
Real-Time Scheduling

Real Time Operating Systems and Middleware

Luca Abeni

luca.abeni@unitn.it



Definitions

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Algorithm → logical procedure used to solve a problem

• Program → formal description of an algorithm, using a

programming language

• Process → instance of a program (program in execution)

• Program: static entity

• Process: dynamic entity

• The term task is used to indicate a schedulable entity (either a

process or a thread)

• Thread → flow of execution

• Process → flow of execution + private resources (address

space, file table, etc...)



Scheduling

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Tasks do not run on bare hardware...

• How can multiple tasks execute on one single CPU?

• The OS OS kernel creates the illusion of having more CPUs,

so that multiple tasks execute in parallel

• Tasks have the illusion of executing concurrently

• A dedicated CPU per task

• Concurrency is implemented by multiplexing tasks on the same

CPU...

• Tasks are alternated on a real CPU...

• ...And the task scheduler decides which task executes at a

given instant in time

• Tasks are associated temporal constraints (deadlines)

• The scheduler must allocate the CPU to tasks so that their

deadlines are respected



Scheduler - 1

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Scheduler: responsible for generating a schedule from a set of

ready tasks

• Interesting definition: the scheduler is the thing that

generates the schedule

• Let’s be serious... Start from a mathematical model

• First, consider UP systems (simpler definition)

• A schedule σ(t) is a function mapping time t into an

executing task

σ : t → T ∪ τidle

where T is the set of tasks in the system

• τidle is the idle task: when it is scheduled, the CPU

becomes idle

• For an SMP system (m CPUs), σ(t) can be extended to map

t in vectors τ ∈ (T ∪ τidle)
m



Scheduler - 2

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Scheduler: implements σ(t)

• The scheduler is responsible for selecting the task to

execute at time t

• From an algorithmic point of view

• Scheduling algorithm → Algorithm used to select for each

time instant t a task to be executed on a CPU among the

ready task

• Given a task set T , a scheduling algorithm A generates the

schedule σA(t)

• A task set is schedulable by an algorithm A if σA does not

contain missed deadlines

• Schedulability test → check if T is schedulable by A



RT Scheduling: Why?

Real-Time Operating Systems and Middleware Real-Time Scheduling

• The task set T = {(1, 3), (4, 8)} is not schedulable by FCFS

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

• T = {(1, 3), (4, 8)} is schedulable with other algorithms

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2



Cyclic Executive Scheduling

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Very low overhead (scheduling decisions taken off-line)

• Very simple and well-tested

• Mainly used in legacy applications and where reliability is

fundamental

• Example: military and avionics systems

• Air traffic control

• Space Shuttle

• Boeing 777

• Also called timeline scheduling or cyclic scheduling

• Originally used for periodic tasks



The idea

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Static scheduling algorithm

• Jobs are not preemptable

• A scheduled job executes until termination

• The time axis is divided in time slots

• Slots are statically allocated to the tasks (scheduling table)

• A periodic timer activates execution (allocation of a slot)

• Major Cycle: least common multiple (lcm) of all the tasks’

periods (also called hyperperiod)

• Minor Cycle: greatest common divisor (gcd) of all the tasks’

periods

• A timer fires every Minor Cycle ∆



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider a taskset Γ = {τ1, τ2, τ3}

• Periodic tasks τi = (Ci, Di, Ti), Di = Ti

• T1 = 25ms, T2 = 50ms, T3 = 100ms

1. Minor Cycle ∆ = gcd(25, 50, 100) = 25ms

2. Major Cycle T = lcm(25, 50, 100) = 100ms

3. Compute a schedule that respects the task periods

• Allocate tasks in slots of size ∆ = 25ms

• The schedule repeats every T = 100ms

• τ1 must be scheduled every 25ms, τ2 must be scheduled

every 50ms, τ3 must be scheduled every 100ms

• In every minor cycle, the tasks must execute for less than

25ms



Example - The Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• The schedule repeats every 4 minor cycles

• τ1 must be scheduled every 25ms ⇒ scheduled in every

minor cycle

• τ2 must be scheduled every 50ms ⇒ scheduled every 2
minor cycles

• τ3 must be scheduled every 100ms ⇒ scheduled every 4
minor cycles

25 50 75 100 125 150 175 200

T∆

• First minor cycle: C1 + C3 ≤ 25ms

• Second minor cycle: C1 + C2 ≤ 25ms



Implementation

Real-Time Operating Systems and Middleware Real-Time Scheduling

Timer

Timer

Timer

Timer

Minor
Cycle

Cycle
Major

• Periodic timer firing ev-

ery minor cycle

• Every time the timer

fires...

• ...Read the scheduling

table and execute the

appropriate tasks

• Then, sleep until next

minor cycle



Advantages

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Simple implementation (no real-time operating system is

required)

• No real task exist: just function calls

• One single stack for all the “tasks”

• Non-preemptable scheduling ⇒ no need to protect data

• No need for semaphores, pipes, mutexes, mailboxes, etc.

• Low run-time overhead

• Jitter can be explicitly controlled



Drawbacks

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Not robust during overloads

• Difficult to expand the schedule (static schedule)

• New task ⇒ the whole schedule must be recomputed

• Not easy to handle aperiodic/sporadic tasks

• All task periods must be a multiple of the minor cycle time

• Difficult to incorporate processes with long periods (big tables)

• Variable computation time ⇒ it might be necessary to split tasks

into a fixed number of fixed size procedures



Fixed Priority Scheduling

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Very simple preemptive scheduling algorithm

• Every task τi is assigned a fixed priority pi
• The active task with the highest priority is scheduled

• Priorities are integer numbers: the higher the number, the

higher the priority

• In the research literature, sometimes authors use the

opposite convention: the lowest the number, the highest the

priority

• In the following we show some examples, considering periodic

tasks, constant execution times, and deadlines equal to the

period



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example of Schedule

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task τ2 has

priority p2 = 2, task τ3 has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Another Example (non-schedulable)

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (3, 6, 6), p1 = 3,

τ2 = (2, 4, 8), p2 = 2, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

In this case, task τ2 misses its deadline!



Another Example (non-schedulable)

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (3, 6, 6), p1 = 3,

τ2 = (2, 4, 8), p2 = 2, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

In this case, task τ2 misses its deadline!



Another Example (non-schedulable)

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the following task set: τ1 = (3, 6, 6), p1 = 3,

τ2 = (2, 4, 8), p2 = 2, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

In this case, task τ2 misses its deadline!



Notes about Priority Scheduling

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Some considerations about the schedule shown before:

• The response time of the task with the highest priority is

minimum and equal to its WCET

• The response time of the other tasks depends on the

interference of the higher priority tasks

• The priority assignment may influence the schedulability of a

task set

• Problem: how to assign tasks’ priorities so that a task set

is schedulable?



Priority Assignment

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Given a task set, how to assign priorities?

• There are two possible objectives:

• Schedulability (i.e. find the priority assignment that makes all

tasks schedulable)

• Response time (i.e. find the priority assignment that

minimise the response time of a subset of tasks)

• By now we consider the first objective only

• An optimal priority assignment Opt is such that:

• If the task set is schedulable with another priority

assignment, then it is schedulable with priority assignment

Opt

• If the task set is not schedulable with Opt, then it is not

schedulable by any other assignment



Optimal Priority Assignment

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Given a periodic task set T with all tasks having relative

deadline Di equal to the period Ti (∀i, Di = Ti), and with all

offsets equal to 0 (∀i, ri,0 = 0):

• The best assignment is the Rate Monotonic (RM)

assignment

• Shorter period → higher priority

• Given a periodic task set with deadline different from periods,

and with all offsets equal to 0 (∀i, ri,0 = 0):

• The best assignment is the Deadline Monotonic assignment

• Shorter relative deadline → higher priority

• For sporadic tasks, the same rules are valid as for periodic tasks

with offsets equal to 0



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example revised

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Consider the example shown before with deadline monotonic:

τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Analysis

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Given a task set, how can we guarantee if it is schedulable of

not?

• The first possibility is to simulate the system to check that no

deadline is missed;

• The execution time of every job is set equal to the WCET of the

corresponding task;

• Periodic tasks with no offsets ⇒ sufficient to simulate the

schedule until the hyperperiod (H = lcm{Ti}).

• Offsets φi = ri,0 ⇒ simulate until 2H + φmax.

• If tasks periods are prime numbers the hyperperiod can be

very large!

• Note: RM → hyperperiod; Cyclic Executive → Major Cycle



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Exercise: Compare the hyperperiods of this two task sets:

• T1 = 8, T2 = 12, T3 = 24
• T1 = 7, T2 = 12, T3 = 25

• In case of sporadic tasks, we can assume them to arrive at the

highest possible rate, so we fall back to the case of periodic

tasks with no offsets!



Utilisation-Based Analysis

Real-Time Operating Systems and Middleware Real-Time Scheduling

• In many cases it is useful to have a very simple test to see if the

task set is schedulable.

• A sufficient test is based on the Utilisation bound:

• The utilisation least upper bound for scheduling algorithm A
is the smallest possible utilisation Ulub such that, for any task

set T , if the task set’s utilisation U is not greater than Ulub

(U ≤ Ulub), then the task set is schedulable by algorithm A



Utilisation

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Each task uses the processor for a fraction of time

Ui =
Ci

Ti

• The total processor utilisation is

U =
∑

i

Ci

Ti

• This is a measure of the processor’s load



Necessary Condition

Real-Time Operating Systems and Middleware Real-Time Scheduling

• If U > 1 the task set is surely not schedulable

• However, if U < 1 the task set may or may not be schedulable

. . .

• If U < Ulub, the task set is schedulable!!!

• “Gray Area” between Ulub and 1
• We would like to have Ulub near to 1
• Ulub = 1 would be optimal!!!



Utilisation Bound for RM

Real-Time Operating Systems and Middleware Real-Time Scheduling

• We consider n periodic (or sporadic) tasks with relative deadline

equal to periods.

• Priorities are assigned with Rate Monotonic;

• Ulub = n(21/n − 1)

• Ulub is a decreasing function of n;

• For large n: Ulub ≈ 0.69

n Ulub n Ulub

2 0.828 7 0.728

3 0.779 8 0.724

4 0.756 9 0.720

5 0.743 10 0.717

6 0.734 11 . . .



Schedulability Test

Real-Time Operating Systems and Middleware Real-Time Scheduling

• Therefore the schedulability test consist in:

• Computing U =
∑n

i=1

Ci

Ti

• if U ≤ Ulub, the task set is schedulable

• if U > 1 the task set is not schedulable

• if Ulub < U ≤ 1, the task set may or may not be schedulable



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example

Real-Time Operating Systems and Middleware Real-Time Scheduling

Task set T composed by 3 periodic tasks with U < Ulub: the system

is schedulable.

τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Example 2

Real-Time Operating Systems and Middleware Real-Time Scheduling

By increasing the computation time of task τ3, the system may still

be schedulable

τ1 = (2, 8), τ2 = (3, 12), τ3 = (5, 16);

U = 0.81 > Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Utilisation Bound for DM

Real-Time Operating Systems and Middleware Real-Time Scheduling

• If relative deadlines are less than or equal to periods, instead of

considering U =
∑n

i=1

Ci

Ti

, we can consider:

U ′ =
n∑

i=1

Ci

Di

• Then the test is the same as the one for RM (or DM), except

that we must use U ′ instead of U .

• Idea: τ = (C,D, T ) → τ ′ = (C,D,D)

• τ ′ is a “worst case” for τ

• If τ ′ can be guaranteed, τ can be guaranteed too



Pessimism

Real-Time Operating Systems and Middleware Real-Time Scheduling

• The bound is very pessimistic: most of the times, a task set with

U > Ulub is schedulable by RM.

• A particular case is when tasks have periods that are harmonic:

• A task set is harmonic if, for every two tasks τi, τj, either Ti is

multiple of Tj or Tj is multiple of Ti.

• For a harmonic task set, the utilisation bound is Ulub = 1
• In other words, Rate Monotonic is an optimal algorithm for

harmonic task sets



Example of Harmonic Task Set

Real-Time Operating Systems and Middleware Real-Time Scheduling

τ1 = (3, 6), τ2 = (3, 12), τ3 = (6, 24);

U = 1 ;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3


	Definitions
	Scheduling
	Scheduler - 1
	Scheduler - 2
	RT Scheduling: Why?
	Cyclic Executive Scheduling
	The idea
	Example
	Example - The Schedule
	Implementation
	Advantages
	Drawbacks
	Fixed Priority Scheduling
	Example of Schedule
	Another Example (non-schedulable)
	Notes about Priority Scheduling
	Priority Assignment
	Optimal Priority Assignment
	Example revised
	Analysis
	Example
	Utilisation-Based Analysis
	Utilisation
	Necessary Condition
	Utilisation Bound for RM
	Schedulability Test
	Example
	Example 2
	Utilisation Bound for DM
	Pessimism
	Example of Harmonic Task Set

