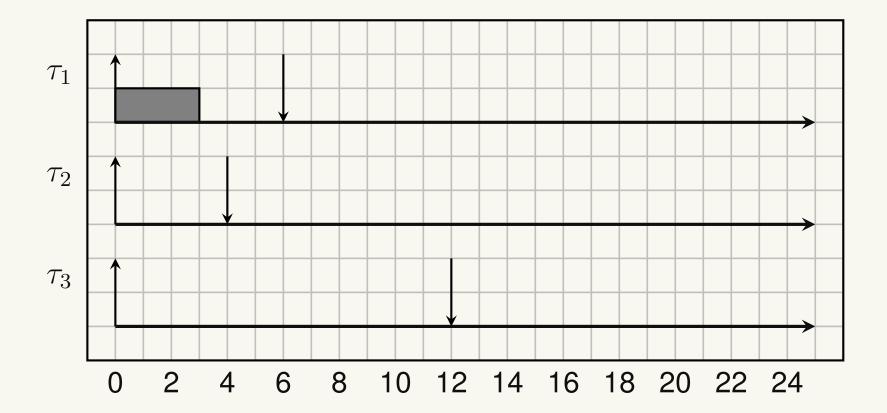


In this case, task τ_2 misses its deadline!

Real-Time Operating Systems and Middleware

Another Example (non-schedulable)

• Consider the following task set: $\tau_1 = (3, 6, 6)$, $p_1 = 3$, $\tau_2 = (2, 4, 8)$, $p_2 = 2$, $\tau_3 = (2, 12, 12)$, $p_3 = 1$

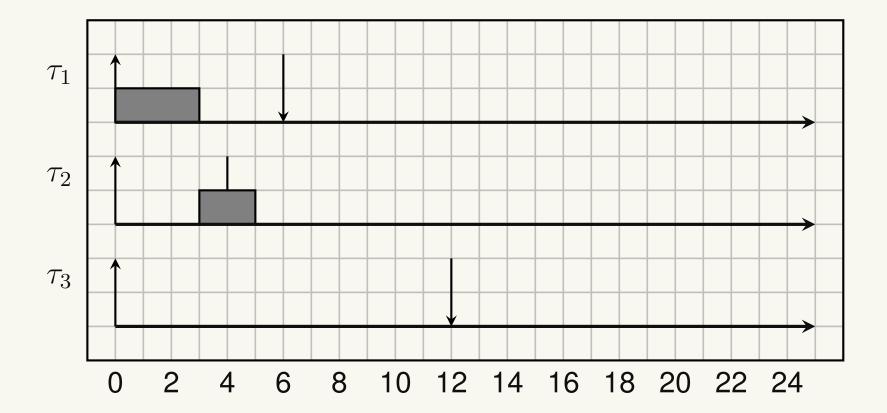


In this case, task τ_2 misses its deadline!

Real-Time Operating Systems and Middleware

Another Example (non-schedulable)

• Consider the following task set: $\tau_1 = (3, 6, 6)$, $p_1 = 3$, $\tau_2 = (2, 4, 8)$, $p_2 = 2$, $\tau_3 = (2, 12, 12)$, $p_3 = 1$



In this case, task τ_2 misses its deadline!

Real-Time Operating Systems and Middleware

- Some considerations about the schedule shown before:
 - The response time of the task with the highest priority is minimum and equal to its WCET
 - The response time of the other tasks depends on the *interference* of the higher priority tasks
 - The priority assignment may influence the schedulability of a task set
 - Problem: how to assign tasks' priorities so that a task set is schedulable?

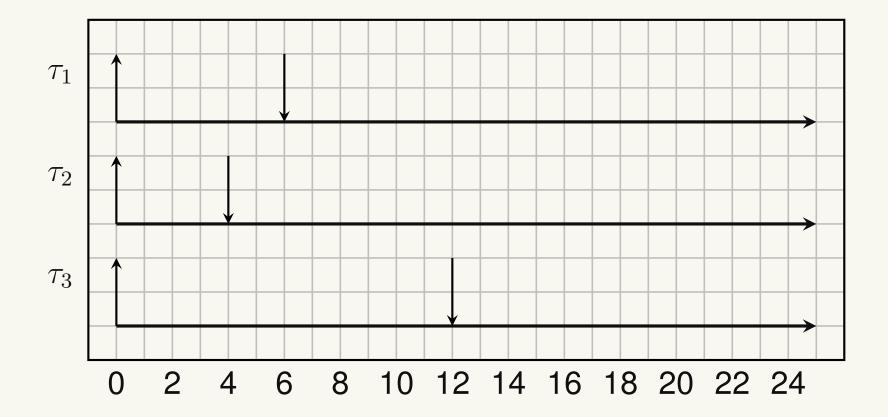
Priority Assignment

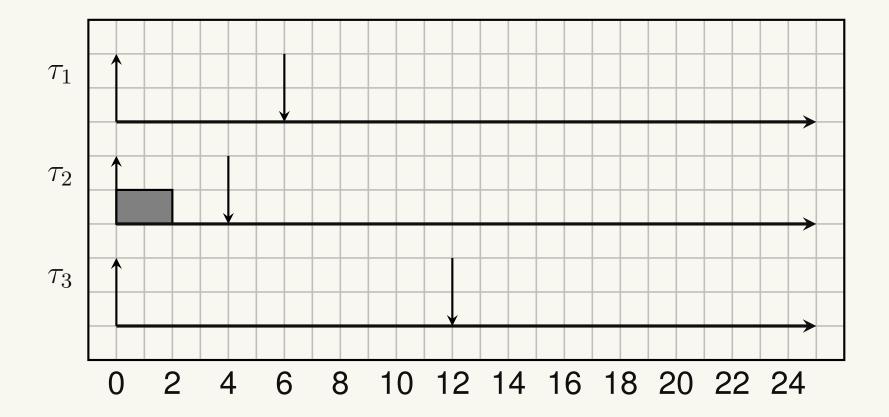
- Given a task set, how to assign priorities?
- There are two possible objectives:
 - Schedulability (i.e. find the priority assignment that makes all tasks schedulable)
 - Response time (i.e. find the priority assignment that minimise the response time of a subset of tasks)
- By now we consider the first objective only
- An *optimal* priority assignment *Opt* is such that:
 - If the task set is schedulable with another priority assignment, then it is schedulable with priority assignment Opt
 - If the task set is not schedulable with *Opt*, then it is not schedulable by any other assignment

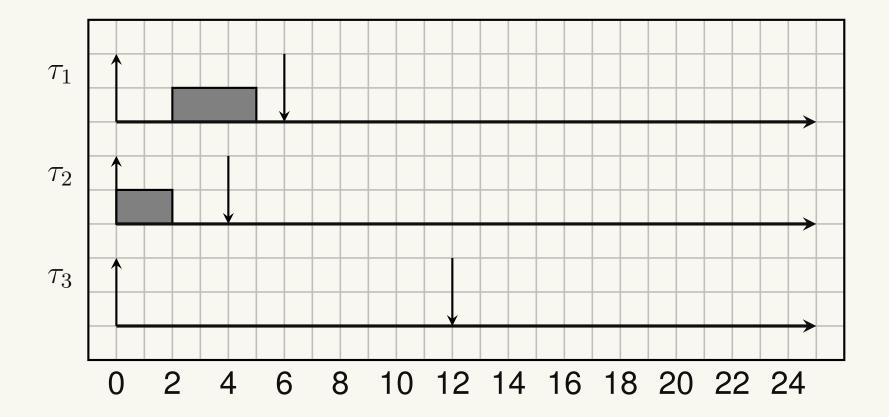
- Given a periodic task set T with all tasks having relative deadline D_i equal to the period T_i ($\forall i, D_i = T_i$), and with all offsets equal to 0 ($\forall i, r_{i,0} = 0$):
 - The best assignment is the Rate Monotonic (RM) assignment
 - Shorter period \rightarrow higher priority
- Given a periodic task set with deadline different from periods, and with all offsets equal to 0 ($\forall i$, $r_{i,0} = 0$):
 - The best assignment is the *Deadline Monotonic* assignment
 - Shorter relative deadline \rightarrow higher priority
- For sporadic tasks, the same rules are valid as for periodic tasks with offsets equal to 0

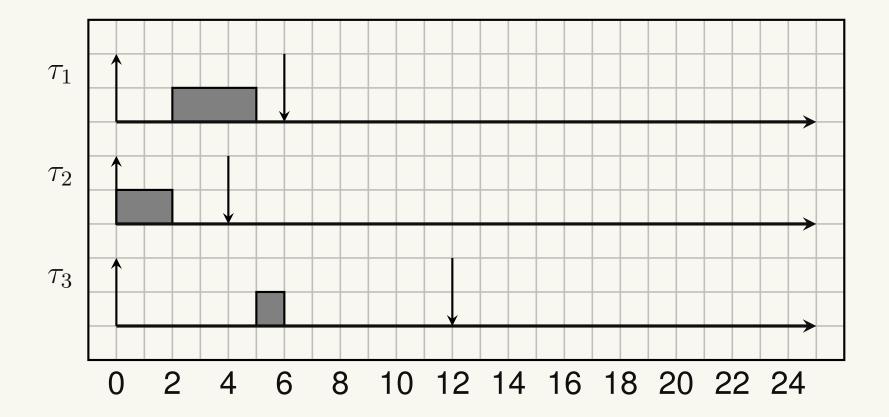
Example revised

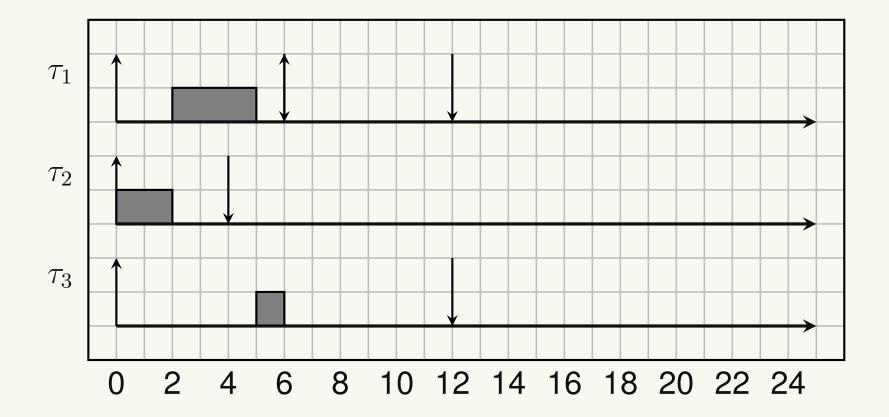
• Consider the example shown before with deadline monotonic: $\tau_1 = (3, 6, 6), p_1 = 2, \tau_2 = (2, 4, 8), p_2 = 3, \tau_3 = (2, 12, 12), p_3 = 1$

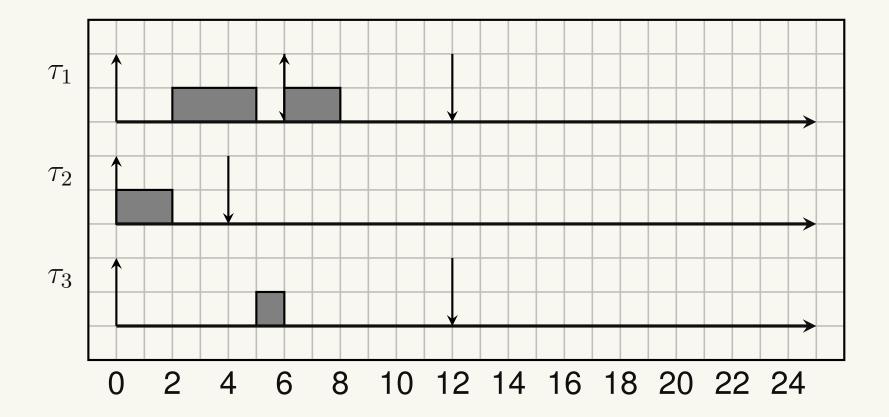


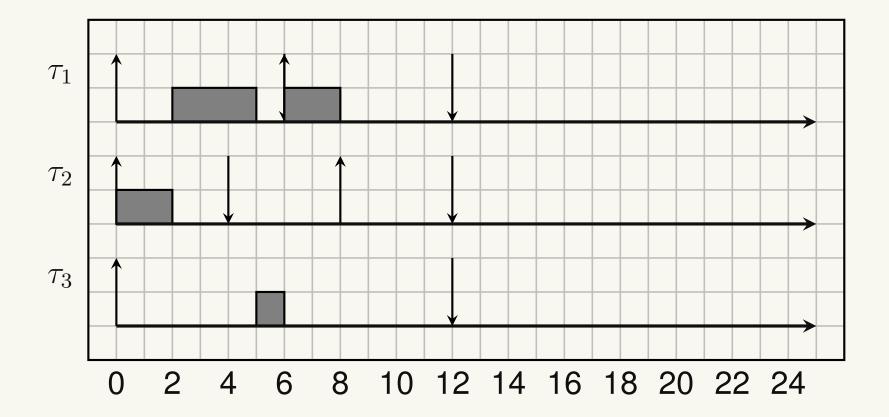


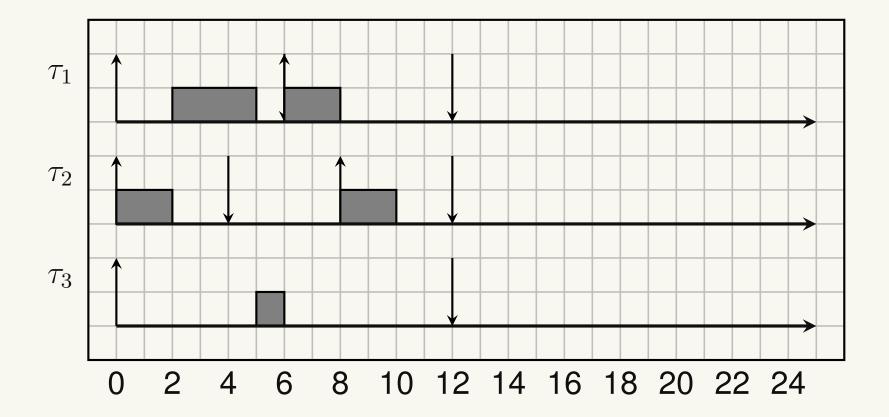


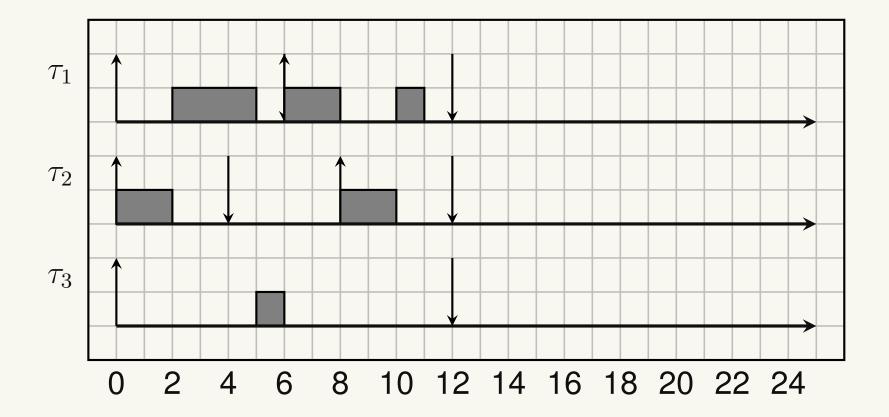


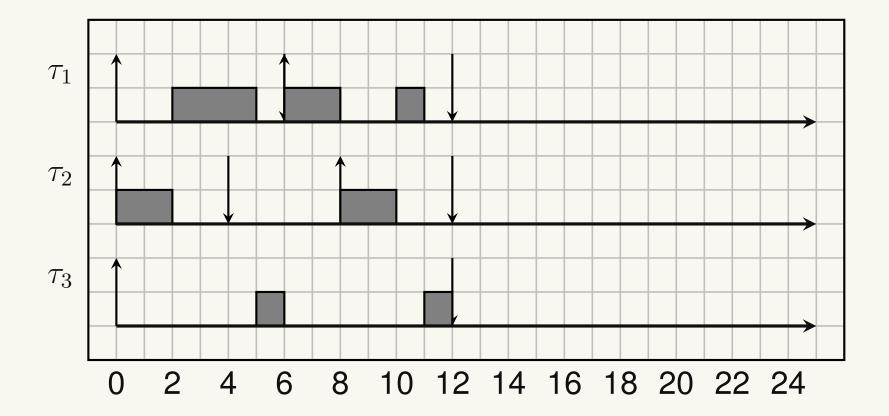


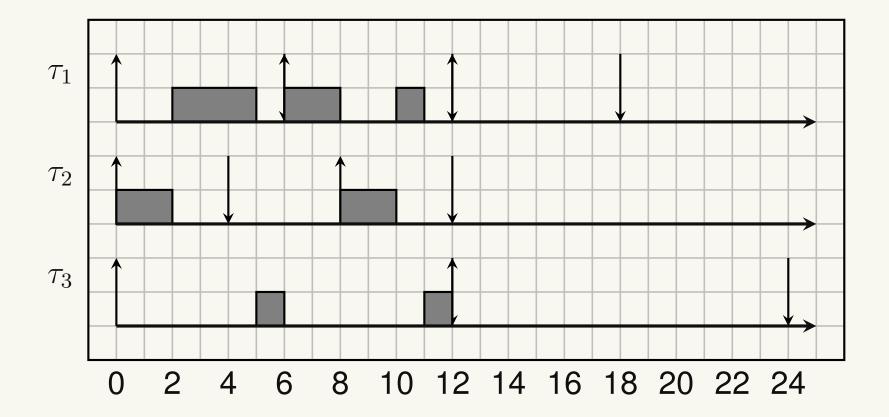


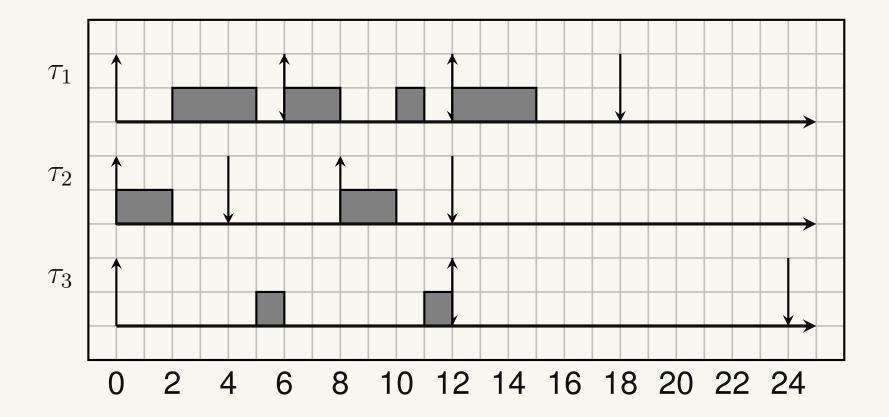


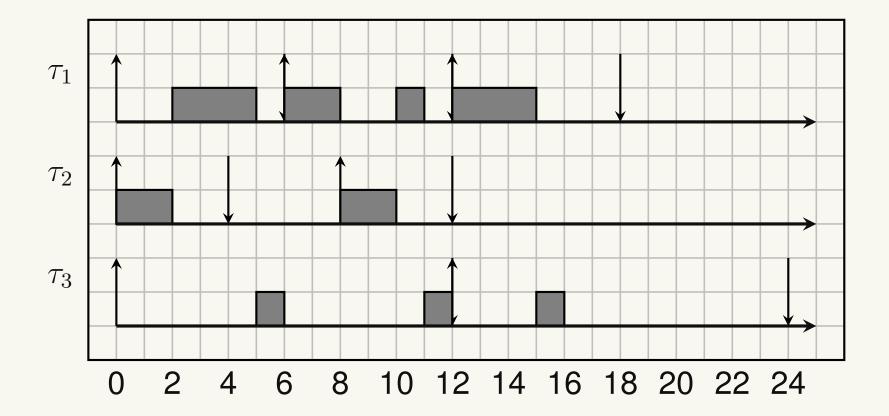


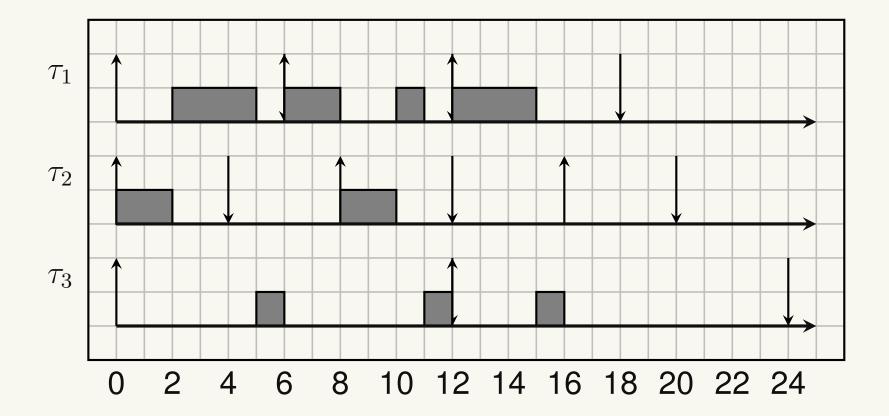


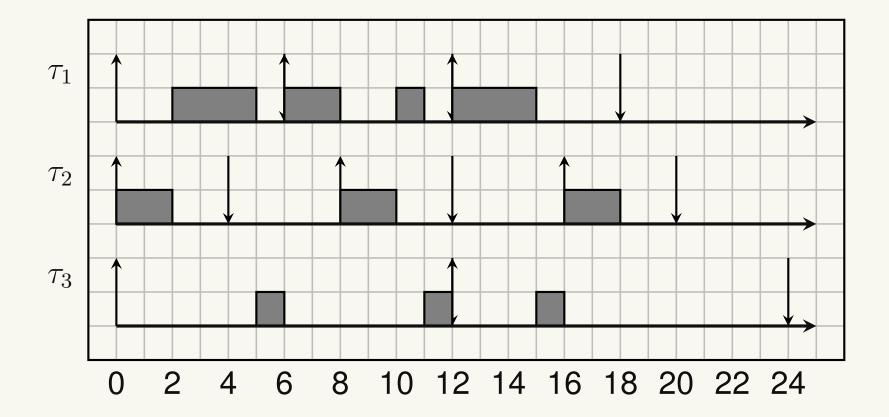


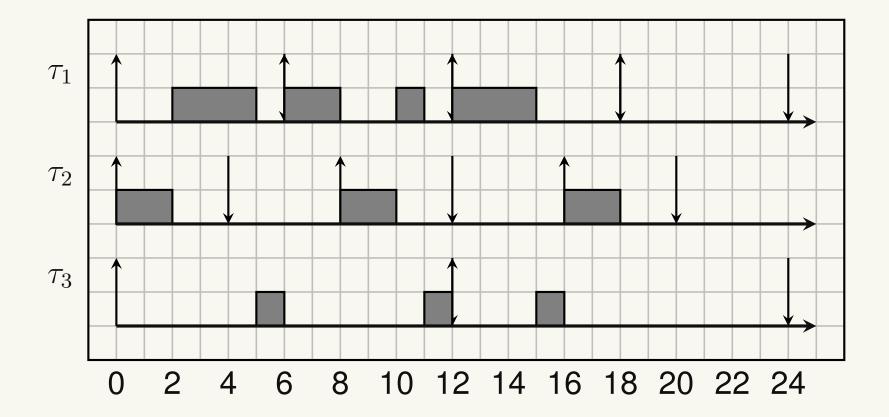


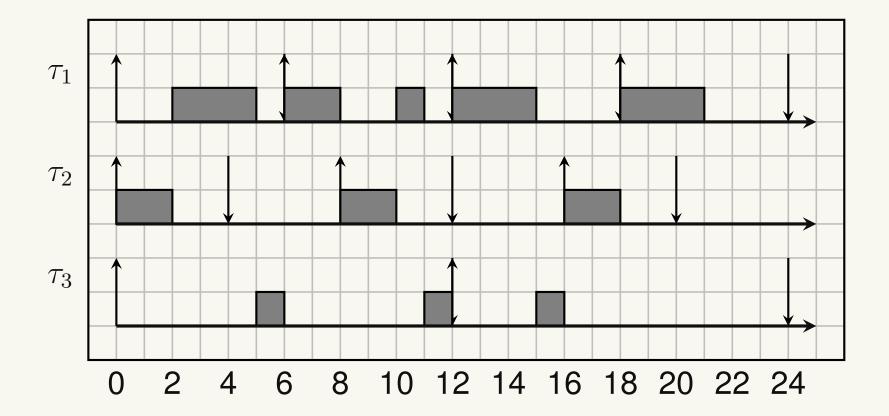


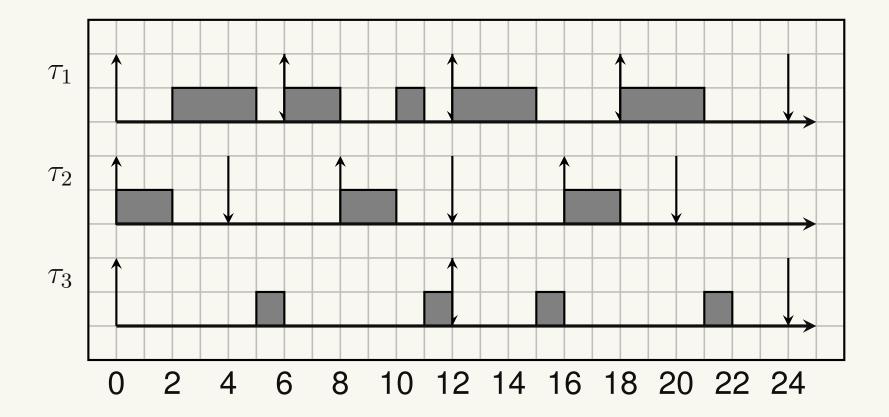












Analysis

- Given a task set, how can we guarantee if it is schedulable of not?
- The first possibility is to *simulate* the system to check that no deadline is missed;
- The execution time of every job is set equal to the WCET of the corresponding task;
 - Periodic tasks with no offsets \Rightarrow sufficient to simulate the schedule until the *hyperperiod* ($H = lcm\{T_i\}$).
 - Offsets $\phi_i = r_{i,0} \Rightarrow$ simulate until $2H + \phi_{max}$.
 - If tasks periods are prime numbers the hyperperiod can be very large!
- Note: $RM \rightarrow$ hyperperiod; Cyclic Executive \rightarrow Major Cycle

• Exercise: Compare the hyperperiods of this two task sets:

•
$$T_1 = 8, T_2 = 12, T_3 = 24$$

•
$$T_1 = 7, T_2 = 12, T_3 = 25$$

 In case of sporadic tasks, we can assume them to arrive at the highest possible rate, so we fall back to the case of periodic tasks with no offsets!

- In many cases it is useful to have a very simple test to see if the task set is schedulable.
- A sufficient test is based on the *Utilisation bound*:
 - The *utilisation least upper bound* for scheduling algorithm \mathcal{A} is the smallest possible utilisation U_{lub} such that, for any task set \mathcal{T} , if the task set's utilisation U is not greater than U_{lub} $(U \leq U_{lub})$, then the task set is schedulable by algorithm \mathcal{A}

Utilisation

• Each task uses the processor for a fraction of time

$$U_i = \frac{C_i}{T_i}$$

• The total processor utilisation is

$$U = \sum_{i} \frac{C_i}{T_i}$$

• This is a measure of the processor's load

Real-Time Operating Systems and Middleware

Necessary Condition

. . .

- If U > 1 the task set is surely not schedulable
- However, if U < 1 the task set may or may not be schedulable
- If $U < U_{lub}$, the task set is schedulable!!!
 - "Gray Area" between U_{lub} and 1
 - We would like to have U_{lub} near to 1
 - $U_{lub} = 1$ would be optimal!!!

Utilisation Bound for RM

- We consider *n* periodic (or sporadic) tasks with relative deadline equal to periods.
- Priorities are assigned with Rate Monotonic;
- $U_{lub} = n(2^{1/n} 1)$
 - U_{lub} is a decreasing function of n;
 - For large *n*: $U_{lub} \approx 0.69$

n	U_{lub}	n	U_{lub}
2	0.828	7	0.728
3	0.779	8	0.724
4	0.756	9	0.720
5	0.743	10	0.717
6	0.734	11	

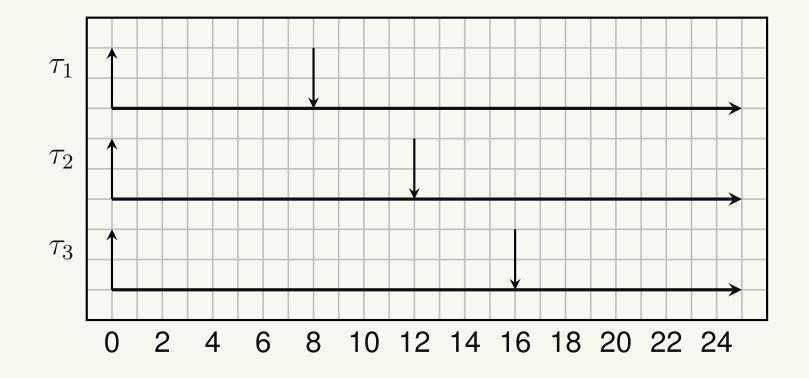
Schedulability Test

- Therefore the schedulability test consist in:
 - Computing $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$
 - if $U \leq U_{lub}$, the task set is schedulable
 - if U > 1 the task set is not schedulable
 - if $U_{lub} < U \le 1$, the task set may or may not be schedulable

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

 $U = 0.75 < U_{lub} = 0.77$

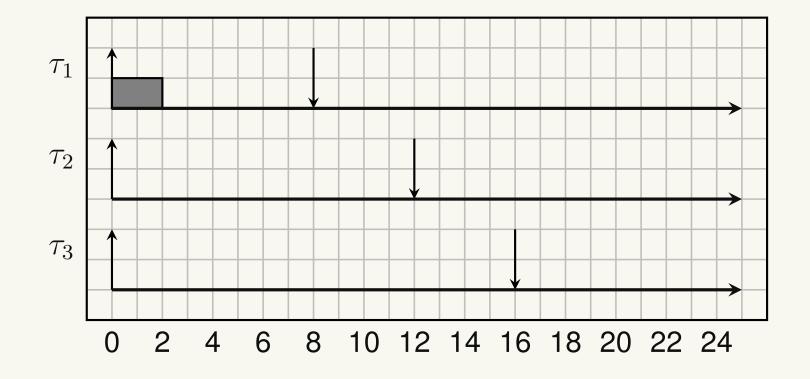


Real-Time Operating Systems and Middleware

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

 $U = 0.75 < U_{lub} = 0.77$

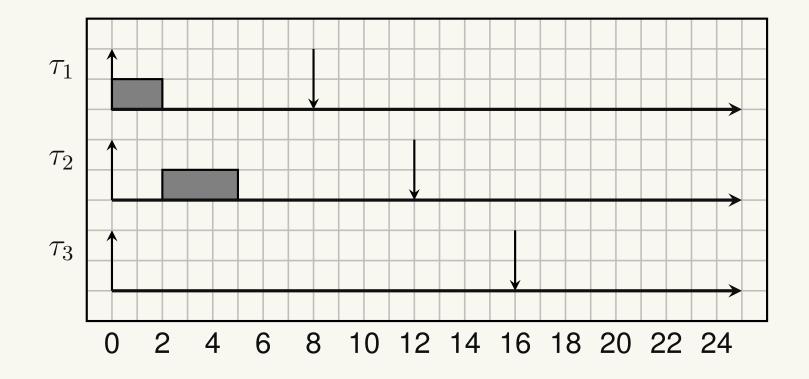


Real-Time Operating Systems and Middleware

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

 $U = 0.75 < U_{lub} = 0.77$

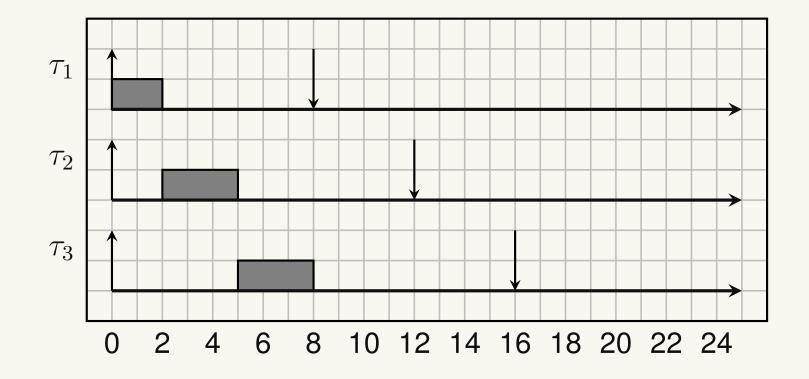


Real-Time Operating Systems and Middleware

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

 $U = 0.75 < U_{lub} = 0.77$

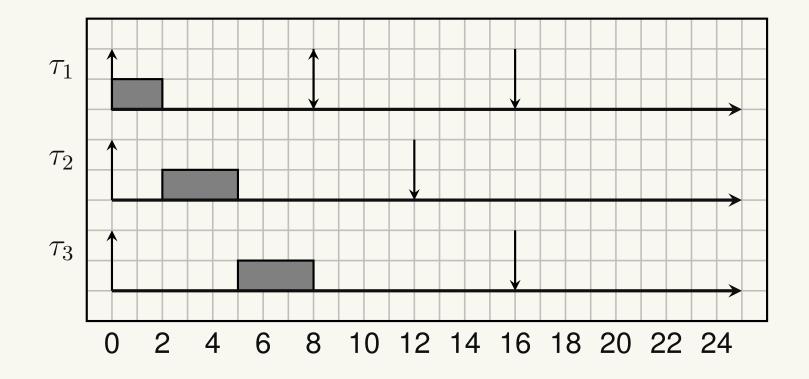


Real-Time Operating Systems and Middleware

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

 $U = 0.75 < U_{lub} = 0.77$

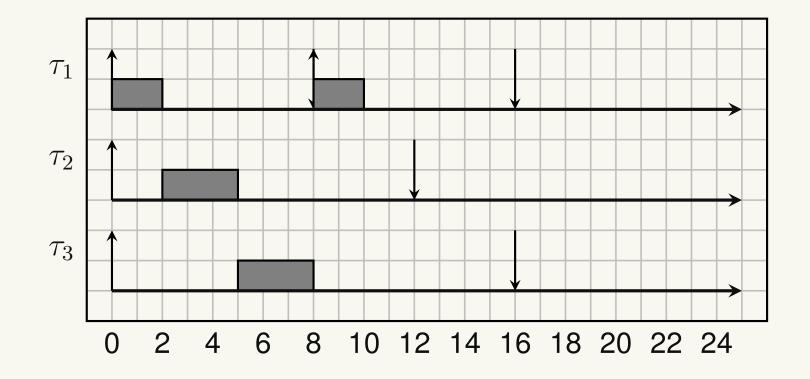


Real-Time Operating Systems and Middleware

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

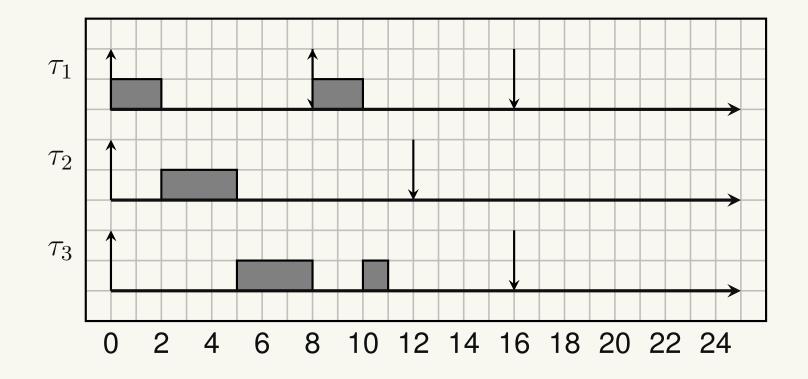
 $U = 0.75 < U_{lub} = 0.77$



Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

 $U = 0.75 < U_{lub} = 0.77$

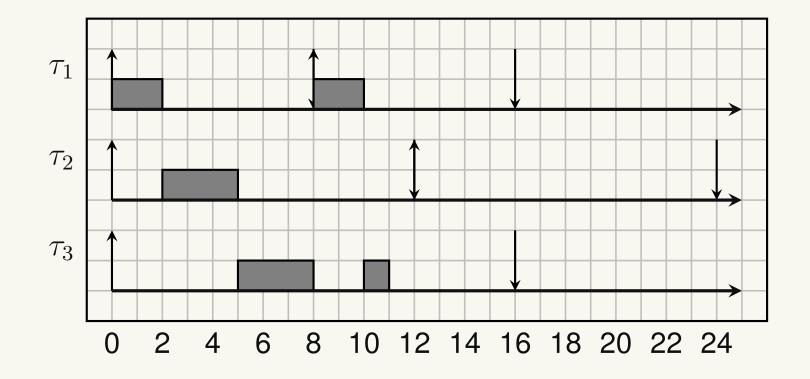


Real-Time Operating Systems and Middleware

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

 $U = 0.75 < U_{lub} = 0.77$

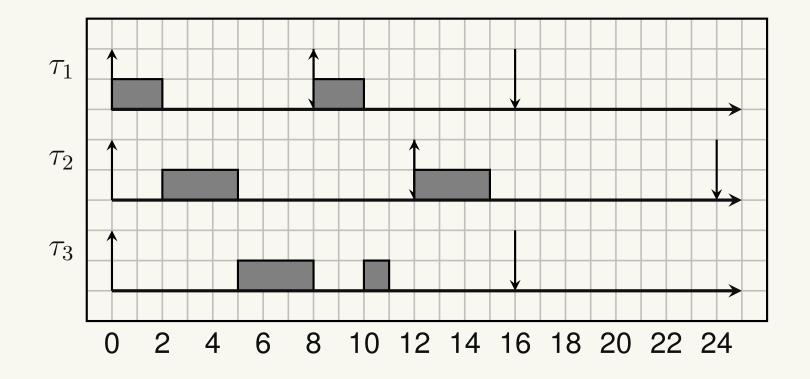


Real-Time Operating Systems and Middleware

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

 $U = 0.75 < U_{lub} = 0.77$

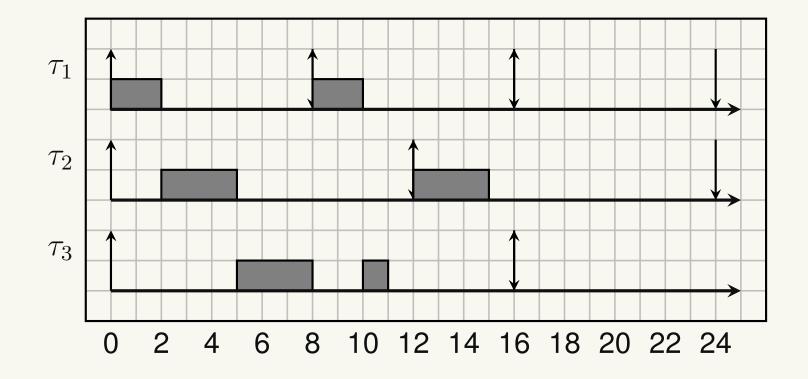


Real-Time Operating Systems and Middleware

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

 $U = 0.75 < U_{lub} = 0.77$

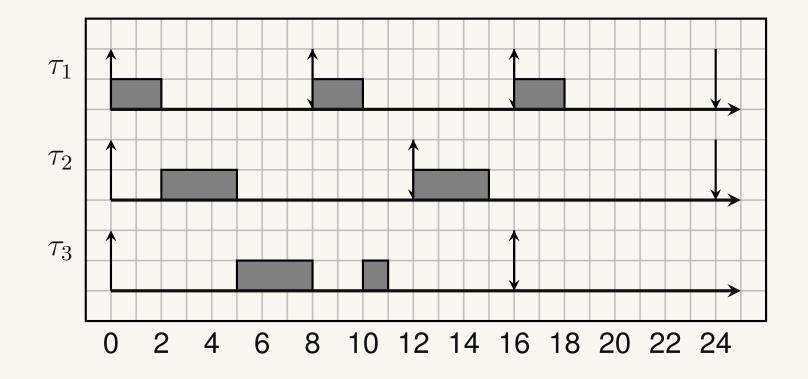


Real-Time Operating Systems and Middleware

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

 $U = 0.75 < U_{lub} = 0.77$

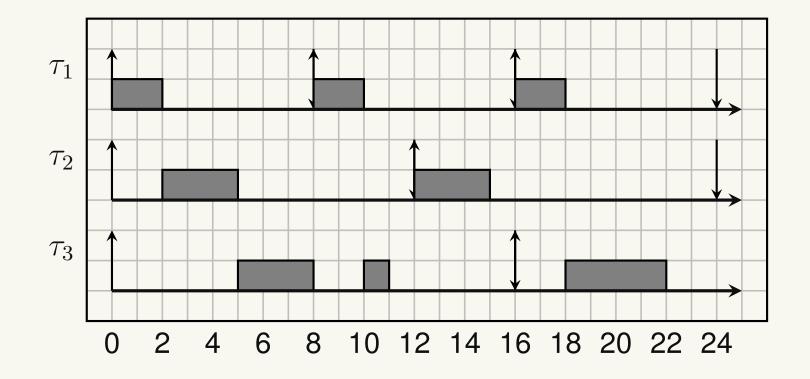


Real-Time Operating Systems and Middleware

Task set \mathcal{T} composed by 3 periodic tasks with $U < U_{lub}$: the system is schedulable.

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (4, 16);$$

 $U = 0.75 < U_{lub} = 0.77$

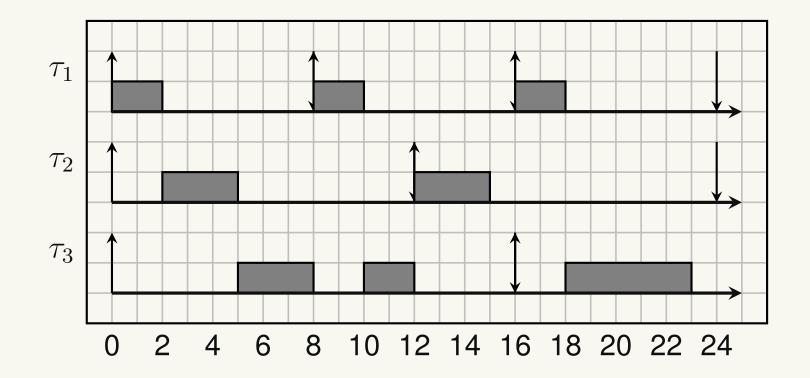


Real-Time Operating Systems and Middleware

By increasing the computation time of task τ_3 , the system may still be schedulable

$$\tau_1 = (2, 8), \tau_2 = (3, 12), \tau_3 = (5, 16);$$

 $U = 0.81 > U_{lub} = 0.77$



Real-Time Operating Systems and Middleware

Utilisation Bound for DM

• If relative deadlines are less than or equal to periods, instead of considering $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$, we can consider:

$$U' = \sum_{i=1}^{n} \frac{C_i}{D_i}$$

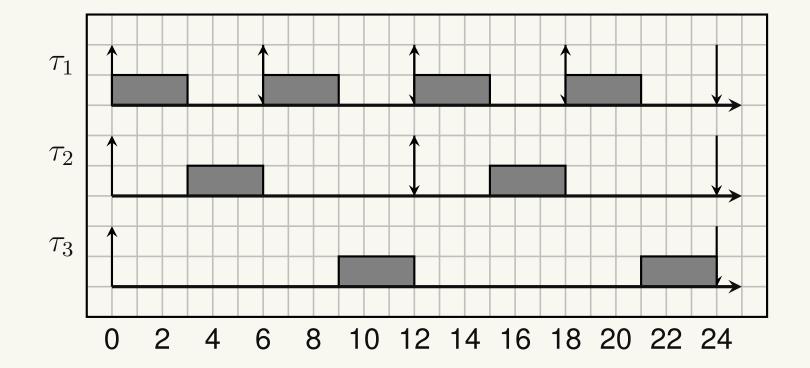
- Then the test is the same as the one for RM (or DM), except that we must use U' instead of U.
- Idea: $\tau = (C, D, T) \rightarrow \tau' = (C, D, D)$
 - au' is a "worst case" for au
 - If τ' can be guaranteed, τ can be guaranteed too

Real-Time Operating Systems and Middleware

Pessimism

- The bound is very pessimistic: most of the times, a task set with $U > U_{lub}$ is schedulable by RM.
- A particular case is when tasks have periods that are *harmonic*:
 - A task set is *harmonic* if, for every two tasks τ_i, τ_j , either T_i is multiple of T_j or T_j is multiple of T_i .
- For a harmonic task set, the utilisation bound is $U_{lub} = 1$
- In other words, Rate Monotonic is an *optimal* algorithm for harmonic task sets

Example of Harmonic Task Set



Real-Time Operating Systems and Middleware